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A b s t r a c t  

Autoprojection, or self-applicable partial evalua- 
tion, has been implemented for first order functio- 
naI  languages for some years now. This paper 
describes an approach to treat a higher order subset 
of the Scheme language. The system has been im- 
plemented as an extension to the existing autopro- 
jector Similix [Bondoff & Danvy 90] that treats a 
first order Scheme subset. To our knowledge, our 
system is the first fully automatic and implemented 
autoprojector for a higher order language. 

Given a source program and some, but not all 
of its inputs, partial evaluation produces a residual 
program. When applied to the rest of the inputs, 
the residual program yields the same result as the 
source program would when applied to all inputs. 
One important application of autoprojection is se- 
mantics directed compiler generation: given a denc~ 
tational, interpretive specification of a program- 
ming language, it is possible automatically to gene- 
rate a stand-alone compiler by self-applying the 
partial evaluator. 

Efficient autoprojection is known to require 
binding time analysing source programs to be par- 
tially evaluated. Binding time analysis establishes 
in advance which parts of the source program that 
can be evaluated during partial evaluation and 
which parts that cannot. We describe a new auto- 
matic binding time analysis for higher order pro- 
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grams written in the Scheme subset. The analysis 
requires no type information. It is based on a clo- 
sure analysis [Sestoft 88b], which for any applica- 
tion point finds the set of lambda abstractions that 
can possibly be applied at that point. The binding 
time analysis has the interesting property that no 
structured binding time values are needed. 

Since our language is higher order, interpreters 
written in a higher order style can be partially eva- 
luated. To exemplify this, we present and partially 
evaluate three versions of an interpreter for a 
lambda calculus language: one written in direct 
style, one written in continuation passing style, 
and one implementing normal order reduction. The 
two latter are heavily based on higher order pro- 
gramming. 

K e y w o r d s  

Partial evaluation, self-application, binding time 
analysis, semantics directed compiler generation. 

1.  I n t r o d u c t i o n  

Partial evaluation is a program transformation that 
specializes programs: given a source program and 
a part of its input (the static input), a partial evalua- 
tor generates a residual program. When applied to 
the remaining input (the dynamic input), the resid- 
ual program yields the same result as the source 
program would when applied to all of the input. 
Autoprojection is a synonym for self-applicable 
partial evaluation, that is, specialization of the par- 
tial evaluator itself. It was established in the seven- 
ties that autoprojection can be used for automatic 
semantics directed compiler generation: specializ- 
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ing a partial evaluator with static input being (the 
text of) an interpreter for some programming lan- 
guage S yields a compiler for S [Futamura 71] [Er- 
shov 77] [Turchin 80]. Specializing the partial 
evaluator with static input being (the text of) the 
partial evaluator itself even yields a compiler gen- 
erator (antomatic compiler generator generation!). 

The first successfully implemented autoprojec- 
tor was Miix [Jones, Sestoft, & S0ndergaard 85]. 
The language treated by Mix was a subset of stati- 
cally scoped first order pure Lisp, and Mix was 
able to generate compilers out of interpreters writ- 
ten in this language. The experiment showed that 
autoprojecdon was possible in practice; an automa- 
tic version of Mix was developed later [Jones, Ses- 
tort, & S0ndergaard 89]. Since then, autoprojec- 
tors for several languages have been implemented: 
for a subset of Turchin's Refal language [Roma- 
nenko 88], for an imperative flowchart language 
[Gomard & Jones 89], for pattern matching based 
programs in the form of restricted term rewriting 
systems [Bondorf 89], and for first order functio- 
nal langu~Lges with global variables [Bondorf & 
Danvy 90]. 

1.1 Autoprojecting higher order lan- 
guages 

The first autoprojector for a higher order functional 
language is (to our knowledge) Lambda-mix [Go- 
mard 89] [JonGomBonDanMog 90]. Lambda-mix 
treats the untyped call-by-value lambda calculus. 
The system is surprisingly simple and easy to Un- 
derstand; even the generated compilers are small 
and readable (which is quite uncommon for com- 
pilers generated by autoprojectors!). However, a 
strong limitation in Lambda-mix is that static pa- 
rameters of recursive functions must be induction 
variables [Aho, Sethi, & Ullman 86]; non-induc- 
tive variables are always dynamic. Lambda-mix 
thus does not specialize (recursive) calls to equal 
functions 'with equal patterns of static argument 
values (known as polyvariant program specializa- 
tion [Bulyonkov 84]). Specialization is a kind of 
folding and thus gives sharing of functions in 
residual programs. Since Lambda-mix does not 
specialize calls, it does not perform well for some 
applications. For instance, when using partial 
evaluation to generate string pattern matchers 

[Consel & Danvy 89], non-inductive recursive 
static variables are used. 

In this paper we describe an implemented auto- 
matic autoprojector, Similix-2, that handles a 
higher order subset of the Scheme language [Rees 
& Clinger 86], essentially weakly (dynamically) 
typed, statically scoped, call-by-value recursive 
equations with lambda abstractions and applica- 
tions. Similix-2 uses polyvariant program speciali- 
zation and is, to our knowledge, the first fully au- 
tomated and implemented autoprojector for a 
higher order language (Lambda-mix requires hand- 
written binding time annotations; an automatic 
version has been developed later [Gomard 90]). 

Similix-2 has been developed and implemented 
by extending Similix [Bondorf & Danvy 90], an 
existing autoprojector for a first order Scheme sub- 
set. Similix-2 therefore has a number of features 
that have been inherited from Similix: side-effect- 
ing operations on global variables (such as i/o op- 
erations) are treated in a semantically correct way; 
primitives are user specified (as introduced in 
[Consel 88]), i.e. there is no fixed set of primi- 
tives; residual programs never duplicate computa- 
tions (cf. call duplication [Sestoft 88a]); residual 
programs do not terminate more often than source 
programs; call unfolding is controlled automatically 
(by a simple strategy based on detecting dynamic 
conditionals). This paper does not cover these 
aspects which all come from Similix; we refer to 
[Bondorf & Danvy 90] (and to [Bondorf 90]). 

Treating higher order languages opens new per- 
spectives for using autoprojection for semantics di- 
rected compiler generation: Similix-2 treats inter- 
preters written in continuation passing style and in- 
terpreters that implement (weak head) normal order 
reduction (outside-in, call-by-name) by "thunks" 
of the form (L O E). We exemplify this by spe- 
cializing such interpreters. To our knowledge, this 
is the first time autoprojection has been used to 
generate compilers from interpreters of that kind. 

1.2 Outline 

The rest of the paper is organized as follows. Sec- 
tion 2 gives some background and introduces the 
main issues of this paper. In section 3, we present 
an interpreter for a lambda calculus language "A". 
The interpreter serves as an example of a higher 
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order program; when it is specialized, programs in 
the A-language are in effect compiled. The sections 
4 and 5 contain the technical part: we de- 
velop/describe two pre-analyses needed for partial 
evaluation of higher order programs; both analyses 
are presented formally in a compositional denota- 
tional semantics style. In section 6, we exemplify 
partial evaluation of higher order programs: the A- 
interpreter is specialized, and we also specialize 
two other A-interpreters: one written in continua- 
tion passing style and one implementing normal 
order reduction. The performance of the system is 
shown in section 7. Section 8 is a discussion, and 
in section 9 we conclude and sketch some open 
problems. 

1.3 Prerequisites 

Some knowledge about partial evaluation is re- 
quired, e.g. as presented in [Jones, Sestoft, & 
Sendergaard 85] or [Jones, Sestoft, & Sender- 
gaard 89]. 

2. Background and Issues 

2.1 Preprocessing 

An essential component of an autoprojector is the 
preprocessor. Preprocessing is performed before 
program specialization; its purpose is to add anno- 
tations (attributes) to the source program [Jones, 
Sestoft, & Sendergaard 85]. The annotations guide 
the program specializer (which actually produces 
the residual program) in various ways: they tell 
whether variables are bound to static or dynamic 
values, whether operations such as + or ±f can be 
reduced away during program specialization, and 
whether certain expressions (function calls, let- 
expressions) should be unfolded. Annotations 
relieve the specializer from taking decisions 
depending on the static input to the program being 
specialized, and this gives major improvements, 
especially when the spccializer is self-applied 
[Bondorf, Jones, Mogensen, & Sestoft 90] (the 
essential reason: the static input to the program 
with respect to which the specializer is being spe- 
cialized is not available). Without using annota- 
tions, the generated compilers would become un- 
necessarily general and hence large (in code size) 

and slow. All autoprojectors we know of use pre- 
processing and annotations. 

