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1.  INTRODUCTION 

The lambda calculus was originally conceived by Church as part of a general theory of functions and logic, 

intended as a foundation for mathematics. Although the full system turned out to be inconsistent, the 

subsystem dealing with functions only turned out to be a successful model of the computable functions. 

For an introduction to the subject and its relation to functional programming, see Barendregt [1990]. Some 

books on the lambda calculus are Barendregt [1984] and Hindley and Seldin [1986]. A major problem with 

the lambda calculus as functional programming language is the great amount of freedom in combining 

terms. A way to restrict this combinatorial freedom is the use of types, which are characterisations of 

classes of terms. The first type systems for lambda calculus were introduced in Curry [1934] and Church 

[1941]. Since then many typed lambda calculi have been proposed for different purposes. 

The evolution of programming languages shows a similar pattern. The oldest varieties, like assembler 

and LISP, were essentially typefree and allowed too much combinatorial freedom. In languages like 

ALGOL 68 and Fortran simple but rather rigid type systems were introduced. For various applications 

these type systems were too restrictive and they have been extended in many ways. Type theory is currently 

an active research area. Publications, like the IEEE-LICS and ACM-POPL proceedings and papers like 

Cardelli and Wagner [1985] and Reynolds [1985], show that the developments in lambda cactuli and 

programming languages are converging. It also displays a bewildering variety of systems and confusion of 

notations and nomenclature. What is clearly needed is a classification or taxonomy of these systems on the 

basis of a common frame of reference. This paper presents a contribution towards such a classification. The 

exposition is based on the extensive treatment in Barendregt [199q, but because of space limitations proofs 

have been omitted. Although the paper concentrates on typed lambda calculi, at many places the relations 

with progrmnming languages are illustrated. 

The main criterion for the classification is based on the original systems of Curry and Church, which 

might be called implicit typing and explicit typing, respectively. This division is the subject of section 2. 

Section 3 ,;ystematically discusses the main ingredients of implicit type systems, and section 4 does the 

same for explicit type systems. Section 4 concludes with a taxonomy of explicit systems by means of 

generalised type systems, including the %cube'  introduced in Barendregt [1989]. Since all systems 

discussed in this paper are ultimately based on the type-free lambda calculus, we conclude this introduction 

with a sho~x review of that system for reference purposes. 



1.1 TYPE-FREE LAMBDA CALCULUS 

The aspects of lambda calculus important for functional programming consist of the syntax of terms and the 

reduction (rewrite) relation on these. 

1.1.1. Definition. The sets of (term) variables V, of constants C and of lambda terms A are defined by the 

following abstract syntax. 

V = x l V '  

CfclC' 

A=VJCIAAI~V.A 

SoV = {x, x', x", ...} andC= {c, c', c", ...}. 

1.1.2. 

(i) 
(~) 

(iii) 
(iv) 

(v) 
(vi) 

Conventions. 

x, y, z .... range over V. 

a, b, e .... range over C. 

M, N, L,... range over A. 

= stands for syntactic equality. 

MNI...Nk - (..((MN1) N2)...Nk), association to the left. 

~,Xl...xk.M -= ~.Xl. (~x2 .... GLxk. (M))..), association to the right. 

1.1.3. Examples. The following are lambda terms. 

(i) kx.x. 

(ii) y0.x.x). 
(iii) 0.x.xx)(Xx.xx) 

1.1.4. Definition 

(i) FV(M) is the set of free variables of M. 

(ii) M Ix : = N] is the result of substituting N for the frcc occulzenccs of x in M. 

I. 1.5. Definition (Reduction). 

(i) A binary relation --~ (one step reduction) is defined on A as follows. 

(XX.M)N "-)8 M Ix : -- N]; 

M--~BIvI' M - ~ M '  M--~BM' 
; -; 

MN--c~M'N NM-~NM'  Xx.M--~x.M'" 

(ii) Many step reduction --~ is the reflexive transitive closure of ~. 

(iii) Convezsion = ~ is the equivalence relation generated by X---~B. 



Instead of ~13, --~[3 and =13 we often write ~ ,  ~ and =, respectively. 

1.1.6. Examples. 

(i) (Xx.xx)(Xy.y)z ~ (Xy.y)(Xy.y)z 

• " - ) ' )  Z .  

(ii) (Xxy.x)  Z W --~  Z. 

(iii) (Xx.xx)(~y.y)z = (Xxy.x)zw. 

1.1.7. Definition. 

(i) M e A is called a normal form (nf) if for no N one has M-->N. 

(ii) M has a nf N if M---~N and N is a nf. 

(iii) M is strongly normalising, notation SN(M), if for no inf'mite sequence M1, M2 .... one 

has M--~M I---)M2---~ .... 

1.1.8. Examples. 

(i) (Xx.xx)y has yy as nf. 

(ii) f~ - (Xx.xx)(Xx.xx) has no nf. 

(iii) (~.xy.x) a f~ has a as nf, but is not strongly normalising since f~---)~---~ .... 

1.1.9. Theorem (Church-Rosser property). 

(i) If M-~M1, and M--~M2 then for some M3 e A one has MI--~M3 and 

M2 "-~M3- 

(ii) If MI = M2, then for some M3 e A one has Mr-~M3 and M2--~M3. 

1.1.10. CoroUary (Unicity of normal forms). A lambda term has at most one nf. 

There are certain terms in normal form "0 a, r 1 a .... (numerals) that represent the elements of ~ ,  the set 

of natural numbers. 

1.1.11. Theorem (Lambda definability of computable functions). 

(i) Let f : ~ ~ gi be a computable function. Then for some F•  A one has for all n • 

F rn ' l  ~ rf(n)'~. 

(ii) More generally, if f : ~1 k -->~1 is computable, then for some Fe A one has for all nl,...,nk e ~1 

F rnl '~  . . . rnk l  --~ r f (n  1 ..... nk) "~. 

This is the basis of evaluation of functional programs. The input and program form together one expression 

and by the Church-Rosser theorem it does not matter how reductions are done, as long as one cares to fmd 

the normal form (if it exists). For this there are several possible normalising strategies, for example teftmost 

reduction. 



One way (but not the only) of obtaining representations of recursive functions is to use the so called fixed 

point operator Y. 

1.1.12. Theorem. Let Y - kf.(~,x,f(xx))(kx.f(xx)). Then Y produces fixed points, i.e. for every F one has 

F(YF) = YF. Turing's fixed point operator O = (kab.b(aab))(kab.b(aab)) even has the property OF --~ 

F(OF). 

2 .  IMPLICIT  VERSUS EXPLICIT TYPING 

There are two ways in which expressions denoting algorithms can be typed: the implicit way, originating 

with Curry [ 1934], and the explicit way, originating with Church [ 1941]. 

In the systems of implicit typing the expressions are the type-free lambda terms. To each such term a set 

of possible types is assigned. The number of dements in this set may be zero, one or more. If type o is 

assigned to term M, then one writes M : ~ (pronounce 'M in ~'). An example (to be treated in detail later) is 

(kx.x) : (a-oo~), 

that is, the identity is of type a-oa. This means that if y : a,  then ((Lx.x)y) : ~. Also one has 

(kx.x) : ((0~-o~) -o (~-o~)). Indeed, if f : ~ ---)~, then ((kx.x)f) : ((~-o~). Therefore one, says that the 

identity is potymorphic. 

In the systems of explicit typing the expressions are annotated versions of lambda terms. Such an 

expression has a type that usually is uniquely determined by the annotations. An example is 

(kx:~.x) : (0~-o0~). 

One may write Ic - (kx:~.x) : (a--->o) for the identity on ~. In particular Ia-ol~ : (a-ol~) -o (a-oJ3). 

The components of an algorithm as given by a term usually have a fixed intended meaning. Therefore 

the explicitly typed terms are rather natural. However, it is often space and time consuming to annotate 

programs with types. Moreover, the annotation often can be constructed from the type-free expression by 

automatic means. Therefore the implicit typing paradigm is rather convenient. 

Now we will introduce the most basic typed system, the simply typed lambda calculus, both in the style 

of Curry and that of Church. These systems will be denoted by k-o-Curry and k-o-Church. 

2 .1  THE IMPLICIT VERSION OF k---', 

Types and terms of ~--~-Curry. 

There are many systems of types. The set of types for k---~, notation Type (k--->), is defined by the 

following abstract grammar. We write T = Type (k--->). 

