
Automatic Autoprojection of Higher Order Recursive Equations

Anders Bondoff
DIKU, University of Copenhagen*

Universitetsparken 1, DK-2100 Copenhagen O, Denmark
e-mail: anders@diku.dk

A b s t r a c t

Autoprojection, or self-applicable partial evalua-
tion, has been implemented for first order functio-
naI languages for some years now. This paper
describes an approach to treat a higher order subset
of the Scheme language. The system has been im-
plemented as an extension to the existing autopro-
jector Similix [Bondoff & Danvy 90] that treats a
first order Scheme subset. To our knowledge, our
system is the first fully automatic and implemented
autoprojector for a higher order language.

Given a source program and some, but not all
of its inputs, partial evaluation produces a residual
program. When applied to the rest of the inputs,
the residual program yields the same result as the
source program would when applied to all inputs.
One important application of autoprojection is se-
mantics directed compiler generation: given a denc~
tational, interpretive specification of a program-
ming language, it is possible automatically to gene-
rate a stand-alone compiler by self-applying the
partial evaluator.

Efficient autoprojection is known to require
binding time analysing source programs to be par-
tially evaluated. Binding time analysis establishes
in advance which parts of the source program that
can be evaluated during partial evaluation and
which parts that cannot. We describe a new auto-
matic binding time analysis for higher order pro-

* This work was carried out while the author was staying at
the University of Dortmund, Lehrstuhl Informatik V,
Posffach 50 05 00, D-Zl600 Dortmund 50, Federal Republic
of Germany. The work was partly supported by the Danish
~ h Academy.

grams written in the Scheme subset. The analysis
requires no type information. It is based on a clo-
sure analysis [Sestoft 88b], which for any applica-
tion point finds the set of lambda abstractions that
can possibly be applied at that point. The binding
time analysis has the interesting property that no
structured binding time values are needed.

Since our language is higher order, interpreters
written in a higher order style can be partially eva-
luated. To exemplify this, we present and partially
evaluate three versions of an interpreter for a
lambda calculus language: one written in direct
style, one written in continuation passing style,
and one implementing normal order reduction. The
two latter are heavily based on higher order pro-
gramming.

K e y w o r d s

Partial evaluation, self-application, binding time
analysis, semantics directed compiler generation.

1. I n t r o d u c t i o n

Partial evaluation is a program transformation that
specializes programs: given a source program and
a part of its input (the static input), a partial evalua-
tor generates a residual program. When applied to
the remaining input (the dynamic input), the resid-
ual program yields the same result as the source
program would when applied to all of the input.
Autoprojection is a synonym for self-applicable
partial evaluation, that is, specialization of the par-
tial evaluator itself. It was established in the seven-
ties that autoprojection can be used for automatic
semantics directed compiler generation: specializ-

71

ing a partial evaluator with static input being (the
text of) an interpreter for some programming lan-
guage S yields a compiler for S [Futamura 71] [Er-
shov 77] [Turchin 80]. Specializing the partial
evaluator with static input being (the text of) the
partial evaluator itself even yields a compiler gen-
erator (antomatic compiler generator generation!).

The first successfully implemented autoprojec-
tor was Miix [Jones, Sestoft, & S0ndergaard 85].
The language treated by Mix was a subset of stati-
cally scoped first order pure Lisp, and Mix was
able to generate compilers out of interpreters writ-
ten in this language. The experiment showed that
autoprojecdon was possible in practice; an automa-
tic version of Mix was developed later [Jones, Ses-
tort, & S0ndergaard 89]. Since then, autoprojec-
tors for several languages have been implemented:
for a subset of Turchin's Refal language [Roma-
nenko 88], for an imperative flowchart language
[Gomard & Jones 89], for pattern matching based
programs in the form of restricted term rewriting
systems [Bondorf 89], and for first order functio-
nal langu~Lges with global variables [Bondorf &
Danvy 90].