The central preprocessing phase is binding time 
analysis [Jones, Sestoft, Sendergaard 89]. Bind- 
ing time analysis is an approximative analysis that 
abstractly interprets the program over a binding 
time domain, in the simplest case the two-point lat- 
tice Static r- Dynamic. Static is to be interpreted as 
"definitely static", i.e. it abstracts values that are 
available (known) at program specialization time. 
Dynamic means "possibly non-static" and abstracts 
values that are possibly not available (unknown) at 
program specialization time. Variables and opera- 
tions are then classified according to their binding 
times. As a simple example, the operation + in the 
expression (+ x 1) is static (eliminable, compile 
time) if x is classified Static, and it is dynamic 
(residual, run time) if x is classified Dynamic. 
Static operations are evaluated during program spe- 
cialization whereas residual code is generated for 
the dynamic ones. Static operations correspond to 
the overlined ones of [Nielson & Nielson 88], dy- 
namic operations to the underlined ones. 

2.2 Binding time analysing higher order 
programs 

Nielson and Nielson have described an automatic 
binding time analysis for a higher order functional 
language [Nielson & Nielson 88]. Their analysis 
treats the typed lambda calculus. Mogensen has 
described an analysis for a polymorphically typed 
higher order functional language where programs 
are written in curded named combinator form [Mo- 
gensen 89b]. In these two papers, no autoprojcctor 
is developed; only binding time analysis is ad- 
dressed. An automatic binding time analysis for 
Lambda-mix has been developed recently [Gomard 
90]. 

The difficult point in binding time analysing 
higher order programs is to associate lambda ab- 
stractions with applications. If  a program e.g. 
contains the application (x y), and if x during 
(partial) evaluation may be bound to (the value of) 
some abstraction, say 0. (z) ~+ z 3) ), occur- 
ring elsewhere in the program, then the binding 
time value of y influences the one of z. If, for in- 
stance, y is classified Dynamic, then z cannot be 
Static. On the other hand, if x can never possibly 
be bound to (tbe value of) (k (z) ¢+ z 3)),then 



73 

it is unnecessarily conservative to let y influence z. 
The - -  not very useful - -  conservative extreme 
would be to assume that any abstraction might be 
applied at ,any application point. 

For first order languages, the control flow is 
easy to follow from the program syntax. But for 
higher order programs, the control is difficult to 
trace: how does one deduce from the program text 
that y influences z? Nielson & Nielson use a type 
inferencing scheme (using the type information in 
the program); from the expression (x y), it would 
identify that x had type Dynamic ---> ... (since y is 
Dynamic),, and eventually this type would be uni- 
fied (using least upper bounds) with the type of (X 
(z) (+ z 3) ) . I t s typeisZ-- -~  .... where Z is the 
type of z. Unifying the types implies Z ___ 
Dynamic, i.e. z ' s  binding time value is at least 
Dynamic. Mogensen describes binding time values 
for function types as a kind of abstract closures: an 
abstract closure consists of the name of the combi- 
nator and the binding time values of the free vari- 
ables. A rather complex recursion detection ma- 
chinery based on the type information is used to 
avoid generating infinite abstract closures. 

In this paper we present a different approach 
based on a variant of Sestoft's closure analysis 
[Sestoft 88b] [Sestoft 89]: a closure analysis is 
first perfomaed, then the binding time analysis is 
performed:: 

bt-annotations = bt-analyse(P, d-analyse(P)) 

For each application point in the program, the clo- 
sure analysis collects the set of lambda abstractions 
that for arty evaluation of the program possibly 
may be applied at that point - -  for instance that x 
above may be bound to (the value of) (X (z) t+ 
z 3) ). The analysis addresses any possible eval- 
uation, not a particular one, so it must necessarily 
be approximative: it can give a safe description 
which, however, may be too conservative (cf. the 
conservative extreme mentioned above). 

Using the information computed by the closure 
analysis, the binding time analysis immediately 
knows which formal parameters to lambda ex- 
pressions that may be affected by an application 
(for instance that z depends on y). In this ap- 
proach, binding time analysis is relatively simple to 
express; in particular, no structured binding time 
values (such as Dynamic -~ Dynamic) are needed. 

Termination of the binding time analysis is easily 
guaranteed: the binding time description is changed 
monotonically, and the set of binding time values 
is trivially finite since there are no structured val- 
ues. 

2.3 Programming language 

Similix-2 processes higher order recursive equa- 
tions. The language is an extension of the one 
treated by Similix [Bondorf & Danvy 90]: lambda 
abstractions and applications have been added to 
the allowed expression forms. As for Similix, pro- 
grams follow the syntax of Scheme and are thus 
directly executable in a Scheme environment. 

A source program is expressed by a set of user 
defined procedures and a set of user defined opera- 
tors. A Scheme procedure corresponds to a func- 
tion in references such as [Jones, Sestoft, & SOn- 
dergaard 89]. Procedures are treated intensionally, 
whereas operators are treated extensionally. The 
partial evaluator knows the internal code of proce- 
dures. In contrast, an operator is a primitive opera- 
tion: the partial evaluator never worries about the 
internal operations performed by a primitive opera- 
tor. It can only do two things with a primitive op- 
eration: either evaluate the operation or suspend it 
generating residual code. 

Every expression is identified by a unique label. 
The labels are (of course!) not pan of the concrete 
syntax of a program, but they are important in the 
abstract syntax. The BNF of the abstract syntax of 
programs is given below. Except for the labels, 
this abstract syntax is identical to the concrete one. 

Abstract syntax of the Scheme subset treated by 
Similix-2 

Pr 6 Program, PD 6 Definition, 

F E FileName, 

L-E e LabeledExpressien, 

L E Label, E E Expression, 

C E Constant, V e Variable, 

0 E OperatorName, P E ProcedureName 

Pr : := (loadt F)* (load F)* PD + 

PD ::= (define (P V*) L-E) 

L-E ::= L E 

E ::= C I V I (if L-E 1 L-E 2 L-E3) 
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] (let ((V L-E 1 )) L-E2) 

I (o ,-E*~ [ {P ~-E*~ 
I (k (v*)L-El)l (L-E 0 L-E*) 

Notation: program mxts and names of syntactic 
dommns are written in this font. We write 
instead of lambda in program texts. 

The primitive operators are defined in external 
files referred to by the load t  expressions. Defini- 
tions from other files can be reused using load.  
An expression is a constant (boolean, number, 
string, or quoted construction), a variable, a con- 
ditional, a let-expression (unary for simplicity), a 
primitive operation, a procedure call, a lambda ab- 
straction, or an application; the latter two forms 
make the language higher order. The order of eval- 
uation is applicative (strict, call-by-value, inside- 
out), and arguments are evaluated in an unspecified 
order. 

We note that let-expressions are not  considered 
syntactic sugar for applications of (higher order) 
lambda abstractions: this would not be beneficial 
since let-expressions are first order and thus sim- 
pler to deal with. Procedure calls are treated in an- 
other way than higher order applications; the two 
forms are therefore distinguished syntactically. 
Both procedure calls and higher order applications 
are, in turn, distinguished from applications of 
primitive operators. The distinctions are made 
during parsing. To keep the language simple, there 
is no l e t r e c  (nor any rec); recursion is expressed 
using named procedures. 

Program input is assumed to be first order 
(ground, i.e. constants). The reason is that higher 
order values are treated intensionaUy in the partial 
evaluation process; the internal representation of 
functional values depends on the text of the pro- 
gram being partially evaluated. 

2.4 Syntactic extensions 

A number of built-in syntactic extensions are 
treated by Similix. We mention one which is used 
in the examples later: eond. It is expanded into 
nested i f  expressions. The system also treats user 
defined syntactic extensions following the syntax 
of [Kohlbecker 86] (only a subset of Kohlbecker's 
language is treated). 

3.  A sample interpreter 

In this section we present a language A and an 
interpreter for A written in Scheme. A is a statically 
scoped lambda calculus language with unary ab- 
stractions and applications, constants, binary 
primitive operations, a conditional, and a recursive 
"let". A program is an expression following this 
(abstract) syntax: 

Abstract syn~x of A 

E £ Expr, C E Const, 

V E Var, B E Binop 

E ::= C I V I (B E 1 E2) I (if E 1 E 2 E3) 

I (~ V E) I (letrec V E 1E2) [ (E 1E 2) 

A program takes one input value, which initially is 
bound to all variables (for simplicity). For an ex- 
ample, this program computes the factorial func- 
tion: 

Factorial program written in A 

(letrec f 
(l x (if (= x 0) 1 (* x (f (- x i))))) 
(f input)) 

The (arbitrary) variable name input  is used to re- 
fer to the input value. 