2.1.1. Definition 

V = ~ I V '  

C = y I C '  

(type variables) 

(type constants) 

T = V  I CIT---> T (types) 



Notice that V = {ct, (x', c~", ...}. We will use co, I~, 7, ... to denote arbitrary type variables. Similarly C = 

{'~,'t', Y", . .}.  We will use ~ ,  ~, *t, ... to denote arbitrary type constants. Elements of  T are co, ct---~(x, 

~ c t ~ c ~ .  Here and elsewhere we use association to the right for ~ ;  that is, the last type is really [$ 

(c~---~). The letters cr, x, p,... denote arbitrary elements of  T. 

2.1.2. Definition. (i) A statement is of  the from M : 6 with M e  A and c e  T. In this case M is called the 

subject and ¢J the predicate. 

(ii) A basis is a set of statements with as subjects distinct (term) variables. The letters F, A,... range 

over bases. 

Some of the type constants are given special names, like int, bool, char.  These are used for formulating 

extension, s of 2~---~ in which certain elements are highlighted. For example term constants 0, s may be 

selected and ~.---~ can be extended with the axioms 

o : i n t ,  s : i n t  ~ i n t  

Of course everything could be done with free variables. Indeed term variables x0 and Xs and a type variable 

aim can be selected and one can consider as a basis 

xo : cqnt, Xs : ~int -'~ ~int 

In fact a constant is nothing but a variable that is not and will not be bound. 

Assignment rules of A--~-Curry 

2.1.3 Definition. A statement M : ~ is derivable in ~.---) form a basis F, notation rk-  ~ M : a or simply FI-- 

M : ~ if  tlaere is no danger of  confusion, ff FI-  M : ~ can be produced by the following assignment rules. 

(Start) F l -x :c~ ,  i f x : g i s i n F ;  

F['- M : (a---~x) FI--N : ~ 
( ~ E )  

F b  (biN) : x 

(~I) 
F, x:c  I- M : x  

o 

rl--(kx.M) : (o---~x) 

Here F, x:o stands for Fu {x:a}. If F=O, then FI- M : o is written as l- M : a. Pronounce I-- as yields. 

Fb t M : 43 means that FI- M : a does not hold. The rule -dE stands for --o-elimination; --4I for --)- 

introduction. 

2.1.4. Examples. 

(i) The following derivation shows that 1-- ~.-~(~.xy.x) : (o--~--~o). The derivation is written in a 

version of natural deduction, due to N.G. de Bruijn, in which the scope of assumptions is made 

explicit. 



(Lx.yx) : ( 6 ~ x - - ~ )  

(ii) Similarly one has I - - ~  (~,xy.y) : (6--*x--*x). 

('tii) t -X~ (kx.x) : (¢~-->~). 

(iv) y:6  I--~.~ ((2~x.x)y) : 6. 

Properties of $-9-KTurry. 

There are several valid properties of ~,--4 in which reduction and type assignment play a role. Since several 

(but not all) of  these are valid also for other systems, we will indicate them by an acronym for quick 

reference. Not all versions of  some property are exactly the same though and the precise formulation is 

given in case the statement differs from the standard meaning. 

2.1.5. Definition. The following acronyms are used f ~  properties of type systems. 

(i) CR (Church-Rosser property). 

This refers to the set of terms and reduction and conversion. The formulation is in 1.1.9. 

(ii) SR (Subject reduction property). This states the following. Let M ---~M'. Then 

FI--M : 6 =~ FI--M' : c .  

('fii) SN(Strong normalisation property). This is 

F I - M  : o ~ SN (M). 

(iv) UT (Unicity of types). This is 

F I - M  : o & F I - M  : o' ~ o - o ' .  

(v) FI-  M:6 ? is decidable. This states that given, F, M, 6 it is decidable whether F t -  M:6. 

(vi) F t -  M:? is computable. This states that given F, M it can be decided whether there is a 6 such that 

F t -  M : 6 and moreover one such 6 c a n  be computed from F, M. 

Property 2.1.5 (iii) implies that not every computable function is lambda defmable, see Barendregt [1990], 

theorem 4.2.15. 

2.1.6. 

(i) 

(iv) 

(v) 

Theorem. For ~.--->-Curry the following properties hold. 

CR, for A and 13-reduction/-conversion. 

SR. 

SN.  

r l -  M : if? is decidable. 

Fb- M : ? is computable. 



2.1.7. Remarks. (i) The converse of SR does not hold for ~,--~. Let S - Xxyz.xz(yz) and K - Xpq.p. 

Then SK -->> Xxyoy and F (kxy.y) : (¢J-->x---~x) butl~ SK : (o--->x--->x). 

(ii) M is called typable if FI-- M : t~ for some 1-" and c. SN states that if M is typable, then M is 

strongly normalising. The converse is not true. E.g. Xx.xx is not typable. 

(iii) Computability of Ft-  M : ? has been established independently by Hindley [1969] for a combinator 

version of :k---~ and by Milner [1978] for the closely related programming language ML. The ML-algorithm 

analyses the term M and generates a set E of equations between types in such a way that M is typable iff E 

has a solution. Moreover, the most general type of M corresponds to the most general solution of E. The 

latter solution can be found by applying a unification algorithm to E. A clear description of such an 

algorithm has been given by Wand [1987]. 

Pragmatics of  ~--9 - Curry 

There exist various programming languages with type systems closely resembling X--->-Curry, such as ML 

(Harper [1986]), Hope (Burstall [1980]) and Miranda (Turner [1985]). The ML type system, invented by 

Milner [1978] independently from Hindley's work, has been discussed extensively in the literature (Damas 

[1982], Mycroft [1984], Kfoury [1988, 1989]). The system is based on an extension of ~.--~-Curry with a 

declaration mechanism of the form let x = M in N, which allows a form of polymorphism in the sense that 

different occurrences of x in N may have different types which are instances of a type scheme for x and M. 

In this section we consider the basic system introduced by Milner and some of its extensions. All systems 

are based (m the following sets of terms, types and type schemes. 

A =V I C I ~,V.A I let V = A  in A I fix V .  A 

T --V I C ! T--~ T 

~: =T I VV.~; 

It follows that universal quantifiers may only occur at the top level of type schemes. In the remainder of this 

section we.. shall use .metavariables x and ff to range over types and type schemes, respectively. It will be 

necessary to consider 'generic instances' of type schemes. Let ff = VlZl...t~ m. "~ and if' = ~/[~l...[3n.'C'. 

Then if' is a generic instance of a ,  written if<if', iff there is a substitutor S acting only on {IZl...IZm} 

sucht that x' = S(x) and no ~i is free in ft. If we consider ff=~' iff ff<ff'_<~, then (IB, <) is a partial order 

with least element Vet.et. The following graph, taken from Mycroft [1984], illustrates the order <. 

int-~int 
t~-~ int 

\ /  
V~.~.->~ V~13y.~.-->13-->], 

I / 



The first type assignment system we consider for this language is the one of Milner [1978] in the form of 

Damas [1982]. Once more we note that z ranges over types and ff over type schemes. 

(vat) Ft-x:a, i f(x:g)e F; 

(ins0 
F I - M : o  

F I - M : o '  
if ~<~';  

(gen) 
F I - M : o  

FI-M : Va .~ '  
if ct~ FV(I-); 

(m-app) 
FI.-M:xf-->x 2 FF-N :*k 

F b M N  : x 2 

(m-abs) 
r,x:z i]- M: ¢2 

F t-- ~,x.M : xf-> x 2 

F, x:x~- M : x  
(m-fix) 

FI-  fix x.M : x 

(p-le0 
F,x:ol- N : 'r FF-M : O 

Ft-  let x=M in N : x 

The intended meaning of fix x.M is in terms of the type-free lambda calculus O(~,x.M). The meaning of 

let x=M in N is N[x:=M]. For practical purposes this basic language can be extended with other language 

constructs defined in terms of the given ones. For example, the construct 

letree x = M in N 

can be defmed as 

let x = fix x.M in N. 

Consider as an example the following declaration (taken from Milner [1978]) 

ietrec map = 

~.f, re.if 

which is equivalent to 

(nun rn) 

nil 

(cons (f (hd m)) (map f (tl In)) ) 



let map = 

fix map'.~,f,m, if (null m) 

nil 

(cons (f (hd m)) (map' f (tl m)) ) 

Assuming the following basis 

null : Va.(list c¢--obool) 

nil : Va.(list a)  

cons : Va.(0~-olist a-ol is t  a)  

hd : Va.(list a---~a) 

tl : Va . ( l i s t a~ l i s t  a) 

i f  : V f x . ( b o o l ~ a - - , a - - , a )  

one can deduce 

m a p :  VaV13.((a~13)~(list c~-olist 13)). 