1.1 Autoprojecting higher order lan-
guages

The first autoprojector for a higher order functional
language is (to our knowledge) Lambda-mix [Go-
mard 89] [JonGomBonDanMog 90]. Lambda-mix
treats the untyped call-by-value lambda calculus.
The system is surprisingly simple and easy to Un-
derstand; even the generated compilers are small
and readable (which is quite uncommon for com-
pilers generated by autoprojectors!). However, a
strong limitation in Lambda-mix is that static pa-
rameters of recursive functions must be induction
variables [Aho, Sethi, & Ullman 86]; non-induc-
tive variables are always dynamic. Lambda-mix
thus does not specialize (recursive) calls to equal
functions 'with equal patterns of static argument
values (known as polyvariant program specializa-
tion [Bulyonkov 84]). Specialization is a kind of
folding and thus gives sharing of functions in
residual programs. Since Lambda-mix does not
specialize calls, it does not perform well for some
applications. For instance, when using partial
evaluation to generate string pattern matchers

[Consel & Danvy 89], non-inductive recursive
static variables are used.

In this paper we describe an implemented auto-
matic autoprojector, Similix-2, that handles a
higher order subset of the Scheme language [Rees
& Clinger 86], essentially weakly (dynamically)
typed, statically scoped, call-by-value recursive
equations with lambda abstractions and applica-
tions. Similix-2 uses polyvariant program speciali-
zation and is, to our knowledge, the first fully au-
tomated and implemented autoprojector for a
higher order language (Lambda-mix requires hand-
written binding time annotations; an automatic
version has been developed later [Gomard 90]).

Similix-2 has been developed and implemented
by extending Similix [Bondorf & Danvy 90], an
existing autoprojector for a first order Scheme sub-
set. Similix-2 therefore has a number of features
that have been inherited from Similix: side-effect-
ing operations on global variables (such as i/o op-
erations) are treated in a semantically correct way;
primitives are user specified (as introduced in
[Consel 88]), i.e. there is no fixed set of primi-
tives; residual programs never duplicate computa-
tions (cf. call duplication [Sestoft 88a]); residual
programs do not terminate more often than source
programs; call unfolding is controlled automatically
(by a simple strategy based on detecting dynamic
conditionals). This paper does not cover these
aspects which all come from Similix; we refer to
[Bondorf & Danvy 90] (and to [Bondorf 90]).

Treating higher order languages opens new per-
spectives for using autoprojection for semantics di-
rected compiler generation: Similix-2 treats inter-
preters written in continuation passing style and in-
terpreters that implement (weak head) normal order
reduction (outside-in, call-by-name) by "thunks"
of the form (L O E). We exemplify this by spe-
cializing such interpreters. To our knowledge, this
is the first time autoprojection has been used to
generate compilers from interpreters of that kind.

1.2 Outline

The rest of the paper is organized as follows. Sec-
tion 2 gives some background and introduces the
main issues of this paper. In section 3, we present
an interpreter for a lambda calculus language "A".
The interpreter serves as an example of a higher

72

order program; when it is specialized, programs in
the A-language are in effect compiled. The sections
4 and 5 contain the technical part: we de-
velop/describe two pre-analyses needed for partial
evaluation of higher order programs; both analyses
are presented formally in a compositional denota-
tional semantics style. In section 6, we exemplify
partial evaluation of higher order programs: the A-
interpreter is specialized, and we also specialize
two other A-interpreters: one written in continua-
tion passing style and one implementing normal
order reduction. The performance of the system is
shown in section 7. Section 8 is a discussion, and
in section 9 we conclude and sketch some open
problems.

1.3 Prerequisites

Some knowledge about partial evaluation is re-
quired, e.g. as presented in [Jones, Sestoft, &
Sendergaard 85] or [Jones, Sestoft, & Sender-
gaard 89].

2. Background and Issues

2.1 Preprocessing

An essential component of an autoprojector is the
preprocessor. Preprocessing is performed before
program specialization; its purpose is to add anno-
tations (attributes) to the source program [Jones,
Sestoft, & Sendergaard 85]. The annotations guide
the program specializer (which actually produces
the residual program) in various ways: they tell
whether variables are bound to static or dynamic
values, whether operations such as + or ±f can be
reduced away during program specialization, and
whether certain expressions (function calls, let-
expressions) should be unfolded. Annotations
relieve the specializer from taking decisions
depending on the static input to the program being
specialized, and this gives major improvements,
especially when the spccializer is self-applied
[Bondorf, Jones, Mogensen, & Sestoft 90] (the
essential reason: the static input to the program
with respect to which the specializer is being spe-
cialized is not available). Without using annota-
tions, the generated compilers would become un-
necessarily general and hence large (in code size)

and slow. All autoprojectors we know of use pre-
processing and annotations.