3.1 Denotationai semantics 

The denotational semantics of the language is 
specified below. We use the notation from 
[Schmidt .86]; the condit ional  is written 
_ --> _ D_, and [ v ~  w]r is shorthand for 
~.vl.v=vl ~ w D r(v~). 

Denotational semantics of A 

Semantic domains: 

w a Value, r ~ Environment = var ~ Value 

Valuation functions: 
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run: Expr --'> Value - 9  Value 

run~E]W = E~v.] 3,V.W 

E: ~.xpr -9 ]Environment -9 Value 

E~c]r = C~C] 

E[v]r = r([v]) 
Eli (B E I E 2) ]]r = B~B] (E~E1]]r) (E[[E2]}r) 

E [ I i f  E I EZ r'3)]r= 

E~EZ]r -9 Z[E2]r [] E[E3]r 

E[(letrec V E 1 E 2)jr= 

E~E2] fix(~.rl.[~V]~E~El]rl]r) 
Eli (E l E z) ]r = (E[E1]r) (E~E2]r) 

C Const -~ Value unspecified 

B: Binop --+ Value -9  Value -9  Value unspecified 

No type checking is performed; this would require 
injection tags on values and has been omitted for 
simplicity. 

3.2  Interpreter text 

Because Scheme uses strict evaluation, it is 
straightforward to convert the denotational seman- 
tics into a Scheme program - -  an i n t e rp re t e r -  if 
all functions are considered strict in all arguments. 
This of coarse defmes a strict semantics of the in- 
terpreted language. In section 6.3, we show an in- 
terpreter that defines a non-strict semantics. 

To translate the semantics into Scheme, we first 
uncurry the functions ran, E, and B; this is simple 
since the ftmctions already are used in an uncurried 
way. Uncurrying is advantageous from a readabil- 
i typoint  of view ( ( f  x y) contra ( ( f  x) y)),  
and it also sometimes gives better specialization 
(more about this in section 8.2). 

We now give the interpreter text. c is just the 
identity function and has been omitted. 

Direct swle A-interpreter written in Scherr~ 

( loadt "scheme. adt" ) 
( loadt "lam-int. adt" ) 
(load "lara-aux. sire") 

(define (run E w) 
(_E m (k (V) w))) ;0 

(define ( E E r) 
(cond 
((isCst? E) 
(cst-C E)) 

((isVar? E) 
(r (var-V E))) ;p 

((isBinop? E) 
(ext (binop-B E) 

(_E (binop-El E) r) 
( E (binop-E2 E) r))) 

((isIf? E) 
(if ( E (if-E1 E) r) 

( E (if-E2 E) r) 
( E (if-E3 E) r))) 

((isLa--mbda? E) 
(k (w) ;2 

( E (lambda-E E) 
(upd (lambda-V E) w r)))) ;l,q 

((isLetrec? E) 
( E (letrec-E2 E) 

(fix (lambda (rl) ;4 
(upd (letrec-V E) ;3, r 

(_E (letrec-El E) rl) 
r))))) 

((isApply? E) 
(( E (apply-E1 E) r) ;s 
(__E (apply-E2 E) r))) 

(else 
(error ' E "unknown form: ~s" E)))) 

(define (fix f) 
(~ (x) ((f (fix f)) x))) ;5,t,u 

The comments (0-5 and p-u)  are used for refer- 
ence later (section 4.5). 

Syntax accessors (such as l e g r e c - g l ) ,  syntax 
predicates (such as isLambda?),  and ex t  have 
been def'med as primitive operations in the file 
" l am- in t .  mat". The standard Scheme primitives 
equal? and error are defined in "scheme. adt". 
The file "lain-aux. sim" defines environment up- 

dating as a syntactic extension: 

Environment updating 

(extend-syntax (upd) 
((upd V w r) 
(k (Vl) 

(if (equal? V Vl) 
w 
(r Vl))))) 

3.3 Analysing the interpreter 

Partially evaluating the interpreter with static pro- 
gram input (run's g parameter) and dynamic data 
input (run 's  w parameter) in effect compiles A- 
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programs into Scheme (since Similix generates 
residual code in Scheme). 

What can be expected from binding time 
analysing the interpreter? A is statically scoped, so 
e.g. environment operations should be classified 
eliminable: they can be performed at partial evalua- 
tion time (compile time). For instance, the analysis 
should detect that r is statically available in the ex- 
pression (r (var -v  El ), and hence the applica- 
tion of the environment should be classified elim- 
inane. 

On the other hand, the expression a = ( (_g 
(apply-E1 E) r) (_E (apply-E2 E) r)) 

clearly is a run time application, so we would ex- 
pect it to be classified residual. That is, if the inter- 
preted program contains an expression E satisfying 
(±sApply? E), then we expect (a resid- 
ual/compiled version of) a to occur in the special- 
ized interpreter, i.e. in the target program. 

4 .  C l o s u r e  a n a l y s i s  

In this section, we give a formal presentation of the 
closure analysis. The purpose of the analysis is for 
any application point to collect the set of possible 
(values of) lambda abstractions that may be applied 
at that point. 

The analysis originates from one developed by 
Sestoft (for the purpose of globalizing variables in 
higher order programs) for untyped higher order 
programs in curried named combinator form [Ses- 
tort 88b] [Sestoft 89]. Our analysis is basically an 
extended version of Sestoft's, adapted to our con- 
crete language. The extension is that we handle 
multi-applications, that is, our lambda abstractions 
are n-ary, not just unary (Sestoft also mentions this 
possible extension). 

We describe the analysis in a different and more 
implementation suitable way than Sestoft's. Our 
approach is based on the idea of continuously up- 
dating global mappings: traversing a program ex- 
pression does not result in a "value", but in up- 
dated global mappings. Using this method, the 
program text need only be traversed once for each 
fixed point iteration. This gives a relatively simple 
description (only one function traversing syntax), 
and it also naturally leads to an efficient implemen- 
tation. A global mapping corresponds to what is 
called a cache in [I-Iudak & Young 88]: it associ- 

ates every expression in the program with a value 
(this explains the need for expression labels in the 
abstract syntax). 

4 . 1  Semant ic  domains  and funct ions 

We define some semantic domains and various 
utility functions used by the closure analysis. First, 
we need some (injective) functions for converting 
from syntactic to semantic domains: 

L: Label --9 Label 

%q Variable --) Variable 

P: ProcedureName --)Label 

v associates a p r~xinre  name with the label of the 
procedure body. The semantic domains are defined 
like this: 

Index = { 1, 2 . . . .  } 

k e Label = unspecified 

v e Variable = Label x Index 

Formal parameters to a procedure p are identified 
as (k, 1), (k, 2), etc., where k = v [p ] .  Formal 
parameters to a lambda expression with body ex- 
pression with label T. are identified similarly (k = 
~[L]). Note that these identifications are unique. 
The formal parameter v of a let-expression is as- 
sociated with some arbitrary unique value v. 

A closure abstracts the value of a lambda ex- 
pression and is identified by the label of the body 
of the (lambda) expression. The closure analysis 
computes two mappings, gcl and PeP the first one 
binding labels and the second one binding vari- 
ables. For every expression, gel thus collects the 
set of closures that the expression may possibly 
evaluate to (during any possible program execu- 
tion); for every variable, Pcl collects the set of clo- 
sures that the variable may possibly be bound to. 
The codomain of both mappings is the powerset of 
closures (with the usual subset inclusion ordering): 

Closure = Label 

c ~ ClSet = ~(Closure) 

ktcl e ClMap = Label --~ C1Set 

Pcl ~ ClEnv = Variable --> C1Set 

Maps and environments are updated by corre- 
sponding monotonic update functions. Map updat- 
ing is performed by the function upd (which 
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should not be confused with the upd in the A- 
interpreter): 

upd: Label -9  C1Set -9  CIMap -9  C1Map 

upd k c gel '= ~tcl u [k~c]±ClMa p 

Environment updating has functionality 

Variable -9  C1Set -9  ClEnv -9  ClEnv 

and is defmed in a similar way. For readability, we 
uniformly refer to 'all updating functions simply as 
upd; the functionality is clear from the context. The 
least upper bounds on functions and cartesian 
products are defined pointwise: 

~/Cl tJ ~cl = i lk .  IXcl(k) u gcl(k) 

(gel, Pcl) U (~tcl, Pcl) = (gcl U gcl, Pcl U Pcl) 

Finally, we need a function for checking the arity 
of a closure: 

arity: Closure -9  {0, 1, 2 . . . .  } 

4.2 The analysis 

We now give the closure analysis rules. Given a 
set of procedure definitions, the function C1 com- 
putes the two mappings gel and Pcl- The mappings 
are computed as simultaneous fixed points. Ini- 
tially, all labels and all variables are mapped onto 
the empty closure set (since the input to a program 
is first order and thus contains no closures). 