To every occurrence of the variable map within the scope of the declaration must be assigned a type which 

is a generic instance of this type scheme. E.g., if  we assume a type xxx and variables 

x : list xxx 

f : xxx ~ int 

odd : int --o bool 

then in the expression 

map odd (map f x) 

the inner and outer occurrence of map will have types 

(xxx~int)  ~( l i s t  xxx ~ list in0 

(int ~ bool) --o(list int --~ list bool) 

respectively. 

The first extension to the system above has been suggested by Mycroft [1984] in order to remedy some 

unexpected consequences of the basic system. E.g. if the definition of map as given above is followed by a 

definition 

let oddlist = M.map odd 1 

then the ML system will derive the types 

map : VaV13. ((a~13) ~ (list.a) --~ (list 13)) 

oddlist : (list int) --o (list bool) 

whereas, if they are defined simultaneously by 

ietrec map = Xf. m ... 

and  oddlist = ~,1. map odd t 

the system will derive 
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map : (int --+ bool) ---) (list int) ---) (list bool) 

oddlist : (list int) --) (list bool). 

This phenomenon is due to the fact that a simultaneous recursive definition 

le t rec  fl = ~Lxl.M1 

and f2 = Xxz.M2 

is equivalent to 

let < f l ,  f2> = fix <fl ,  f2>.<M1,M2> 

and according to the type assignment rule (m - fix) bound variables of a fix-expression should have types 

rather than type schemes. In Mycroft [ 1984] and Kfoury [ 1988] it has been suggested to replace rule (m-  

fLx) by 

F, x:~t-  M : 
(p - fix) 

F l - f i x  x .  M : ~  

The resulting system is sometimes referred to as the Milner-Mycroft system. Mycroft could not prove the 

decidability of type derivation for this system. In Kfoury [1988] a proof is given, but it does not result in a 

practical algorithm. 

A second extension to the basic system has been inspired by another problem, mentioned in Milner [1978] 

and Kfoury [1989]. Consider a declaration of the form 

let m =~.f.Lx.ky. <f x, f y>. 

One would expect that application of m to arguments 

(~x.x) : V ~ . a ~  

MI : 'C1 

M2 : "C2 

results in 

<M1, M2> : "el x 'C2 

but in ML the term 

let m = ~.f.Z.x.~.y. <fx, fy> in m (~.x.x) MtM2 

cannot be typed, because according to rule (m-abs) all occurrences of f should have the same type. In 

Kfoury [1989] it is proposed to replace (rrvabs) and (m-app) by 

(p-abs) 
F,  x:~t-  M : x  

F I-Xx.M : ~  --~x 

FF-M :~--~ x F t - N  : ~  
~-app)  

F t - M N : ~  

thus allowing functions to accept polymorphic arguments. For the resulting system the computability of 

type derivation is open. In fact that system comes close to the system ~.2-Curry, which is the subject of 

section 3.1. 
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2.2 .  THE EXPLICIT VERSION OF ~--> 

Unless stated otherwise, in this subsection ~,---~ stands for the explicit (Church) version of the simply typed 

lambda calculus. 

Types and terms o f  ~,--~ - Church 

The set of rypes for this version of ~--o, notation T = Type (~,--->), is the same as for the implicit version of 

~ ,  viz. 

T = V I C I T - ~ T .  

2.2.1 Definition. The set of pseudoterms of ~.-->, notation AT, is defined as follows. 

AT = V I C I ATAT I ~.V:T.AT- 

For example ~,x:a,x and y (Lx:c~--->a-xy) are in AT. The first one will turn out to have a type, the second 

one not. 

Assignment rules of  ~ t~ -  Church. 

2.2.2 Definition. FF- ~,-o M : o is defined by the following axiom and rules. 

(sta_rt) FF-x : o, if (x:o) • F; 

F I - M  : (0--0" 0 FI-  N : o 
(--oE) ; 

FI-  (MY) : x 

(-~I) 
F, x:o F-M : x 

FF" (~x:o.M) : o---)x 

2.2.3 Examples. 

(i) 

(a) 

(~)  

(iv) 

t- k-o (kx:o ~,y:x.x) : (o~'r--->o). 

F-~.o(~,x:o~,y:x.y) : (o~x-ox) .  

I" ~,-o (Lx:o.x) : ( o ~ o ) .  

y:o I'- ~,-o ((~,x:o.x)y) : o. 

2.2.4 Def'mition. A pseudoterm M is called legal if for some F and o one has FI-  ~,-o M : o. 

For example (~,x:a.x) and (Xx:o.x)y are legal, but (Lx:a.xx) is not. 

The nolmtions of iS-reduction and ~-conversion are extended to pseudoterms. First of all the notion of 

substitution is extended to AT in the obvious way. Then the comraction rule on pseudoterms 

(Xx:o.M)N -o M [x:= N] (13) 
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generates 13-reduction, denoted again by ---~, and [3-conversion, denoted by =. Note that in (~) the term N 

does not need to match the type or. 

Properties of ~,-o - Church 

2.2.5 Theorem. The following properties hold for k ~ .  

(i) 

(ii) 

(iii) 

(iv) 

(v) 

CR,for the extended notion of reduction and conversion on AT. 

SR. 

SN. 

FI'-X~ M:c ? is decidable. 

F~- x~M:? is computable. 

Relation between g-+Curry and ).--,'-Church 

There is a relation between the implicit and explicit version of ~.--+. In order to express this we need a map 

from pseudoterms to type-free terms. 

2.2.6. Definition. A map I - I : AT --)A is defined by erasing all type annotations. 

i x l = x ,  l c l = e ,  

I M N I = I M I I N I ,  

1 ~ ,x:G.M I = )~x.l M 1. 

2.2.7. Proposition. 

(i) 

(~) 
FI- X--->-Church M:ff ~ FI- Z,-+-Curry I M I : ~. 

FI'- X-->.Currry M:~ =~ :1 M' [ IM' [ --- M & F I- Z,.-...>-Church M': ~] • 

Pragmatics of ~ -  Church 

Edinburgh LCF, a Logic of Computable Functions, see Gordon et a1.[1979], is essentially X-->-Chureh, 

extended with a fixed point combinator. 

3. I M P L I C I T  TYPING 

In this section three systems of typed lambda calculus ~ la Curry will be introduced. These systems are all 

extensions of the implicit version of ~---). The three systems are the polymorphie lambda calculus X2, the 

system with recursive types 94t and the system with intersection types k n .  The system ~.2 will also be 

encountered in section 4.1 in  an explicit version. A system h la Curry that includes all ofX2, Xlx and Xn as 

subsystems has been described in MacQueen, Plotldn and Sethi [1986]. 

3.1.  P O L Y M O R P H I S M  

In ~,---~-Curry one has that F- ~,~ (2Lx.x) : (~--->~) for every type ~. The fact that Xx.x has several types is 

called polymorphism. This can be made explicit by allowing as type Vct.ct---~cc and as statement (kx.x) : 
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Vct.a--oa. The system k2, introduced by Girard [1972] and Reynolds [ 19741 in the Church version, will 

be able to express this. In this subsection we will introduce )~2-Curry. 

Types and terms of 22- Curry 

The terms cff~.2 are those of ~.---~, see definition 1.1.1. 

3.1.1 Definition. The types of ~.2, notation T = Type (~.2), are defined by the following abstract 

grammar. 

T = V I C I T---~ T t  VV.T 

Notation. (i) V a l . . . a n . ~  --- V a l . ( V a 2  . . . .  (Van.(O))...). 

(ii) ± = Va.a. 

Examples of types 

w13.a--*13; 
Va.±~13. 

Assignment rules of 22-Curry 

3.1.2. Definition. 

(Start) FF-x:o, for (x:o) e F; 

(~E) 
FF 'M : o ~ x ,  FF-N : o 

FFMN:x 
(-~I) F, x : o I - M  : x -; 

FI-- (kx.M) : o - -~  

F I - M  : V a . o  
(rE) ; (vi) 

F I - M  : ~[a:---x] 

FI--M : cr 
, i f  ~ F V ( F ) .  

F I - M  : Vct.~ 

3.1.3 Examples 

I-- X2 (~.x.x) : (Vot.a---)a) 

I--X2 (Xxy.x)  : (Vf~.a~f3~a) 
I- x2 (Xx.xx) : (Vl~ .±~13)  

This last fact has the following derivation 



x:.l_ 

J_ 
t~.xx) : . 1_~  
O~.xx) : V ~ . . 1 _ ~  
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Properties of ),2-Curry 

3.1.4. Theorem. The following properties hold for ~.2. 

(i) CR. 