The central preprocessing phase is binding time
analysis [Jones, Sestoft, Sendergaard 89]. Bind-
ing time analysis is an approximative analysis that
abstractly interprets the program over a binding
time domain, in the simplest case the two-point lat-
tice Static r- Dynamic. Static is to be interpreted as
"definitely static", i.e. it abstracts values that are
available (known) at program specialization time.
Dynamic means "possibly non-static" and abstracts
values that are possibly not available (unknown) at
program specialization time. Variables and opera-
tions are then classified according to their binding
times. As a simple example, the operation + in the
expression (+ x 1) is static (eliminable, compile
time) if x is classified Static, and it is dynamic
(residual, run time) if x is classified Dynamic.
Static operations are evaluated during program spe-
cialization whereas residual code is generated for
the dynamic ones. Static operations correspond to
the overlined ones of [Nielson & Nielson 88], dy-
namic operations to the underlined ones.

2.2 Binding time analysing higher order
programs

Nielson and Nielson have described an automatic
binding time analysis for a higher order functional
language [Nielson & Nielson 88]. Their analysis
treats the typed lambda calculus. Mogensen has
described an analysis for a polymorphically typed
higher order functional language where programs
are written in curded named combinator form [Mo-
gensen 89b]. In these two papers, no autoprojcctor
is developed; only binding time analysis is ad-
dressed. An automatic binding time analysis for
Lambda-mix has been developed recently [Gomard
90].

The difficult point in binding time analysing
higher order programs is to associate lambda ab-
stractions with applications. If a program e.g.
contains the application (x y), and if x during
(partial) evaluation may be bound to (the value of)
some abstraction, say 0. (z) ~+ z 3)), occur-
ring elsewhere in the program, then the binding
time value of y influences the one of z. If, for in-
stance, y is classified Dynamic, then z cannot be
Static. On the other hand, if x can never possibly
be bound to (tbe value of) (k (z) ¢+ z 3)),then

73

it is unnecessarily conservative to let y influence z.
The - - not very useful - - conservative extreme
would be to assume that any abstraction might be
applied at ,any application point.

For first order languages, the control flow is
easy to follow from the program syntax. But for
higher order programs, the control is difficult to
trace: how does one deduce from the program text
that y influences z? Nielson & Nielson use a type
inferencing scheme (using the type information in
the program); from the expression (x y), it would
identify that x had type Dynamic ---> ... (since y is
Dynamic),, and eventually this type would be uni-
fied (using least upper bounds) with the type of (X
(z) (+ z 3)) . I t s typeisZ-- -~ where Z is the
type of z. Unifying the types implies Z ___
Dynamic, i.e. z ' s binding time value is at least
Dynamic. Mogensen describes binding time values
for function types as a kind of abstract closures: an
abstract closure consists of the name of the combi-
nator and the binding time values of the free vari-
ables. A rather complex recursion detection ma-
chinery based on the type information is used to
avoid generating infinite abstract closures.

In this paper we present a different approach
based on a variant of Sestoft's closure analysis
[Sestoft 88b] [Sestoft 89]: a closure analysis is
first perfomaed, then the binding time analysis is
performed::

bt-annotations = bt-analyse(P, d-analyse(P))

For each application point in the program, the clo-
sure analysis collects the set of lambda abstractions
that for arty evaluation of the program possibly
may be applied at that point - - for instance that x
above may be bound to (the value of) (X (z) t+
z 3)). The analysis addresses any possible eval-
uation, not a particular one, so it must necessarily
be approximative: it can give a safe description
which, however, may be too conservative (cf. the
conservative extreme mentioned above).