Explicit quantification of indices is avoided 
when clear from the context; primitive operators 
and procedures may be nullary in which case the 
index i ranges over the empty set. A case expres- 
sion is used for syntax dispatching. 

Closure analvsis 

Ch Definition + -9 C]]Vlap x C~nv 

CI~ (define (...) LIE1) ... (define (...) LnEn)~ =~IX(~(~CI , pcl). I liC1[LiEi]~clP¢1 ) 

ch Labeled~:xpression -9 C~8p -9 C]]qnv -9 C~ap x C~nv 

cln'~. E] ) Ic lpc  I = 

let k = L[L] in 

case [~.1[ o f  

[C]: (updk {} ~tcl , Pcl) 

I[v]]: (upd k Pcl(V~V]) licl, Pcl) 

( i f  L1E 1 r.2E 2 LaE 3) ]: let (gcl '  Pcl) = I l icl[Liei]gclPcl in 

(upd k (~tcl(~[%D u g~l(~.[%D) ~c~, Pc,) 
[ (let ((V LIE1)) L2E2)]: let (~tcl, Pcl) =[-Jicl~LiEi]]gclPcl in 

(upd k ~tcI(L[L2] ) gel, upd v [v ]  $1cI(L[L1] ) Pcl) 

[ (O LlV. 1 ... Lnr. n) ]: let (~tcl, Pcl) =(gcl ,  Pcl) U I licl[LiEi]~tclPc 1 in 

(upd k ( u ~ q ( q h ] ) )  ~th, P'¢l) 

(v L1E 1 ... LnE n) ]: let (~tcl, Pcl) = (~tcl, Pcl) U I licl~LiEi]~tclPc 1 in 

(upd k ~tcl(P[V]) g~l, Pcl u I l i(upd (PIP],  i )  ~tcl(L~Li] ) Pcl)) 

(~ (V 1 ... V n) L1E 1) ]: let (gcl, Pcl)=cl[L1E1]gclPcl in 

(upd k {LILt]  } Ilcl, Pcl) 

[ (r.0E o L1E:t ... LnV. ~) ]: let (gcl, Pcl) = I licl[LiEi]~tclPcl in 

let c = {k' ]k 'e  ~tcl(L[L0] ) A arity(k')=n} in 

(upd k (I Ik,ecgcl(k')) gel, Pcl U I li_>l,k, e c(upd (k', i )  ~tcl(L[Li] ) Pcl)) 
end 
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The rules for constants, variables, conditionals, 
and let-expressions are straightforward. For primi- 
tive operations, note that a closure occurring in an 
argument may possibly be returned, but no new 
closures may be introduced. For procedure calls, a 
closure returned by the procedure body may be 
returned; care must taken to account for the influ- 
ence on the formal parameters of the procedure. 
Both for primitive operations and for procedure 
calls, it is taken into account that n may be 0 
(therefore the term "(gcl, Pcl) u"). A lambda ab- 
straction is the "source" of closures; note that (as 
mentioned earlier) the closure is identified by the 
label of the body. 

The rule for applications is the most complex 
one. First, the set c of lambda abstractions that E o 
may evaluate to is found. Then ~tcl is updated: the 
application (E) may evaluate to a closure being the 
result of evaluating the body of any of the lambda 
abstractions in the set c. Lambda abstractions are 
identified by the body labels, so I.tcl is simply 
applied to the elements (k') in c. Finally, Pcl is 
updated: ~. influences the formal parameters of all 
lambda abstractions, which E 0 may evaluate to. 
The i ' th  parameter is influenced by E i.  

4.3 Finiteness 

For any given program, there is a finite number of 
closure sets. The mappings ~tcl and Pd are updated 
monotonically, so they can only be updated a finite 
number of times. Fixed point iteration will there- 
fore stabilize.after a finite number of iterations. An 
implementation of the analysis is thus guaranteed 
to temainate. 

4.4 Implementation issues 

In the description, the subexpressions of a com- 
pound expression are processed in a parallel way. 
This simplifies the description, but sequential pro- 
cessing is better from an implementation point of 
view. Sequential processing means that there is 
always only one active copy of IXcl as well as of 
Pcl; the mappings are single-threaded [Schmidt 85] 
and can therefore be implemented as global vari- 
ables which are updated destructively. 

In practice, the mappings are not kept as sepa- 
rate variables, but the information is kept as at- 
tributes (annotations) in the abstract syntax. This 

means that expression labels are not actually 
needed. 

4.5 Application to the sample interpreter 

We end the description of the closure analysis by 
showing what it gives when applied to the sample 
interpreter. 

The lambda abstractions are referred to by a 
number (0 to s), the application points by a letter 
(p to u) ; see the comments in the interpreter text. 
Each use of upd is macro expanded into an ex- 
pression containing a lambda abstraction ( (k (vl) 
...) ) and an application ( ( r  v l ) ) .  t identifies the 
application of f to ( f ix  f) ,  u the application of (f 
( f i x  f) ) to x. The closure analysis gives the fol- 
lowing possible abstractions at the application 
points: 

p, q, r: O, i, 5 S:2 t: 4 u: 3 

We see that at environment application points, p, 
q, and r, the environment closures o, x, and 5 (but 
not closure 3!) are the (only) possibilities. Closure 
2, which implements lambda abstraction in the in- 
terpreted language, is the only one which may be 
applied at application point a; s implements appli- 
cation in the interpreted language. The only closure 
that the functional f may be bound to at point t is 
closure 4 that maps environments to environments. 
Finally, an "unrolled" recursive environment at 
point u can only be closure 3. 

5 .  Binding time a n a l y s i s  

This section describes the binding time analysis 
that assigns a binding time value to all variables 
and all expressions (labels). The binding time uses 
the information collected in closure analysis. 

5.1 The binding time domain 

The binding time domain is a four value lattice: 

b ¢ BtValue = ({±, S, CL, D}, E) 

The partial ordering is given by 

D 
/ \  

S CL 
\ /  

1 
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S approximates ordinary first order static values 
(constants), CL approximates closure values, and 
D approximates dynamic values (residual code ex- 
pressions). The value ± is needed because S and 
CL are incomparable. S corresponds to Static in a 
standard binding time analysis for first order pro- 
grams, D to Dynamic. 

At progmrn specialization time, a closure is gen- 
erated for CL annotated lambda expressions: a clo- 
sure contaJ[ns an identification of the lambda ex- 
pression and values for its free variables. Closures 
are always eventually (beta) reduced away during 
program specialization, and CL is thus used for 
eliminabte lambda expressions. For D annotated 
lambda expressions, a residual lambda expression 
(residual code) is generated. The lambda expres- 
sion is thus suspended: no beta reduction is per- 
formed. The body of the residual lambda expres- 
sion is a residual version of the body of the source 
lambda expression. 

Let us consider an example: 

((if (p x) (X (y) y) (X (z) (cdr zII) l) 

If the result of the test is static, i.e. the binding 
time value of (the label of) the expression (p x) is 
S, then the: conditional expression always reduces 
to one of its branches. Consequently, beta reduc- 
tion can always be performed during program spe- 
cialization: it is safe to classify the two lambda ex- 
pressions etiminable (CL). If, however, the test is 
dynamic, 'then residual code is generated for the 
conditionad expression and beta reduction is not 
possible. The two lambda expressions are there- 
fore annotated residual (D). We note that we do not 
consider more "exotic" (post-)reductions on resid- 
ual code; for this particular example, the reduction 
((if E 0 E 1 E 2) E 31 ~ (if E 0 (E 1 E3) (E 2 

E 3) ) would in fact enable beta reduction in case of 
a dynamic test. 

5.2 Annotating lambda expressions 

It is clearly desirable to classify eliminable as many 
lambda expressions as possible: this gives a more 
reduced residual program. On the other hand, a 
closure value must never be used in a context that 
makes it part of a residual code piece: residual code 
consists of expressions, not values internal to the 
program specializer. Therefore, if (the value of) a 
lambda expression may be used in such a context, 

it must be annotated residual. Otherwise it can 
safely be classified eliminable. (We note that one 
could imagine a program specializer that always 
generates a closure when processing a lambda ex- 
pression (as proposed in [Mogensen 89a]). The 
specializer should then convert the closure into an 
expression if used in a residual code context. The 
method requires tagging and (re-)traversing resi- 
dual values to find the closures. This is undesir- 
able, especially for self-application.) 