(ii) SR. 

('fii) SN. 

It is not known whether the properties 

F~-M : ~? is decidable 

Fk-M : ? is computable 

are valid. (R. Milner calls them 'embarrassing open problems'.) 

3 .2 .  RECURSIVE TYPES 

If we had a type ~ such that c=~--->~, and moreover an x:c,  then x can be applied to itself to obtain xx:a. 

Therefore for such a ~ one has (Lx.xx) : (~---~a) and hence (~.x.xx) : ~. Solutions of  the equation ~=t~---~a 

are obtained axiomatically by writing o'~--~t0~.~---~ct which has to be interpreted like 'some solution of  

~=0~----> ~' .  

Types and terms of ~.p-Curry 

The terms of k~t are those of  ~.--->, see def'mition 1.1.1. 

3.2.1. Definition. The set of types of k~t, notation T = Type (X~t), is defined as follows. 

T = V l  C I T - - >  TI IxV.  T 

Notation. bt~l...tXn.~ = bt~l.([.t0~2 .. . .  (I.t~n.(6))..). 

Assignment rules of ~.bl-Curry 

In order to state that the kt types satisfy what they are intended to do, some congruence relation = on types 

is defined such that for example a ~- (~--->~) for a-~t~.tx--->ct. This relation = is defined using trees 

corresponding to types. The definition of the trees is somewhat informal, but clear enough when seeing the 

examples. 



1 5  

3.2.2. Definition. Let o e  Type (~4t). The tree corresponding to o, notation T(o), is defined as follows. 

T (B) = 8, if  8 is a type variable or constant; 

T (a--->x) = - ->  ; 
/ \  

T(o) T(x) 

T (I.tct.•) = T (o[a:=~ta.6]) if  defined; else..  

Examples. 

T (o~--->[~--->(X) = ---> ; 
/ \  

( x  --> 
/ \  

T (~ta.~-~Cx) = 

T (p.O~.(~) = 

--) = "-)  , 

--9 --) T(Ix(z.o~--->o0 T(~ta.a-->=) / \ / \ 
. . . . .  ° . . . . . .  

T (a[c~:=lxa.~]) = T (I.ttg.¢) = .  ; 

T (y-el~c¢~.~) = 
/ \  

Y • 

3.2.3. Def'mition. Let (~,x e Type(klx). Then 6 and "c are equivalent,  notation (r=% if T(a) = T(x). 

Examples. ]f o -- g~.~---)a, then a=o---)o. This could have been derived from the axiom 

I . t~ .a  = a[cx:=t lo~.a] .  

However, the following equation cannot be obtained from this axiom 

Therefore the definition of  = is given using trees. 



3.2.4. Definition. 

(Start) r l ' -x :o  for (x:o) e r 
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FI--M:o--+x F I ' - N : 6  F , x : o  I--M:~ 
( ~ E )  .; (--*I) ; 

FI--MN : x FI -  (kx.M) : a--->'c 

FI--M : a (=) , i f  a = . ' u .  
F I - M :  

3.2.5. Examples. 

(i) Morris [1968]. Let Y --- kf. (kx.f(xx))(kx.f(xx)). Then I- 7qu Y : (c--->o) --*o for all o. Indeed, 

define x = Ita.cc--,o, then ~ ~ ~--~o andwe can construct the following derivation. 

f :  ~---~ a 

x : ' f  

x : ' ~  
x x : ~  

f : a ~ c  

f (xx) : a : 

(kx.f(xx)) : x ~  

(Lx.f(xx)) : x 

tg~x. f(xx)) tkx. f(xx)) : a 

(Lf(Lx.f (xx)) (Lx. f(xx)) : (~--->c) --->a 

Y : (a--->~)-->a 

(ii) Similarly, one shows I- M (kx.xx) (kx.xx) : o. 

Properties of )4t-Curry 

3.2.6 Theorem. The following properties hold for kit. 

(i) CR. 

(ii) SR. 
('tii) SN falls, (Y can be typed). 

(iv) FI--M : o ? is decidable (Cardone and Coppo [1990]). 

(v) FI-  M : ? is computable (trivial, using Ita.{z--~e0. 

Mendler [1987] has shown that there exists a restricted version of k~t-Church in which all typable terms are 

strongly normalizing, the restriction being that in Itcx.c the variable ¢¢ may not occur at negative positions in 

~. This result probably holds for kit-Curry as well. 



17 

Pragmatics of ~t,t-Curry 

Recursive types occur in many programming languages, but usually in combination with simple type 

constructors like + (disjoint sum) and × (cartesian produc0 only. For example, given a unit type 1 and a 

type x, one can form the type of lists over ~ as 

I~°1  + 'c x~ 

and the type of binary trees over'c as 

t.tOtol + x x'C ×~. 

Few programming languages allow combinations of I~ in full generality. One of the first languages to do so 

was ALGOL 68 (Van Wijngaarden [1969]), where e.g. the 'mode declaration' 

mode m = proe (m) m 

corresponds to p.ot.~--*o~. An illuminating discussion on ALGOL 68 mode declarations and their relation to 

domain equations is presented in Lehmann [1977]. 

3 .3 .  INTERSECTION TYPES 

The system of lambda calculus with intersection types, notation Xn, is taken from Barendregt, Coppo and 

Dezani [1983], which paper is based on earlier work of Coppo, Dezani, Sall6 and Venneri. If in ~.n one 

has M : ~ and M : x, then one has M : (crnx). Moreover there is a universal type co such that M : co for all 

terms M. The operation n induces a pre-ordering on types in which co_is the largest element. 

Types and terms off,c3 

The terms of ~ are those of ~--->, see definition 1.1.1. 

3.3.1. Definition. The set of types of ~-~, notation T = Type (Xzh), is defined as follows 

T = V I C I T - ~ T I T n T .  

One of the constants of C is selected and is called co. 

Assignment rules of 2¢3- Curry 

3.3.2. Definition (i) On T a relation < is defined as follows 

~_<~; 

~ _ < ~ ;  ~ < ~---> ~ ;  

~¢'~'c <G; o (~'~ <'c; 

o ~ p  o ~ n p  
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G_< G', G_<I;' 

(c '~x)  _< (o~x')  

(ii) G - x  ¢ ~ f f < z a n d x  < c .  

For example, one has O ~ ( o ~  ~ )  and ((ont~' ~ x) ~ ( ( o ~ x )  c3 (t~'-~,)). We let c~ bind stronger than 

--~, so one can write o n o ' . ~  for ( o n o ' ) . z .  

3.3.3. Definition. 

(Start) FI- x : G, for (x:a) e F; 

(top) FI-  M : ~ ;  

FI- M : (o---Y0 F I - N  : o F, x:GI-M : x 
( ~ E )  ; ( ~ I )  ; 

FF-MN : x FI-  ~.x.M : o---~ 

F I -M : ( o c t )  F t - M  : o F I - M  : x 
(c,~E) ; (nO ; 

F I - M :  a ,  F I - M :  x F I - M  : Gc'rt 

F I - M :  a o < x  
(sub) 

F I - M :  x 

3.3.4. Examples. 

(i) 

(t0 

('tu) 

~" x~ (Xx.xx) : (ore ( o ~ x ) ~ x ) ;  

~-xc~ (Xx.xx)(Xx.xx) : ~;  

F-Xc~ (Xxyz.xz (yz))(~xy.x) : (a-->l~13). 

In Van Bakel [ 1990] it is remarked that although the term in (iii) has a type in ~.--->, it does not have the type 

c t ~ l ~ [ 5  in that system. 

Properties of ~ Curry 

The properties valid for ~.c3 are somewhat different from those for the other systems of implicitly typed 

lambda calculus. 

3.3.5. Theorem. For ~ the following properties hold. 

(i) CR. 

(ii) SR. 

The stronger notion of Subject Conversion also holds, i.e. if  M=I3M' then 

F F - ~ M : c  ¢~ FF-Xc~M':a  
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(iii) SN fails, because every term has type 

(iv) F~-M: o? is undecidable. 

(v) Ff-M: ? .'holds trivially, because every term has type ~.  

3.3.6. Remark (i) For the system kn- ,  obtained form ~,n by omitting rule (top), one has the following 

result of V,~m Bakel [1990] 

SN(M) ¢~ 3 F 3  o[FI-L,-~-M:~y] 

(ii) M has normal form ¢:~ 3 F 3 ~ [Ft- M : o and ~ does not occur in o], 

see Barendregt et al. [1983]. 