Using the information computed by the closure
analysis, the binding time analysis immediately
knows which formal parameters to lambda ex-
pressions that may be affected by an application
(for instance that z depends on y). In this ap-
proach, binding time analysis is relatively simple to
express; in particular, no structured binding time
values (such as Dynamic -~ Dynamic) are needed.

Termination of the binding time analysis is easily
guaranteed: the binding time description is changed
monotonically, and the set of binding time values
is trivially finite since there are no structured val-
ues.

2.3 Programming language

Similix-2 processes higher order recursive equa-
tions. The language is an extension of the one
treated by Similix [Bondorf & Danvy 90]: lambda
abstractions and applications have been added to
the allowed expression forms. As for Similix, pro-
grams follow the syntax of Scheme and are thus
directly executable in a Scheme environment.

A source program is expressed by a set of user
defined procedures and a set of user defined opera-
tors. A Scheme procedure corresponds to a func-
tion in references such as [Jones, Sestoft, & SOn-
dergaard 89]. Procedures are treated intensionally,
whereas operators are treated extensionally. The
partial evaluator knows the internal code of proce-
dures. In contrast, an operator is a primitive opera-
tion: the partial evaluator never worries about the
internal operations performed by a primitive opera-
tor. It can only do two things with a primitive op-
eration: either evaluate the operation or suspend it
generating residual code.

Every expression is identified by a unique label.
The labels are (of course!) not pan of the concrete
syntax of a program, but they are important in the
abstract syntax. The BNF of the abstract syntax of
programs is given below. Except for the labels,
this abstract syntax is identical to the concrete one.

Abstract syntax of the Scheme subset treated by
Similix-2

Pr 6 Program, PD 6 Definition,

F E FileName,

L-E e LabeledExpressien,

L E Label, E E Expression,

C E Constant, V e Variable,

0 E OperatorName, P E ProcedureName

Pr : := (loadt F)* (load F)* PD +

PD ::= (define (P V*) L-E)

L-E ::= L E

E ::= C I V I (if L-E 1 L-E 2 L-E3)

74

] (let ((V L-E 1)) L-E2)

I (o ,-E*~ [{P ~-E*~
I (k (v*)L-El)l (L-E 0 L-E*)

Notation: program mxts and names of syntactic
dommns are written in this font. We write
instead of lambda in program texts.

The primitive operators are defined in external
files referred to by the load t expressions. Defini-
tions from other files can be reused using load.
An expression is a constant (boolean, number,
string, or quoted construction), a variable, a con-
ditional, a let-expression (unary for simplicity), a
primitive operation, a procedure call, a lambda ab-
straction, or an application; the latter two forms
make the language higher order. The order of eval-
uation is applicative (strict, call-by-value, inside-
out), and arguments are evaluated in an unspecified
order.

We note that let-expressions are not considered
syntactic sugar for applications of (higher order)
lambda abstractions: this would not be beneficial
since let-expressions are first order and thus sim-
pler to deal with. Procedure calls are treated in an-
other way than higher order applications; the two
forms are therefore distinguished syntactically.
Both procedure calls and higher order applications
are, in turn, distinguished from applications of
primitive operators. The distinctions are made
during parsing. To keep the language simple, there
is no l e t r e c (nor any rec); recursion is expressed
using named procedures.

Program input is assumed to be first order
(ground, i.e. constants). The reason is that higher
order values are treated intensionaUy in the partial
evaluation process; the internal representation of
functional values depends on the text of the pro-
gram being partially evaluated.

2.4 Syntactic extensions

A number of built-in syntactic extensions are
treated by Similix. We mention one which is used
in the examples later: eond. It is expanded into
nested i f expressions. The system also treats user
defined syntactic extensions following the syntax
of [Kohlbecker 86] (only a subset of Kohlbecker's
language is treated).

3. A sample interpreter

In this section we present a language A and an
interpreter for A written in Scheme. A is a statically
scoped lambda calculus language with unary ab-
stractions and applications, constants, binary
primitive operations, a conditional, and a recursive
"let". A program is an expression following this
(abstract) syntax:

Abstract syn~x of A

E £ Expr, C E Const,

V E Var, B E Binop

E ::= C I V I (B E 1 E2) I (if E 1 E 2 E3)

I (~ V E) I (letrec V E 1E2) [(E 1E 2)

A program takes one input value, which initially is
bound to all variables (for simplicity). For an ex-
ample, this program computes the factorial func-
tion:

Factorial program written in A

(letrec f
(l x (if (= x 0) 1 (* x (f (- x i)))))
(f input))

The (arbitrary) variable name input is used to re-
fer to the input value.