The value of a lambda expression E~ may occur 
as part of a residual code piece in the following 
cases: (1) Some expression E has binding time 
value D (i.e. the result of specializing v. is expected 
to be a residual code piece) and E may i t se l f - -  ac- 
cording to the closure analysis - -  evaluate to (the 
value of) E~. (2) Some non-procedure call com- 
pound expression is suspended (a residual version 
of the expression is generated) and has an argu- 
ment expression that may evaluate to (the value of) 
E;v (3) The body of the program's goal procedure 
(fixed for any particular program specialization) 
may evaluate to (the value of) r%. In these three 
cases, E~. must be classified residual. 

Case (1) implies that whenever an expression 
gets binding time value D, then all lambda expres- 
sions that r. may evaluate to should be raised to be 
classified residual. Case (3) is needed because 
residual code is always generated for the body of 
the goal procedure, regardless of its binding time 
value. The point in case (2) is that suspending an 
operation requires generating residual versions of 
the argument expressions. Procedure calls are an 
exception: in the residual version of a susPended 
procedure call, the procedure name has been spe- 
cialized with respect to the static arguments (this is 
the point in polyvariant program specialization). 
Closures are partially static structures [Mogensen 
88] containing static and dynamic subparts; the dy- 
namic parts become arguments to the residual pro- 
cedure call. For the other compound expressions, 
some simplification is possible, A case analysis 
shows that case (1) covers case (2) for condition- 
als, let-expressions, and primitive operations. 
Conditionals are suspended in case of a dynamic 
test and let-expressions are possibly suspended in 
case of a dynamic actual parameter expression. The 
point now is that if any other argument expression, 
which because of the suspension gets "caught" in a 
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residual code context (conditionals: the "then" and 
"else" branches; let-expressions: the body; primi- 
tive operations: any argument expression), may 
return a closure, then the closure analysis rules 
imply that the whole expression may return the 
same closure. Hence, the closure is "captured" by 
case (1) since the whole compound expression has 
binding time value D. 

Binding time values for formal parameters of 
eliminable lambda expressions depend on the 
binding time values of the argument expressions at 
any relevant application point. The relevant appli- 
cation points are those where the lambda expres- 
sion may possibly be applied (computed by the 
closure analysis). In the example from section 5.1, 
there is only one such point, and y and z get the 
same binding time value as 1. In general, least up- 
per bounding over all relevant application points is 
needed. Lambda expressions annotated residual are 
not beta reduced, and so the formal parameters all 
become dynamic. 

One might think of introducing a binding time 
value S-or-CL lying above S and CL, but below 
D. This makes sense since Scheme is dynamically 
typed. Introducing S-or-CL gives additional preci- 
sion in the description, but the program speciaiizer 
is burdened in two ways: first, any value of the S- 
or-CLtype needs to be tagged as either an S-value 
or a CL-value; second, the program speciaiizer 
needs to type check such values. This is avoided 
by letting S u CL = D. 

5.3 Domains and functions 

The binding time value of an expression (o L-~ 1 
._ n-E n) is typically IAi(the binding time value of 
L-V i) u S. Treating primitive operations working 
on higher order structures (such as Scheme's pro- 
cedure?) introduces complications since the pro- 
gram specializer represents closures in its own 
way; this problem is inherent to the very idea of 
treating higher order operations intensionaUy. By 
least upper bounding the arguments with S, any 
primitive operation on a closure becomes dynamic 
whereby the problem is avoided (since no reduc- 
tion takes place at partial evaluation time). 

It is possible for the user to define a more con- 
servative binding time function for primitive op- 
erations than the one above. This is for instance 

useful for generalizing [Turchin 86], i.e. forcing a 
static value to become dynamic (sometimes needed 
for ensuring termination of  program specializa- 
tion). The binding time value of a primitive appli- 
cation is therefore defined via a function o: 

O: OperatorName -~ BtValue* --~ BtValue 

In practice, a binding time function is user defined 
for each prin~tive [Bondoff & Danvy 90]. 

The binding time analysis computes two map- 
pings: 

gbt E BtMap = Label --~ BtValue 

Pbt e BtEnv = Variable ~ BtValue 

These are dual to the closure mappings gcl and PeP 
and they are updated in a similar way. 

The closure analysis identifies a closure by the 
label of the body of the lambda expression. The 
binding time value of a lambda abstraction will be 
assigned to the label of the lambda expression itself 
(the body has its own binding time value), so we 
introduce the function k2k: 

k2k: Label --~ Label 

Given the label of the body of a lambda expres- 
sion, k2k returns the label of the lambda expres- 
sion itself. 

Given the label of art expression, the following 
function raises the annotations of the set of lambda 
expressions, which that expression may return: 

raise: Label--> BtMap---> BtEnv---> BtMap x BtEnv 

raise k gbt Pbt = 

I Ik,~gel(k)(Upd k2k(k') D gbt, 

[lie {l . . .ar i ty(k3}(Upd (k', i) D Pbt)) 

lJ (I.tbt, Pbt) 

Note that the formal parameters of the lambda ex- 
pressions are also raised (Pbt is updated). 

5.4 The analysis 

We now give the binding time analysis rules. 
Given a set of procedure definitions, a label identi- 
fying the body of the goal procedure, and an initial 
binding time description ,.,input the program is I"bt , 
binding time analysed by propagating binding time 
values through the program. 
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Bindin~ time analvsis 

Bt: Definition + -9 Label -9 B~nv -9 B~dap x B~nv 
lt- _input _ Bt~(define (._) LIE I) ... (define (.,.) LnEn)z,~gos/Pbt -- 

fix(~'(llbt , I)bt) t init ini%. ¢. init pinit) = raise3 1. • _input • ~ktbt , Pbt ) ~ Llibt~LiV'i]ixbtPbt) where ~bt  • bt ~'goal±BtMap Pbt 

bt: LabeledF.xpresslon -9 BtMap -9 B~nv -9 B~4ap x Bfl~nv 

bt[v. ~.]]l.tbtPbt = 
let k = L[I'~] in I~°bt(k) = D ---)raise 1 k p.°bt P°bt D (~°b t, P°b t) 

where (ix°bt, P°bt) = 
case ~ E] o f  

[c ] :  (upd k S ~tbt, Pbt) 

~v]: (upd k Pbt(V[V]) ~tbt, Pbt) 

( i f  LIE 1 LZE 2 r.Sv. 3) ]: let ([t~t, Pbt) = I libt~Limi]VtbtPbt in let b i = Ix~t(Z~Li]) in 

(upd k (bx=D ~ D D b 2 u bs) ~t~t, Pbt) 

( l e t  ( (v LIE 1) ) L2E 2) ]: let (ixbt, P~)  = Uibt~LiEi]ixbtPbt in let b i = IX~t(L[Li]) in 

(upd k (bx=O -9  O D b 2) ~t~t, upd ~ v ]  b x Pbt) 

(O L1E 1 .- LnE n) ] :  let (t.t~t, Pbt) = (ixbt, Pbt) U I.Jibt~Limi]kLbtPbt in let b i = ~L~t(L[Li] ) in 

(upd k (o[o]][b 1 . . . . .  bn]) I'tbt' PbO 

1[ (P ~r.lE 1 ... T'nE n) ]]: let (I.tl)t, Pl)t) = (Pbt, Pbt )LI LJibt~'r'igi]PbtPbt in let b i = I.t~t(L[Li'[]) in 

(updk (some bi=D - g D  [I I.t~t(p[p]])) P'bt, Pbt t-I I li(upd (P~'P]], ±) bi Pbt)) 

l[ (X (v a ... v n) r.x~. 1) ]: let (ixbt, Pbt)= bt~'L1F'l]]~tbtPbt in 

" ' raise 2 L~Lx]] IX . . . . . . .  = ~tbt(k) = D  --> bt Pbt D (l'tbt , Pbt) where I.tbt updk  CL IX'bt 

I[ (r.0z~ 0 LxE 1 ... LnV. n) ]: let (IXbt, Pbt) = [-Jibtl[LiEi]ktbtPbt in let b i = IX~t(r.l[Li]) in 

let c = {k' [ k 'e ktcl(r.~L0]) ^ adty(k')=n} in 

Id.']~t(L[L0]) = D ~ (IX'bt' P'[~t) U Ui_>l(raise2 z~r.±]] IX'bt P'bt) ~ (kt'bt, P'bt) 
where kt'~t = upd k (some bi=D --> D D I lk,eckt~t(k')) [It~ t 

P'bt = Pbt LI LJi>-t,k'~c(UP d (k', ±) ~{)t(z,[I~±]) Pbt) 
end 

The applications of the function raise have been su- 
perscripted; the numbers refer to the cases (1)-(3) 
that cause lambda annotations to be raised (section 
5.2). 