Pragmatics of At3 

In ~ intersection types are used for objects that have various types which are not structurally related. The 

same phenomenon occurs in many programming languages, where it is called 'overloading'. A well-known 

example is the use of the symbol + to denote both integer addition, real addition and string concatenation. 

In the intersection type discipline such a symbol can be given the type (int--->int) c~ ( r e a l ~ r e a l )  c~ 

( s t r i ng~s t r i ng ) .  

Recently new uses of intersection types have been suggested by Reynolds [1989] and Tennent [1989] in 

connection with ALGOL-like languages. The imperative features of such languages are accomodated by the 

introduction of so-called phrase types, such as 

exp Ix] for constructs producing a value of type z 

ace Ix] for constructs accepting a value of type x, such as the updating component of 

variables or result parameters of procedures. In denotational semantics these 

constructors are sometimes called 'l-values'. 

var [x] for variables of type x. 

For example, in an assignment x : = 3, the left-hand side and right-hand side have phrase types 

aec lint] and exp [int], respectively. 

Because in ALGOL-like languages a variables of type x can both accept and produce a value of type x, we 

need the coercions var  [x] -< ace [x] and var  [x] < exp [x]. Using intersection types this can be achieved 

by defining 

var  [~] = ace  [~] r~ e x p  [x]. 

Another phenomenon occufing in ALGOL-like languages is interference, e.g. when one command assigns 

to a variable that is evaluated or assigned to by an other command. In some cases this interference is 

undesirable, but in other cases it is very useful or even essential. What is needed are some syntactic 

constraints to control interference. It is possible to define these constraints using a variant of intersection 

types. For more details we refer to Reynolds [1989]. 
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4. EXPLICIT TYPING 

In this section several extensions of ~.--->-Church will be considered. Three important extensions are )~2- 

Church (second order lambda calculus), the sytstem ~.Ia (weakly higher order lambda calculus) and the 

system XP (lambda calculus with dependent types). The intuition behind these extensions is the following. 

Types represent sets (spaces) of functions. Terms denote algorithms representing elements of these 

function spaces. Now there are four basic dependencies. 

elements depend on elements; 

elements depend on types; 

types depend on types; 

types depend on elements. 

These four dependencies will be explained as the main features of respectively the systems ~.-->, ~,2, ~0) 

and kP. 

Elements depending on elements are ubiquitous. A function f of two arguments on a set A may be used 

to form fxx for x in A. This fxx is an element depending on the element x. The mechanism of abstraction 

makes this dependency functional. One can form the function g = Xx(:A).fxx. This formation of functions 

is the main feature of all versions of the lambda calculus, in particular of  ~---). The other kind of 

dependencies will be described in subsections 4.1, 4.2 and 4.3 respectively. Subsection 4.4 gives a 

uniform treatment of the explicity typed systems. 

4.1  ELEMENTS DEPENDING ON TYPES 

In 7~--~-Church one has 

I - ~  (~.x:a.x) : (a-.-->a). (1) 

If one writes Ic - (Lx:~.x), then Ia is an element that depends on the type ~. The system ~2 - Chuch makes 

this depending functional by deriving from (1) 

l-X2 (AaXx:a.x) : ( V a . ( a ~ a ) ) .  

Write Ipoly - Act. I a. In order to obtain Icr uniformly in a from Ipoly, a new reduction rule is introduced 

Ipoly 0~- (ha .  Ia)a  ----> Ia. (~32) 

In particular this implies that terms may be applied to types. In subsection 4.4 it will be seen that (~2) can 

be considered as a particular case of ordinary ~-reduction. 

Types and terms of A2-Church. 

4.1.1. Definition. (i) The set of types for k2-Church, notation T = Type (~2), is thesame as for the 

Ctm'y version 

T = V I C IT ---> T I VVT. 

(ii) The set of pseudoterms for L2-Church, notation AT = Term(~2) is defined as follows. 

AT = V I C I AT AT I AT T I ~V:T.AT I AV.AT. 

0ii) On these pseudoterms AT two notions of reduction are defined by 
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(Lx:o.M)N --) M [x : = N], (~) 

(A(x.M)o ~ M [(x : = ~]. (132) 

4.1.2 Convention. AaXx:oAIkM stands for Aa.(Kx:o.(AI3.(M))). 

For example (AaAI3Kx:a Ky:l~.x)(T~7)(V&8)ab is a pseudoterm that reduces in four 13132-steps to a. 

Assigment rules of 22- Church. 

4.1.3. Definition. FI- k2 M:o is defined by the following axiom and roles 

(Start) FI-x:o,  i f (x:o)~F;  

( ~ E )  
FI- M : (o--)x) F I -N  : o F, x:oI-M : x 

(-->I) 
FI-MN :x FI- (Xx.M) : ( o ~ x )  

FI-M : V o t . o  F b M  : (5 
(VE) ; ( ' ~  , if a~  FV(F). 

FI-Mx : o [a:---x] FI-(A0t.M) : (Va.o)  

4.1.4. Examples. (i) b X2 (Ae.Xx:a.x) : (Va.cc---~oO. 
(ii) l-X2 (Aa A[~ Xx:a Xy:~.x) : (VaVl3.cc~13---~a). 
Off) I- X2 (A[3 2~x:.l.. x(.l.-cl3)x ) : (Vl~. -1-"')13), where _1_ - Va.a. 

Properties of A2- Church 

4.1.5 

0) 
(~) 

fxii) 

(iv) 

(v) 

(vi) 

Theorem. The following properties are valid for X2 (see 2.1.5 for the meaning of the acronyms). 

CR, for 13~2 - reduction on AT. 

SR. 

SN. 

UT. 

F b M  : o? is decidable. 

D - M  : ? is computable. 

Pragmatics of 22 - Church. 

In Reynolds [ 1974] the system ~,2 was used to formalise various type-related concepts in programming 

languages, such as type definitions, abstract data types, and polymorphism. For example, an expression 

containing a type definition, like 

t y p e  t = x i n  e 

can be represented by the k2- term (At.e) x. 

Many programming languages contain some form of abstract data type definition like 
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a b s t y p e  t w i t h  x : o (t) is  x w i t h  e l  in  e2 

which introduces an "abstract" type t with operations x : o(t), together with a "representation" consisung of 

a "concrete" type "c and "concrete" operations el of type o (t). In X2 such a construct can be modelled by the 

term 

(At (kx:o(t). e2)) 'c el 

In extensions of 7.2 with so-called existential or 2; types it is even possible to consider the pair (x, et) as a 

term of type Y.t.o(t), the type of representations of the abstract type. Thus representations become first- 

class citizens. For more information on this view of abstract data types we refer to Mitchell [ 1985], Cardelli 

[1985]. 

For an experimental language based on the Church version of ~ and ~tt, see Barendregt and van Leeuwen 

[1985]. That language (TALE) includes arrays and disjoint sums and its syntax and operational semantics 

are given in full detail. 

The polymorphism provided by 2L2-Church differs from that of X2-Curry in the presence of explicit 

abstraction over type variables and application to type expressions. To illustrate the differences we rephrase 

the map example of section 2 in the system ~ la Church. The basis remains 

null : Vtz. list 0t--~bool 

nil : V~. list 

cons : V(x. ¢t---~list (x--~list 0t 

hd : V(x. list ¢t---> o~ 

tl : Vot. list 0t---clist (x 

if : rot. bool --)ot--cot--)(x 

but the definition of map becomes 

letrec map = (AcxA[3 

. ( X f :  ( a ~ 1 3 )  Z,m : l i s t  

• i f  l i s t  I~ 

(null 0t m )  

(nil 13) 

(cons ~ (f(hd o~ m)) (map (z 13 f (fl (z m))) 

) 

). 

The differences with the Curry style will be clear. On the positive side, type inference is trivial. On the 

negative side, terms tend to become Muttered up with type information. For practical purposes one would 

ILke to have the best of beth worlds, i.e. the conciseness provided by the Curry style and the simplicity of 

type inference provided by the Church style. Some partial solutions have been presented in McCracken 
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[1984], Boehm [1989], O'Toole 89 [1989], Pfenning [1988]. Although TALE is explicitly typed, type 

information may be left out in clearly defined cases when it can be reconstructed. 

4 .2 .  TYPE DEPENDENT TYPES 

A natural example of  a type depending on another type is (x---)tz depending on o~. In fact it is natural to 

define f = ~,cte T.et---~t such that f(a) = 0~---xx. This will be possible in the system ~.tAl. 