3.1 Denotationai semantics

The denotational semantics of the language is
specified below. We use the notation from
[Schmidt .86]; the condit ional is written
_ --> _ D_, and [v ~ w]r is shorthand for
~.vl.v=vl ~ w D r(v~).

Denotational semantics of A

Semantic domains:

w a Value, r ~ Environment = var ~ Value

Valuation functions:

75

run: Expr --'> Value - 9 Value

run~E]W = E~v.] 3,V.W

E: ~.xpr -9]Environment -9 Value

E~c]r = C~C]

E[v]r = r([v])
Eli (B E I E 2)]]r = B~B] (E~E1]]r) (E[[E2]}r)

E [I i f E I EZ r'3)]r=

E~EZ]r -9 Z[E2]r [] E[E3]r

E[(letrec V E 1 E 2)jr=

E~E2] fix(~.rl.[~V]~E~El]rl]r)
Eli (E l E z)]r = (E[E1]r) (E~E2]r)

C Const -~ Value unspecified

B: Binop --+ Value -9 Value -9 Value unspecified

No type checking is performed; this would require
injection tags on values and has been omitted for
simplicity.

3.2 Interpreter text

Because Scheme uses strict evaluation, it is
straightforward to convert the denotational seman-
tics into a Scheme program - - an i n t e rp re t e r - if
all functions are considered strict in all arguments.
This of coarse defmes a strict semantics of the in-
terpreted language. In section 6.3, we show an in-
terpreter that defines a non-strict semantics.

To translate the semantics into Scheme, we first
uncurry the functions ran, E, and B; this is simple
since the ftmctions already are used in an uncurried
way. Uncurrying is advantageous from a readabil-
i typoint of view ((f x y) contra ((f x) y)),
and it also sometimes gives better specialization
(more about this in section 8.2).

We now give the interpreter text. c is just the
identity function and has been omitted.

Direct swle A-interpreter written in Scherr~

(loadt "scheme. adt")
(loadt "lam-int. adt")
(load "lara-aux. sire")

(define (run E w)
(_E m (k (V) w))) ;0

(define (E E r)
(cond
((isCst? E)
(cst-C E))

((isVar? E)
(r (var-V E))) ;p

((isBinop? E)
(ext (binop-B E)

(_E (binop-El E) r)
(E (binop-E2 E) r)))

((isIf? E)
(if (E (if-E1 E) r)

(E (if-E2 E) r)
(E (if-E3 E) r)))

((isLa--mbda? E)
(k (w) ;2

(E (lambda-E E)
(upd (lambda-V E) w r)))) ;l,q

((isLetrec? E)
(E (letrec-E2 E)

(fix (lambda (rl) ;4
(upd (letrec-V E) ;3, r

(_E (letrec-El E) rl)
r)))))

((isApply? E)
((E (apply-E1 E) r) ;s
(__E (apply-E2 E) r)))

(else
(error ' E "unknown form: ~s" E))))

(define (fix f)
(~ (x) ((f (fix f)) x))) ;5,t,u

The comments (0-5 and p-u) are used for refer-
ence later (section 4.5).

Syntax accessors (such as l e g r e c - g l) , syntax
predicates (such as isLambda?), and ex t have
been def'med as primitive operations in the file
" l am- in t . mat". The standard Scheme primitives
equal? and error are defined in "scheme. adt".
The file "lain-aux. sim" defines environment up-

dating as a syntactic extension:

Environment updating

(extend-syntax (upd)
((upd V w r)
(k (Vl)

(if (equal? V Vl)
w
(r Vl)))))

3.3 Analysing the interpreter

Partially evaluating the interpreter with static pro-
gram input (run's g parameter) and dynamic data
input (run 's w parameter) in effect compiles A-

76

programs into Scheme (since Similix generates
residual code in Scheme).