5 . 5  Fin i t eness  

There is a finite number of binding time values. 
Since the mappings gbt and Pbt are only updated 
monotonically, they can only be updated a finite 
number of  times. Fixed point iteration will there- 
fore stabili~ after a finite number of iterations. 

5 . 6  Appl i ca t ion  to the s a m p l e  interpreter  

When applied to the sample interpreter with static 
program input and dynamic data input, the binding 
time analysis correctly annotates the lambda ab- 
stractions for environment processing, 0, 1, 3, 4, 
and 5, as eliminable. Dually, the applications p, q, 
r, t ,  and u, become eliminable: the expression to 
be applied in all cases gets binding time value CL. 
The lambda expression 2 and the application s be- 
come residual. 
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The formal parameters to the lambda expres- 
sions o, l ,  3, and 5 are all static (S). The parame- 
ter of abstraction 4 is a closure (CL), but this is 
only what one could expect: the parameter is an en- 
vironment. Finally, the parameter of abstraction 2 
is dynamic (D). 

6 .  Resul ts  

In this section we use Similix-2 to specialize the di- 
rect style A-interpreter and two other A-inter- 
preters: one written in continuation passing style 
and one implementing normal order reduction. 

6.1 Direct style 

Specializing the sample interpreter with respect to 
the factorial A-program yields the following 
Scheme target program: 

Machine m'oduced factorial target Drom'am. 
generated from direct style A~intemreter 

(loadt "scheme. adt") 
( loadt "lam-int. adt" ) 

(define (run-0 w) ((_E-I w) w)) 

(define (__E-I r) 
(I (w) 

(if (ext '= w 0) 
1 
(ext ' * 

w 
((_E-I r) (ext '- w i)))))) 

For readability, we have "cheated" by renaming 
some of the machine generated names (but this is a 
trivial conversion). 

run-0 is the name of the goal procedure in the 
target program, i.e. run-0 computes the factorial 
function. We observe that the interpretation level 
has almost been completely removed: the inter- 
preter's syntax analysis and environment opera- 
tions have been performed. Only run time opera- 
tions are left, with a small overhead due to the ext  
encodings. When computing factorial of 10, it is 
around 14 times faster to run the target program 
than to interpret the source program (see the next 
section on performance). 

Recursion is expressed by the procedure _E-x. 
The redundant variable r corresponds to the input  

variable in the factorial A-program: k is not actually 
referred to inside the recursive body of the 
l e t r e c ,  but it is accessible, and this is reflected in 
the target program. 

The target program can be generated either by 
directly specializing the A-interpreter with respect 
to the factorial program or by first generating a 
stand-alone compiler (using self-application) and 
then applying it to the factorial program. 

6.2 Continuation passing style 

The interpreter below can be derived from a con- 
tinuation semantics for A. Continuations are strict 
and map values into values: 

Continuation nassing stvle A-intemreter 

(loadt "scheme. adt") 
(loadt "lam-int, adt") 
(load "lam-aux. sim") 

(extend-syntax (eta-convert) 
( (eta-convert c) (lambda (w) (c w) ) ) ) 

(extend-syntax (c-id) 
((c-id) (~ (w) w))) 

(define (run E w) 
(_E E (l (V) w) (c-id))) 

(define (_E E r c) 
(cond 
( (isCst? E) 
(c (cst-C E))) 

( (isVar? E) 
(c (r (var-V E)))) 

( (isBinop? E) 
(__E (binop-El E) 

r 
(~ (wl) 

(_E (binop-E2 E) 
r 
(~ (w2) 

(C (ext (binop-B E) 
wl 
w2))))))) 

( (isIf? E) 
(_E (if-E1 E) 

r 
(~ (wl) 

(if wl 
(_E (if-E2 E) r c) 
(_E (if-E3 E) r c))))) 

( (isLambda? E) 
(c (~ (wl el) 

( E (lambda-E E) 
(upd (lambda-V E) wl r) 
(eta-convert cl) ) ) ) ) 

( (iaLetrec? E) 
(__E (ietrec-E2 E) 

(fix (~ (rl) 
(upd (letrec-V E) 
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(__E (letrec-El E) 
rl 
(c-id)) 

r))) 
c)) 

( (isApply? P:) 
(__E (apply-E1 E) 

r 
(I (wl) 

(_E (apply-E2 E) 

(~ (w2) 
(wl 
w2 
(eta-convert c))))))) 

(else 
(error ' E "unknown form: ~s" E)))) 

(define (fix f) (~ (x) ((f (fix f)) x))) 

Binding time analysis (with static program and dy- 
namic data input) classifies the environments 
eliminable (CL). The lambda expression (~. (wz 
ol)  ...) is classified residual (just as the corre- 
sponding lambda expression in the direct style in- 
terpreter was), and therefore the formal parameter 
continuation o l  also becomes residual (D). The 
eta-conversions are then inserted to achieve that the 
binding time analysis classifies _z 's  continuation 
parameter o eliminable rather than residual. This 
implies that the program specializer will beta re- 
duce continuation applications at partial evaluation 
time, thus giving better, more reduced target pro- 
grams. 

The following target program is generated when 
specializing the interpreter with respect to the fac- 
torial program: 

Machine produced factorial target Dram'am. 
generated from continuation stvle A-intemreter 

(loadt "scheme. adt") 
(loadt "lam-int. adt") 

(define (run-0 w) 
((__E-I w) w (l (w) w))) 

(define ( E-I r) 
(i (wl cl) 

(if (ext '= wl 0) 
(cl i) 
( (_E-I r) 
(ext '- wl I) 
(i (w) (cl (ext '* wl w))))))) 

The target: program is written in continuation 
passing style since the interpreter was. 

6 . 3  Normal order reduction 

The third interpreter is a variant of the direct style 
one, but it implements normal order reduction se- 
mantics. Normal order reduction is achieved by 
suspending the evaluation of arguments to applica- 
tions. Instead of keeping values in environments, 
we thus now keep thunks of the form (I () ...). 

Normal order reduction A-interoreter 

(loadt "scheme. adt") 
(ioadt "lam-int. adt") 
(load "lam-aux. sim") 

(extend-syntax (my-delay) 
( (my-delay w) (lambda () w) ) ) 

(extend-syntax (my-force) 
( (my-force w-delayed) (w-delayed)) ) 

(define (run E w) 
( E E (lambda (V) (my-delay w)))) 

(define (_E E r) 
(cond 
( (isCst? E) 
(cst-C E) ) 

( (isVar? E) 
(my-force (r (var-V E)))) 

( (isBinop? E) 
(ext (binop-B E) 

(_E (binop-El E) r) 
(_E (binop-E2 E) r) ) ) 

( (isIf? E) 
(if (_E (if-E1 E) r) 

(__E (if-E2 E) r) 
( E (if-E3 E) r))) 

( (isLambda? E) 
(lambda (w) 

(_E (lambda-E E) 
(upd (lambda-V E) w r)))) 

( (isLetrec? E) 
(_E (letrec-E2 E) 

(fix (lambda (rl) 
(upd (letrec-V E) 

(my-delay 
( E (letrec-El E) rl)) 

r) )T) ) 
( (isApply? E) 
((__E (apply-E1 E) r) 
(my-delay (_E (apply-E2 E) r) ) ) ) 

(else 
(error ' E "unknown form: ~s" E)))) 

(define (fix f) (I (x) ((f (fix f)) x))) 

Note that primitive operations are still call-by- 
value; only applications of lambda abstractions are 
call-by-name. 
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The following program produces a list of the 
first n even numbers. The function evens-from 
produces an infinite list of even numbers starting 
from a given number. Since l a z y - c o n s  is a 
lambda expression, the evaluation of its arguments 
is suspended and therefore calls to evens-from do 
not loop. Using a call-by-value interpreter, any call 
to evens-from would loop. 

t~v~o n~mber progam written in normal order A 

( (~ lazy-cons 
( (~ lazy-car 

( (l lazy-odr 

(let rec first-n 
(k n (k 1 

(if (= n O) 
,() 

(cons 
(lazy-car i) 
((first-n (- n i)) 
(lazy-cdr i)))))) 

(letrec evens-from 
(~ n 

( (lazy-cons n) 
(evens-from (+ n 2) ) ) ) 

( (first-n input) ;main 
(evens-from O) ) ) ) ) 

(l x (x (l a (~ dd)))))) 
(~ x (x (~ a (~ d a)))))) 

(k x (k y (k z ((z x) y))))) 

The A-language has no let-expressions and only 
unary lambda expressions, so the program looks 
somewhat clumsy. 