Another feature of  ~.to is that types are generated by the system itself and not in the informal 

metalanguage. There is a constant * such that t~ : * correspondends to t~e T. The informal statement 

a ,  13e T =~ ( ~ 1 ~ )  e T 

now becomes the formal 

e : * , l ~ : *  ~- (e~13) : *. 

For the f alx)ve we then write f - Z ( x  : *. (z--c0t. The question arises where this f lives. Neither on the level 

of the elements (of types), nor among the types. Therefore a new category K (of kinds) is introduced 

K = * I K - > K .  

That is K = {*, *--~*, *---)*--~* .... }. A constant [] will be introduced such that k : [] corresponds to k 

K. If t- k : E3 and I- F : k, then F is called a constructor of kind k. We will see that 

t- (Xa:*.(x--~cx) : ( *~*) ,  i.e. our f i s  a constructor of kind *-¢*. Each element o f t  will be a constructor 

of kind *. 

Types and terms of ~g~ 

Although ~pes and terms of ~ can be kept separate, we will consider them as subsets of one general set ~1" 

of pseudo expressions. This is a preparation to 4.3 and 4.4 in which it is essential that types and terms are 

being mixed. 

4.2.1. 

(ii) 

Det-mition. (i) A set of pseudo expressions T is defined as follows. 

"J" = V I C I ']" "J" I ~,V:~.']" I ']" ---) "J" 

Among the constants C two elements are selected and given the names * and t2. 

4.2.2. Nolmtion. (i) x, y, z . . . . .  tx, [3, y... range over V. 

(ii) a, b, e ..... (t, 13, ~ ...range over C. 

Assigment rule of )~to. 

Because types and terms come from the same set "J', the definition of  statement is. modified accordingly. 

Bases have to become linearly ordered. The reason is that in ~ one wants to derive 

(~:*, X'G ]" X:0~ 

oc:* I-- (Xx:a.x) : (a--*oc) 

but not 

X'~,  Of.:* {"" X*-~ 

xxz F- (Xo~:*.x) : ( * ~ t )  
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in which a occurs both free and bound. 

4.2.3. Definition. (i) A statement of ~,la is if the form M : A with M, A e 'l'. 

(ii) A context is a finite linearly ordered set of statements with distinct variables as subjects. F, 

A,... range over contexts. 

(iii) < > denotes the emtpy context. If F = < xl:A 1 ..... xn:An> then 

F, y:B = < xl:A1 ..... xn:An, y:B>. 

4.2.4. Definition. The notion FI-  Xta M : A is defined by the following axiom and rules. The letter s 

ranges over {*, D}. 

(Axiom) < >  I- * :[3; 

FI--A : s 
(Start) , where x is fresh, i.e. not in F or A; 

F, x : A I -  x : A  

F F B : C  F ~ A : s  
(We~ening) , w h e r e x i s f r e ~ ;  

F , x : A &  B : C  

F ~ A : s  F F B : s  
( T ~ f o r m a t i o n )  

F~ (A- - -~B) : s  

F I - F  : (A--~B) Fl--a : A 
(--->E) 

FI-- Fa :B  

F I - A : s ,  F , x : A t - B : s  F , x : A I ' - b : B  
(~ I )  

FF" (2~x:A,b) : (A --)'B) 

F I -A :B Ft"B' :  s 
(Conversion rule) , if B =13 B ' .  

F t - A : B '  

4.2.6. Examples. (i) a:*,  9:* t"7~¢0 (a~13) : *. 

(ii) a:*, I~:*, x:(a~13) I - ~ x :  (a~l~). 
(iii) a:*, 13:* I-- ~.~ 0.x:(a ~1~) .x) : ( ( a ~  13) ~ (a~l~).  

Write D --- ~1~:*. 13---~1 ~. Then the following hold. 

(iv) i"X~ D : (*~*).  
(v) a:* I-M/ (~,x:Da .x) : D (Da). 

Properties of  ~t~ 

4.2.7. Theorem. The following results hold for ~.fi/. 
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(i) CR, for reduction on "J'. 

(ii) SR. 

(iii) SN, i.e. F t -  M : A ~ SN(M) & SN(A). 

(iv) UT, i . e . F ~ - M : A & F I - M : A '  ~ A=[~A'. 

(v) FI-  M: A? is decidable. 

(vi) l"l-- M: ? is computable. 

Pragmatics of geo 

The relevance of ~.~ for programming languages is that the system permits computations with types and 

definitions of type constructors. Consider the following example. 

4.2.8. Ex~maple. 

If we assume constructor declarations 

1 : * int : * 

× : * ~ * ~ *  bool : * 

+ ..  , . . . . ) , . . . . ) ,  

and recursive types of the form ~ta:*.o similarly to section 3.2. we can from the type of  integer lists as 

Ixl~:*. 1 + int x 13. 

The 1 stands for the singleton type {nil}. Similarly for boolean lists we take 

I~1~:*. 1 + bool x ~. 

These two vcpes can be obtained by applying a certain constructor of  kind *--->* to int and bool respectively, 

viz. the constructor 

(ka:* I~l~:* • 1 + a x 13) : *-->*. 

Using a let definition mechanism for constructors, we can form the type of functions form integer lists to 

boolean lists as 

let list = (~,a:* ~t~:*. 1 + a x 13) 

in list int ~ list bool 

which is an abbreviation for 

(~,list:*---~*. list int --~ list bool) (~,a:type IJ,13:*. 1 + a x 13) 

where 

(~,list:*---~*. list int --> list bool) : (*---~*)---->* 

and which ~t-reduces to 

(~a:*lX~:* 1 + a x ~) int ---) (2~a:*ll~:*. 1 + cx x ~}) bool 

and subsequently to 

(Ill3:*.1 + int x13 ) --~ (~t13:*.1 + bool x I~). 

The let -construction in the example aboveis of the form let ct = p in ~ which is an abbrevation for 

(ka :k .c)p  
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where a and p are both constructors. In order to have the full benefit of  the definition facility for 

constructors we also need 

let a = p in M 

which is an abbrevation for 

( ~ : k . M )  p 

where p is a constructor and M is a term. This construction is not well-formed in kc0. It can be formed in 

the system ~.2 in the special case that k -- *. The wish to form terms (ka:k .M) where k is an arbitrary kind 

leads to the system )ca), which is the "union" of ~ and k2. The system ~ will be defined in section 4.4. 

4 .3  ELEMENT DEPENDENT TYPES 

An intuitive example of a type depending on an element is An-->B with ne  Int. In order to formalise the 

possibility of such "dependent types" in the system kP, the notion of kind is extended such that if A is a 

type and k is a kind, then A-ok is a kind. In particular A--->* is a kind. Then if f:A--->* and a:A, one has fa : 

• . This fa is a dependent type. 

Another idea important for a system with dependent types is the formation of cartesian products. 

Suppose that for each a:A a type Ba is given and that there is an element ba : Ba. Then we may form the 

function ~.a:A.ba which has as type the cartesian product IIa:A.Ba of the Ba's. The formation of function 

spaces A---~B can be seen as a particular instance of cartesian products. Indeed, 

A--oB ~ YIa:A.B ( -  B A informally) 

provided that a does not occur (freely) in B. This is similar to the fact that a power of numbers is a constant 

product 

3 
H bi = blb2b3 = b 3 

i =1 

provided that bl  = 132 = b3 = b. Therefore the type constructor --o can be left out in the presence of II. 

Types and terms of 2t'. 

4.3.1 Definition. (i) The set of pseudo expressions of kP, notation T, is defined as follows. 

T= V I C I T'Y I ZV:']'.T I ITV:T.T 

(ii) Among the constants C two elements are called * and 

Assigment rules for )J' 

Statements and contexts are defined as for ~¢o (statements are of the form M : A with M, A ~ T; contexts 

are finite linearly ordered sets of statements). 

4.3.2. Definition. The notion FI- Zl ~ M : A is defined by the following axiom and rules. Again the letter s 

ranges over {*, ca }. 
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(Axiom) < >  F * : o ;  

F F A : s  
(Start) , where x is fresh; 

F,  x :AF  x : A  

FI"B:  C F F ' A  : s 
(Weakening) , where x is fresh; 

F,  x:AI- B : C 

F I - A : *  F , x : A I - B : s  
(Type/kind formation) ......... ; 

F F  (rIx:A.B) : s 

FI--A:* F,x:AI--B:s  F , x : A I - b : B  
( ~ I )  

FI-- (~,x:A.b) : (Hx:A.B) 

F I - F  : (Hx:A.B) F F a . : A  
( ~ E )  

FI-- Fa : B[x:= a] 

F I - A  : B F F B ' :  s 
(Conversion) , if B=~B'. 