Specializing the normal order interpreter with 
respect to the even number program yields a target 
program in which syntax analysis and environment 
operations have all been performed. The program 
contains lots of thunks and is rather hard to read 
(we do not include it here). It is, however, quite 
efficient: running the target program is around 25 
times faster than interprtting. 

This example nicely shows the effect of partial 
evaluation: Scheme is call-by-value, so to achieve 
caJl-by-name evaluation, one would need to insert 
thanks everywhere by hand. This is complex, so 
instead one can write an interpreter for a call-by- 
name language. However, running the interpreter 
gives a siginificant interpretation overhead. But 
using partial evaluation, programs in the call-by- 

name language are compiled into efficient Scheme 
code (which is eventually itself compiled). 

7. Performance 

This section contains some benchmarks for Sim- 
ilix-2. The tables below show the speedups 
achieved by partial evaluation. Each table has four 
columns. The first one describes the result com- 
puted by the job in the second column. The third 
column shows the run time, the fourth column the 
speedup. 

For simplicity, we identify programs with the 
functions they compute. Following the tradition, 
the program specializer is referred to as mix, the 
compiler generator as cogen. Binding time anno- 
tated (preprocessed) programs have the superscript 
"ann". The run time figures are in CPU seconds 
with one or two decimals; they exclude time for 
garbage collection (typically 0 to 40% additional 
time), but include postprocessing. The speedup ra- 
tios have been computed using more decimals than 
the ones given here; in some cases, the time has 
been computed by performing I0 successive runs 
and then dividing. The system is implemented in 
Chez Scheme [Dybvig 87] version 2.0.3, and the 
figures are for a Sun 3/160. 

For the direct and continuation style examples, 
the source A-program is the factorial program; the 
figures are for 100 computations of factorial of 10. 
For the normal order example, the even number 
program is used; the figures are for 10 computa- 
tions of "evens" of 20. 

output 
result 

target 

comp 

run ~'~/s speedup 
int(source, data) 5-7 14.3 
target(data) 0-40 
mix(int ann, source) 0-53 7-8 
comp(source) 0.07 
mix(mix ann , int ann) 11.5 2.9 
cogen(int ann) 4.0 

Direct style A-intemmter 
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output 
result 

target 

comp 

run time/s speedup 

hit(source, data) 6.1 17.1 
target(data) 0.36 

mix(int ann, source) 1.2 7.8 

comp(source) 0.15 
mix(mix ann, int ann) 49.8 2.3 
cogen(int ann) 21.9 

Continuation oassinu stvle A-interoreter 

output 
resuk 

target 

comp 

run fime/s speedup 

int(source, data) 35.0 25-7 
target(data) 1-4 

mix(int ann, source) 6.0 5.4 
comp(source) 1.1 
mix(mix ann, int ann) 16.3 3.2 

cogen(int ann) 5.1 

Normal order reduction A-interoreter 

output run time/s speedup 
cogen mix(mix ann, mix ann) 82-3 3-0 

cogen(mix ann) 27.6 

Comoiler ~enerator 

The first table shows that running the factorial tar- 
get program is around 14 times faster than inter- 
preting the factorial source program. Compiling by 
the stand-alone compiler is 8 times faster than by 
specializing the interpreter; this shows that the par- 
tial evaluator really is effectively self-applicable. 
Finally, generating the compiler by the mix-gener- 
ated compiler generator cogen is 3 times faster than 
by specializing mix. The second and third tables 
are similar. The last table shows that generating 
cogen by running cogen is 3 times faster than by 
specializing mix. 

Here are some additional figures: it takes 2-4 
seconds to preprocess an interpreter (includes clo- 
sure and binding time analyses); preprocessing mix 
takes around 19 seconds. The size of mix is 2.5K 
cells (measured as the number of "cons" ceils 
needed to represent the program as a list), cogen 
13.9K cells, the interpreters 0.18K-0.26K cells, 
and the compilers 1.9K-7.6K cells. For mix, this 
gives an expansion factor of 5.5 (13.9/2.5), for the 
interpreters factors in the range 10-29. 

The figures all in all compare well to similar 
published benchmarks for first order languages 
[Jones, Sestoft, & Scndergaard 89] [Bondorf & 
Danvy 90] [Consel 89], and also to those of 
Lambda-mix [Gomard 89]. 

8 .  D i s c u s s i o n  

Partial evaluation is no panacea: some programs 
specialize well, but others do not. Program genera- 
tors in general take some specification as input; in 
the case of partial evaluation, the specification is a 
program. The quality of a program generated by 
any program generator depends on the quality of 
the specification. For partial evaluation, the quality 
of the residual program depends on the quality of 
the source program supplied to the partial evalua- 
tor. 

The "quality" of a source program does not nec- 
essarily mean its clarity or efficiency. It often hap- 
pens that less efficient and/or less clear programs 
lead to better (more efficient, more clear) residual 
programs. 

8.1 Exploiting stat ic information 

Programs have to be expressed carefully not to 
lose static information. A simple example: suppose 
x and y are static and z dynamic. Then (+ (+ x 
y) z)specializes betterthan (+ x (+ y z l ) : i n  
the former case, the inner + is reduced, but in the 
latter no reduction takes place. 

8.2 Cur ry ing  

It was mentioned earlier (section 3.2) that uncurry- 
ing functions sometimes gives better specialization. 
When binding time analysing a curded expression 
such aSE = (L (x) (X (y) (+ (+ y y) x ) ) ) ,  
the binding time analysis might annotate x dynamic 
and y static. That is, a dynamic argument is sup- 
plied before a static argument. During program 
specialization, an application of E like ((  s 
"code") 3) could be beta reduced to the residual 
code piece (+ 6 "code"). 

However, to avoid that procedure call unfolding 
and beta reduction of higher order applications 
duplicates or discards dynamic actual argument ex- 
pressions, let-expressions are inserted for all for- 
mal parameters in source programs before prepro- 
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cessing [Bondorf & Danvy 90]. The expression 
which is actually binding time analysed is therefore 
not E, but the semantically equivalent 

(;t (x) (let ((x x)) (~ (y) (let ((y y)) 
(+ (+ y y) x))))) 

Since x is dynamic, the result of the body of the 
outer lambda expression becomes dynamic. The 
(value of the) inner lambda expression is a possible 
result of evaluating this body, and therefore the in- 
ner lambda expression becomes annotated residual. 
Hence, its parameter y becomes dynamic whereby 
static information is lost. It thus never happens that 
dynamic arguments are supplied before static ar- 
guments. This confmns the intuition in [Nielson & 
Nielson 88]: "early bindings before late bindings". 

If a curried expression is always applied to all 
its arguments simultaneously, then it is advanta- 
geous to use an uncurried version. In the uncurried 
version, the binding time values of the parameters 
do not influence each other. Uncurrying thus pre- 
vents a possible loss of smile information. 

9. Conclusion and open problems 
We have presented an approach to treat a higher 
order subset of Scheme in autoprojection. We have 
implemented the ideas by extending the existing 
Similix autoprojector. To our knowledge, our 
system is the first fully automated and implemented 
autoprojector for a higher order language. We have 
presented a binding time analysis based on a clo- 
sure analysis. The domain of binding time values 
is finite and no structured binding time values are 
needed. 

We have shown examples of interpreters from 
which target programs and stand-alone compilers 
were generated. Because the language is higher 
order, we are able to treat continuation passing 
style interpreters and interpreters that use "thunks" 
to implement normal order reduction. 

Several problems remain open. In the line of 
compiler generation, the system should be applied 
to bigger, more realistic examples. It would also be 
interesting to experiment with interpreters for real 
lazy (i.e. call-by-need rather than call-by-name) 
languages; we have made some promising experi- 
ments in this direction. 

The autoprojector itself could also be improved. 
One problem is that the binding time analysis is 

monovariant, i.e. it only generates one binding 
time annotated version of each procedure. If a pro- 
cedure is called with different binding time pat- 
terns, then the least upper bound is taken. This 
implies a possible loss of static information at pro- 
gram specialization time. It is not clear how to ex- 
tend the closure analysis based binding time analy- 
sis to a polyvariant one. 

Acknowledgements 
This work has been carried out within the Similix 
project, a joint work of Olivier Danvy and the au- 
thor. I am most grateful to Olivier for his many 
comments and proposals. Many other people have 
contributed in various ways; thanks to Lars Ole 
Andersen, Hans Dybkj~er, Frank Frauendorf, 
Harald Ganzinger, Carsten K. Gomard, Nell D. 
Jones, Jesper Jcrgensen, Karoline Malmkj~er, Tor- 
ben Mogensen, Peter Sestoft, and Jtirg SiJggel. 

References 
[Aho, Sethi, & Ullman 86] Alfred V. Aho, Ravi Sethi, and 

Jeffrey D. Ullman" Compilers: Principles, Techniques 
and Tools, Addison-Wesley 1986. 

[Bj~rner, Ershov, & Jones 88] Dines Bj~rner, Andrei P. Er- 
shov, and Nell D. Jones (edS.): Partial Evaluation and 
Mixed Computation, G1. Avern~es, Denmark, October 
1987, North-Holland 1988. 

[Bondorf 89] Anders Bondorf: A self-applicable partial eval- 
uator for term rewriting systems, TAPSOFT'89, Pro- 
ceedings of the International Joint Conference on Theory 
and Practice of Software Development, J, Diaz and F. 
Orejas (eds.), Barcelona, Spain, Lecture Notes in Com- 
puter Science No 352 pp 81-96, Springer-Verlag 1989. 

[Bondorf 90] Ph.D. thesis (forthcoming). DIKU, University 
of Copenhagen, Denmark. 

[Bondorf & Danvy 90] Anders Bondorf and Olivier Danvy: 
Automatic autoprojection of recursive equations with 
global variables and abstract data types, Technical RelX~ 
No 90-4, DIKU, University of Copenhagen, Denmark. 

[Bondorf, Jones. Mogensen, & Sestoft 90] Anders Bondorf, 
Neil D. Jones, Torben ~ .  Mogensen, and Peter Sestoft: 
Binding time analysis and the taming of self.application, 
submitted for publication, DIKU. University of Copen- 
hagen. Denmark. 

[Bulyonkov 84] Mikhail A. Bulyonkov: Polyvariant mixed 
computation for analyzer programs, Acta Informatica 21 
pp 473-484, 1984, 

[Consel 88] Charles Consel: New insights into partial eval- 
uation: the SCIIlSM experiment, ESOP'88 (ed. Harald 
Ganzinger), Nancy, France, Lecture Notes in Computer 
Science No 300 pp 236-247, Springer-Verlag 1988. 

[Consei 89] Charles Consel: Analyse de programmes, Eval- 
uation partielte et G#n~ration de compilateurs, Ph.D. 
thesis, LITP, University of Paris 6, France 1989. 



87 

[Consel & Danvy 89] Charles Consel and Olivier Danvy~ 
Partial ewiluation of pattern matching in strings, Infor- 
mation Processing Letters 30, No 2 pp 79-86, 1989. 

[Dybvig 87] R. Kent Dybvig: The SCHEME Programming 
Language, Prentice-Hall, New Jersey 1987. 

[Ershov 77] Andrei P. Ershov: On the partial computation 
principle, Information Processing Letters 6, No 2 pp 38- 
41, April 1977. 

[Futamura 711[ Yoshihiko Futamura: Partial evaluation of 
computing process - -  an approach to a compiler-com- 
piler, Systems, Computers, Controls 2, 5, 45-50, 1971. 

[Gomard 89] (~arsten K. Gomard: Higher Order Partial Eval- 
uation --HOPE for the Lambda Calculus, Master's the- 
sis, DIKU student report 89-9-11, University of Copen- 
hagen, 1989. 

[Gomard 90] Carsten K. Gomard: Partial Type Inference for 
Untyped Functional Programs, submitted for publica- 
tion, DIKU, University of Copenhagen, 1989. 

[Gomard & Jones 89] Carsten K. Gomard and Neil D. 
Jones: Compiler generation by partial evaluation, Infor- 
mation Processing '89. Proceedings of the l l th  IFIP 
World Cotaputer Congress, G. X. Ritter (ed.), lrP 1139- 
1144, North-Holland, 1989. 

[Hudak & Young 88] Paul Hudak and Jonathan Young: A 
collecting interpretation of expressions (without power- 
domains), Proceedings of the Fifteenth Annual ACM 
SIGACT-SIGPLAN Symposium on Principles of Pro- 
gramming Languages pp 107-118, San Diego, Califor- 
nia, January 1988, 

[JonGomBonDanMog 90] Neil D. Jones, Carsten K. Go- 
mard, Anders Bondorf, Olivier Danvy, and Torben ~E. 
Mogensen: A self.applicable partial evaluator for the 
tambda calculus, IEEE Computer Society 1990 Interna- 
tional Conference on Computer Languages, 1990. 

[Jones, Sestoft, & Sendergaard 85] Neil D. Jones, Peter 
Sestoft, and Harald Sendergaard: An experiment in par- 
tial evaluation: the generation of a compiler generator, 
Rewriting Techniques and Applications (ed. L-P. Jouan- 
nand), Dijon, France, Lecture Notes in Computer 
Science No 202 pp 124-140, Springer-Verlag 1985. 

[Jones, "Sestoft, & S¢ndergaard 89] Neil D. Jones, Peter 
Sestoft, and Harald Sendergaard: MIX: a self-applicable 
partial evaluator for experiments in compiler generation, 
International Journal LISP and Symbolic Computation 
2, 1, pp 9-:50, 1989 

[Kohlbecker 86] Eugene E. Kohlbecker: Syntactic Exten- 
sions in the Programming Language Lisp, Ph.D. thesis, 
Indiana University, Bloomington 1986. 

[Mogensen 8811 Torben ~E. Mogensen: Partially static struc- 
tures in a self-applicable partial evaluator, pp 325-347 of 
[Bjomer, Ershov, & Jones 88]. 

[Mogensen 89a] Torben /E. Mogensen: Binding Time 
Aspects of Partial Evaluation, Ph.D. thesis, DIKU, 
University of Copenhagen, Denmark 1989. 

[Mogensen 89b] Torben hL Mogensem Binding time analy- 
sis for polymorphically typed higher order languages, 
TAPSOFT'89, Proceedings of the International Joint 
Conference. on Theory and Practice of Software Devel- 
opment, J. Diaz and F. Orejas (eds.), Barcelona, Spain, 
Lecture Notes in Computer Science No 352 pp 298-312, 
Springer-Verlag 1989. 

[Nielson & Nitelson 88] H_anne R. Nielson and Flemming 
Nielson: Automatic binding time analysis for a typed ~.- 
calculus, Proceedings of the Fifteenth Annual ACM SI- 
GACT-SIGPLAN Symposium on Principles of Pro- 

gramming Languages pp 98-106, San Diego, Calinfor- 
nia, January 1988. 

[Rees & Clinger 86] Jonathan Rees and William Clinger 
(eds.): Revised 3 Report on the Algorithmic Language 
Scheme, Sigplan Notices 21, 12, pp 37-79, December 
1986. 

[Romanenko 88] Sergei A. Romanenko: A compiler genera- 
tor produced by a seif-applicable speeialiser can have a 
surprisingly natural and understandable structure, pp 445- 
463 of [Bjerner, Ershov, & Jones 88]. 

[Schmidt 85] David A, Schmidt: Detecting global variables 
in denotational specifications, ACM Transactions on 
Programming Languages and Systems 7, No 2 pp 299- 
310, April 1985. 

[Schmidt 86] David A. Schmide Denotational Semantics, a 
Methodology for Language Development, Allyn and Ba- 
con, Boston 1986. 

[Sestoft 88a] Peter Sestoft: Automatic call unfolding in a 
partial evaluator, pp 485-506 of [Bjc~rner, Ershov, & 
Jones 88]. 

[Sestoft 88b] Peter Sestoft: Replacing Function Parameters 
by Global Variables, Master's thesis, DIKU student re- 
port 88-7-2, University of Copenhagen, 1988. 

[Sestoft 89] Peter Sestoft: Replacing function parameters by 
global variables, Proceedings of the Fourth International 
Conference on Functional Programming and Computer 
Architecture, London, UK, pp 39-53, ACM Press, 
September 1989. 

[Turchin 80] Valentin F. Turchin: Semantic definitions in 
Refal and the automatic production of compilers, Pro- 
ceedings of the Workshop on Semantics-Directed Com- 
piler Generation, Nell D. Jones (ed.), Arhus, Denmark, 
Lecture Notes in Computer Science No 94 pp 441-474, 
Springer-Verlag 1980. 

lTurchin 86] Valentin F. Turchin: The concept of a super- 
compiler, ACM Transactions on Programming Lan- 
guages and Systems 8,No 3 pp 292-325, July 1986. 