F F A : B '  

4.3.3. Examples. In 2~P the following hold. 

(i) A:* I-- (A---)*) : m. 

(ii) A:*, P:(A---)*), a:A t- Pa : *. 

(iii) A:*, P:(A--~*), a:A F (Pa--->*) : o, 

(iv) A:*, P : ( A ~ * )  F (1-I a:A. P a ~ * )  : o. 

(v) A:*, P : ( A ~ * )  F (ka:A ~,p:Pa.p) : (I ' la:A.Pa~Pa).  

Properties of ~P. 

4.3.4. Theorem. The following results hold for ~P. 

(i) CR, for reduction on ~1". 

(ii) SR. 

(iii) SN, i.e. FI-- M : A ~ SN(M) & SN(A). 

(iv) UT. 

(v) F F  M: A? is decidable. 

(vi) F F M: ? is computable. 

Pragmatics of ~P 

Systems like M? have been introduced by N.G. de Bruijn [ 1970], [1980] in order to represent mathematical 

theorems and their proofs. The method is as follows. 
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One assumes there is a set prop of propositions that is closed under implication. This is done by taking as 

context F 0 defined as 

prop : *, imp : prop ---> prop ---> prop. 

Write q~ D ~ for imp ~p ~.  In order to express that a proposition is valid a T : nroo ---> * is assumed and 

¢p:prop is defined to be valid if T~ is inhabited, i.e. M :Tcp for some M. Now in order to express that 

implication has the right properties, one assumes De and ~i  such that 

De ~ ~ : T(~ D ~)  "-> T~ "-> T~. 

Di ~ ~ : T~ -~ T ~  ---> T(cp D ~). 

So for the representation of implicafional proposition logic one wants to work in context Fprop consisting of 

F 0 followed by 

T : prop ---> * 

De : Yl~0:prop Yl ~l/:proo. T(¢p D ~g) ---> T cp --~ T~g 

Di : YRp:pr0p r l  ~g:prop. (Tq) ---¢Ikg)---~ T(cp D ~g). 

As an example we want to formulate that ~p D (p is valid for all propositions. The translation as type is T(cp 

D cp) which indeed is inhabited 

Fpropl-Z2 (Di ~01p (~x:Tcp.x)) : T(cpDcp). 

(Note that since I-Tcp : * one has l- (~,x:Tcp.x) : (T~p ---> Top).) 

Having formalised many valid statements de Bruijn realised that it was rather tiresome to carry around the 

T. He therefore proposed to use * itself for prop, the constructor --~ for D and the identity for T. Then for 

D e cp ~/one can use 

kx:(q~--->~g) Xy:~p.xy 

and for Di q) Ig 

~.x:(cp --, ~g).x. 

In this way the { ~ ,  V } fragment of (manysorted constructive) predicate logic can be interpreted too. A 

predicate P on a set (type) A can be represented as a P:A --~ * and for a:A one defines Pa to be valid ff it is 

inhabited. Quantification Vxe A.Px is translated as Hx:A.Px. Now a formula 

Vxe A Vye A.Pxy ---> Vxe A Pxx 

can be seen to be valid because its translation is inhabited 

A:*, P:A---~* 1- (~.z:(1-Ix:A Hy:A Pxy)Xx:A.zxx) : (Hx:AHy:A.Pxy ---> Hx:A.Pxx). 

The system ~P is given that name because predicate logic can be interpreted in it. The method interprets 

propositions (or formulas) as types and proofs as inhabiting terms and is the basis of several languages in 

the family AUTOMATH designed and implemented by de Bruijn and co-workers for the automatic 

verification of proofs. Similar projects inspired by AUTOMATH are described in Constable et al. [1986] 

(NUPRL), Harper et al. [1987] (LF) and Coquand et al. [1989] (calculus of constructions). The project LF 

uses the interpretation of formulas using T:pro_n ---> * like the original use in AUTOMATH. 
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4 , 4 GI~IEIL~J.JZED TYPE SYSTEMS 

So far we have introduced four systems of typed lambda calculus ~t la Church, viz. ~,---~, ~.2, ~.!~ and 2~P. 

Although it may not seem so, there is a uniform way of  describing these systems. We will  define the 

notation 'generalised type system' (GTS) and show how the four systems in question are particular cases. 

The differentiation of systems is obtained by controlling which abstractions are allowed. 

4.4.1. Defhaition. (i) The set of  pseudo expressions of a GTS, notation "J" 

T = V I C 1 T Tt ~V:T.'J" I I1V:T.T 

(ii) A statement of a GTS is of the form M : A with M, Ae T .  M is called the subject and A the 

predicate. 

(~i) A context is a finite linearly ordered sequence of statements with as subjects distinct variables. 

4.4.2. Definition. A specification of a GTS is a triple S = (S,A,R) such that 

S ~ C, the elements of S are called sorts 

A is a set of statements of the form e:s with e E C and s e S; the elements 

of A are called axioms. 

R is a set of pairs of the form (sl, s2) with sl ,  s2 e S; the elements of  R are 

called rules. 

4.4.3. Definition. Given a specification of a GTS S=  (S,A,R), the corresponding GTS, notation ~.S, 

derives statements relative to a context F. The rules (Sl, s2) e R determine which abstraction are allowed. 

(Axiom) < > l- c : s, if (c:s)e A ; 

F [ - A  :s  
(Start) , if se  S and x is fresh; 

F,  x:Ab- x : A 

FI-B :C rb-A : s 
(Weakening) , if se S and x is fresh; 

F, x:Ab- B : C 

(H-elimination) 

(I'I-formation) 

F k ' F  : (I-Ix:A.B) F [ - a  : A 

F F  Fa : B[x:= a] 

F I - A : s  I F , x : A ~ ' B : s  2, i f ( s l ,  s2)eR; 

FI-- (I'Ix:A.B) : s 2 

F [ - A : s  1 F , x : A J - B : s  2 F , x : A [ - b : B  
~-introduction) , if (s 1, s2)e R; 

F[ -  (~.x:A.b) : (1-~:A.B) 
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(Conversion) 
F t -A  : B F I - B '  : s 

• i f s e S  andB =~B'. 
F I -A  : B '  

4.4.4. Examples. 

(i) Consider the following specification 

S = {*, •1 

a = {*: m} 

R = { (*,*), (*, [] ) } 

Such a specification is written stylistically as 

S *, 0 

A *: o 

R (*,*), (*, D ) 

This system ~(S,A,R) is the same as gP. 

(ii) Consider 

S *,O 

A * : o  

R (*,*), (O, [] ) 

Then ~(S,A,R) is ~c0. 

4.4.5. Proposition. 

(i) Consider the following specification 

S *,[] 

A * : [ ]  

R (*,*) 

Then ~(S,A,R) is in fact ~.--~. 

(ii) Consider the following specification. 

S *,[] 

A * : [ ]  

R (*,*), (D, *) 

Then k(S,A,R) is X2. 

Proof idea. (i) By induction on the generation of l- it can be shown that if F F  (I'Ix:A.B) : *, then 

x~FV(B). Therefore each rlx:A.B is in fact A--~B. 

(ii) Similarly. [] 

By making variations in the GTS's inlroduced in 4.4.4. and 4.4.5. a natural cube of eight GTS's can be 

defmed. 
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4.4.6. Definition (t-cube). A set of eight GTS's will be defined. Each systems has as sorts S = {*, D} 

and as axioms A = {*: D}. As rules the systems have (*,*) plus one of the eight subsets of {(*, []), (D, *), 

(G, E3) }. The following list gives the correspondence between systems and subsets; also alternative names 

of a system are given. 

S y s t e m  

12 

ico 

1P 

(u,*) 

Rules besides (*,*) Alternative names 

(u,D) 
(D,,) (D,D) 

tP2  ([],*) 

~Pco (D,*) 

(*,D) 
(*,,g) 

(D,o) (*,D) 

(D,D) (*,~), 

simply typed lambda calculus 

F, F2 

Fc0 

LF (logical framework) 

1C; calculus of constructions 

In the following picture of the l-cube the edges --~ represent inclusion of systems. 

to~ ~ XPco J '  S '  
12 I ~ XP 

sO ~¢o . . . . .  l Pc0 

t--> ~'~ t P  

The 1-cube. 

The systems l--~, 12, to~ and LP can be seen as spanning the t-cube. E.g. t¢o is the union of ~L2 and l!a.  

The system t ~  = Fco was introduced in Girard [ 1972]. The system XPt.o is the calculus of constructions of 

Coquand and Huet [1988]. The l-cube is introduced in Barendregt [1989] and is a finestructure of 1Pox 

The notion of GTS is a generalisation of the t -cube due indepently to Berardi and Terlouw (personal 

communication). 

4.4.7. 

(i) 
(ii) 
(~) 

(iv) 

(v) 

(vi) 

Theorem. All systems of the k-cube enjoy the following properties. 

CR. 

5R. 

SN. 

SN, i.e. F t - M  : A ~ SN(M) & SN(A). 

UT, i.e. FF- M: A & FF-M : A' ~ A=A'. 

]FF-M : A? is decidable. 
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(vii) Ft- M : ? is computable. 

There are also other interesting GTS~s. For example 

S * 

A * : *  

R (*,*) 

specifies the system X* in which every type is inhabited and not all legal terms are normalising. As 

remarked by H. Geuvers the following GTS 

S * ,O,A 

A * :  D , D : A  

R (*,*), (n, *) 

specifies XHOL, a GTS equivalent to higher order logic as in Church [1941]; the k in [] are used as sets. 

See Barendregt [ 1989], [1990] and Barendregt and Dekkers [199-] for more information on GTS's. 

R E F E R E N C E S  

Bakel, S. van. 

[1990] Complete restrictions of the intersection type discipline. To appear in Theoretical Computer 

Science. 

Barendregt, H.P. 

[ 1984] The lambda calculus, its syntax and semantics, 2-nd revised edition, North Holland Publishing 

Company, Amsterdam, 1984. 

[1989] Introduction to generalised type systems, Proceedings 3rd Italian Conference on Theoretical 

Computer Science, (Eds. A. Bertoni e.a.), World Scientific, Singapore, 1-37. 

[1990] Functional programming and Lambda Calculus. To appear in Handbook of Theoretical 

Computer Science, (Exl. J. van Leenwen), North Holland, Amsterdam. 

[199-] Lambda calculi with types. To appear in: Handbook of Logic in Computer Science, (Eds. S. 

Abramsky, D. Gabbai and T. Maibaum), Oxford University Press, Oxford. 

Barendregt, I-LP., Coppo, M, Dezani-Ciancaglini, M. 

[ 1983] A filter lambda model and the completeness of type assignment, Journal of Symbolic Logic, 

48, 4, 931-940. 

Barendregt, H.P. and M. van Leeuwen 
[ 1985] Functional programming and the language TALE, in: l.,cture Notes in Computer Science 224, 

Springer, Berlin, 122-208. 



33 

Barendreg~, H.P, Dekkers, W. 

[ 19%] Typed lambda calculi, syntax and semantics, to appear. 

Boehm, H.J. 

[1989] Type inference in the Presence of Type abstraction, in: SIGPLAN 89 Conference on 

Programming Languages Design and lmplementation, Portland, Oregon 1989. 

BurstaU, R., MacQueen, D., Sanella, D. 

[ 1980] HOPE: An experimental applicative language, report CSR-62-80, Edinburgh University. 

Cardelli, L., Wegner, P. 

[1985] On understanding types, data abstraction, and polymorphism, Computing Surveys 17, 4, 471- 

522. 

Caxdone, F., Coppo, M. 

[1990] Type inference with recursive types: Syntax and semantics. To appear in Information and 

Computation. 

Church, A. 

[ 1941] A formalisation of the simple theory of types, Journal of Symbolic Logic 5, 56-68. 

[1941a] The calculi oflambda conversion, Princeton University Press; Reprinted 1963 by University 
Microfilms Inc., Ann Arbor, Michigan, USA. 

Constable, R.L. et al. 

[1986] Implementing mathematics with the nuprl proof development system, Prentice-Hall Inc., 

Englewood Cliffs, New Jersey. 

Coquand, T. and G. Huet 

[ 1988] The calculus of constructions, Information and Computation 76, 95-120. 

Coquand, T. et al. 

[1989] The calculus of constructions, documentation and usersguide, version 4.10, INRIA, 
Rocquencourt, France. 

Curry, H.B. 

[ 1934] Functionality in combinatory logic, Proc. Nat. Acad. Science USA 20, 584-590. 

Damas, L. 

[1982] Principal type schemes for functional programming, Proceedings of the 9th ACM-POPL, 207- 

212. 



34 

Girard, J.-Y. 

[ 1972] Interpretation fonctionelte et ~timination des coupures dans l'arithn~tique d'ordre superieur. 

Ph.D. Thesis, Universit6 Paris VII. 

Gordon, M.J.C., Milner, R., Wadsworth, C. 

[1979] A mechanical logic of computation. Edinburgh LCF, Lecture Notes in Computer Science 78, 

Springer. 

Harper, R., MacQueen, D., Milner, R. 

[ 1986] Standard ML, Report ECS-LFCS-86-2, Edinburgh University. 

Harper, R., 

[1987] 

F. Honsell and G. Plotldn, 

A framework for defining logics, Proceedings second Syrup. Logic in Computer Science 

(Ithaca, N. Y.), IEEE, Washington DC, 194 - 204. 

Hindley, J.R. 

[ 1969] The principal type-scheme of an object irt combinatory logic, Trans. Am. Math. Soc. 146, 29- 

60. 

Kfoury, A.J., Tiuryn, J., Uryczyn, P. 

[ 1988] A proper extension of ML with an effective type assigment, Proceedings of the 15th ACM, 

POPL. 

Kfoury, A.J., Tiuryn, J., Uryczyn, P. 

[1989] Computational consequences and partial solutions of a generalized unification problem. 

Proceedings of the 4th IEEE - LICS, 98-105. 

Lehmann, D.J. 

[ 1977] Modes in ~ L  Y. Proceedings 5th Annual I.H. conference, may 1977, Guidel, France, 

Published by INRIA, 1977. 

McCracken, N.D. 

[ 1984] The typechecking of programs with implicit type structure, Semantics of data types, (Eds. G. 
Kahn e.a.), Lecture Notes in Computer Science 173, Springer, 301-315. 

MacQueen, D., Plofldn, G., Sethi, R. 
[ 1986] An ideal model for recursive polymorphic types, Information and control 71, 95-130. 

Mendler, N.P. 
[ 1987] Inductive types and type constraints in second-order lambda calculus, Proceedings of the 2nd 

symposium of LICS. 



35 

Milner, R. 

[ 1978] A theory of type polymorphism in programming, Journal of Comp. Syst. Sci., 17, 348-375. 

Morris, J.H. 

[1968] Lambda calculus models of programming languages, MAC-TR-57, Project MAC, MIT, 

Cambridge, Massaehussets. 

Mycroft, A. 

[ 1984] Polymorphie type schemes for functional programs, Proceedings of the 9th ACM POPL. 

O'Toole, J.W., Gifford, D.K. 

[1989] Type reconstruction with first-class polymorphic values SIGPLAN 89 Conference on 
Programming Languages Design and lmplementation, Portland, Oregon 1989. 

Pfenning,. F. 

[ 1988] Partial polymorphie type inference and higher-order unification, Proceedings of the ACM LISP 

and Functional Programming Conference. 

Reynolds, 

[1974] 

J.C, 

Towards a theory of type structure, in: Proc. of the Colloque sur la Programmation, Paris, 

Lecture Notes in Computer Science 19, Springer, 408 - 425. 

[1985] Three approaches to type structure, in: Mathematical Foundations of Software Development 

reds. Ehring e.a.), Lecture Notes in Computer Science 185, Springer, Berlin, 97-138. 

[ 1989] Synctactic control of interference, part 2. 

Tennent, R.D. 

[1989] Elementary data structures in ALGOL-like languages. Science of Computer Programming 13 

(1989/90), 73-110. 

Turner, D. 

[19851 Miranda, a non-strict functional language with polymorphic types, in: Functionalprogramming 

languages and computer architecture, Nancy, Lecture Notes in Computer Science 201, 

Springer, Berlin, 1-16. 

Wand, M. 

[ 1987] A simple algorithm and proof for type inference, Fundamenta Informaticae X, 115-122. 

Wijngaarden, van, A. MaiUoux, B, Peck, J.E~L., Koster, C.H.A. 

[ 1969] Report on the algorithmic language ALGOL 68, Num. Math. 14, 79-218. 