What can be expected from binding time
analysing the interpreter? A is statically scoped, so
e.g. environment operations should be classified
eliminable: they can be performed at partial evalua-
tion time (compile time). For instance, the analysis
should detect that r is statically available in the ex-
pression (r (var -v El), and hence the applica-
tion of the environment should be classified elim-
inane.

On the other hand, the expression a = ((_g
(apply-E1 E) r) (_E (apply-E2 E) r))

clearly is a run time application, so we would ex-
pect it to be classified residual. That is, if the inter-
preted program contains an expression E satisfying
(±sApply? E), then we expect (a resid-
ual/compiled version of) a to occur in the special-
ized interpreter, i.e. in the target program.

4 . C l o s u r e a n a l y s i s

In this section, we give a formal presentation of the
closure analysis. The purpose of the analysis is for
any application point to collect the set of possible
(values of) lambda abstractions that may be applied
at that point.

The analysis originates from one developed by
Sestoft (for the purpose of globalizing variables in
higher order programs) for untyped higher order
programs in curried named combinator form [Ses-
tort 88b] [Sestoft 89]. Our analysis is basically an
extended version of Sestoft's, adapted to our con-
crete language. The extension is that we handle
multi-applications, that is, our lambda abstractions
are n-ary, not just unary (Sestoft also mentions this
possible extension).

We describe the analysis in a different and more
implementation suitable way than Sestoft's. Our
approach is based on the idea of continuously up-
dating global mappings: traversing a program ex-
pression does not result in a "value", but in up-
dated global mappings. Using this method, the
program text need only be traversed once for each
fixed point iteration. This gives a relatively simple
description (only one function traversing syntax),
and it also naturally leads to an efficient implemen-
tation. A global mapping corresponds to what is
called a cache in [I-Iudak & Young 88]: it associ-

ates every expression in the program with a value
(this explains the need for expression labels in the
abstract syntax).

4 . 1 Semant ic domains and funct ions

We define some semantic domains and various
utility functions used by the closure analysis. First,
we need some (injective) functions for converting
from syntactic to semantic domains:

L: Label --9 Label

%q Variable --) Variable

P: ProcedureName --)Label

v associates a p r~xinre name with the label of the
procedure body. The semantic domains are defined
like this:

Index = { 1, 2 }

k e Label = unspecified

v e Variable = Label x Index

Formal parameters to a procedure p are identified
as (k, 1), (k, 2), etc., where k = v [p] . Formal
parameters to a lambda expression with body ex-
pression with label T. are identified similarly (k =
~[L]). Note that these identifications are unique.
The formal parameter v of a let-expression is as-
sociated with some arbitrary unique value v.

A closure abstracts the value of a lambda ex-
pression and is identified by the label of the body
of the (lambda) expression. The closure analysis
computes two mappings, gcl and PeP the first one
binding labels and the second one binding vari-
ables. For every expression, gel thus collects the
set of closures that the expression may possibly
evaluate to (during any possible program execu-
tion); for every variable, Pcl collects the set of clo-
sures that the variable may possibly be bound to.
The codomain of both mappings is the powerset of
closures (with the usual subset inclusion ordering):

Closure = Label

c ~ ClSet = ~(Closure)

ktcl e ClMap = Label --~ C1Set

Pcl ~ ClEnv = Variable --> C1Set

Maps and environments are updated by corre-
sponding monotonic update functions. Map updat-
ing is performed by the function upd (which

77

should not be confused with the upd in the A-
interpreter):

upd: Label -9 C1Set -9 CIMap -9 C1Map

upd k c gel '= ~tcl u [k~c]±ClMa p

Environment updating has functionality

Variable -9 C1Set -9 ClEnv -9 ClEnv

and is defmed in a similar way. For readability, we
uniformly refer to 'all updating functions simply as
upd; the functionality is clear from the context. The
least upper bounds on functions and cartesian
products are defined pointwise:

~/Cl tJ ~cl = i lk . IXcl(k) u gcl(k)

(gel, Pcl) U (~tcl, Pcl) = (gcl U gcl, Pcl U Pcl)

Finally, we need a function for checking the arity
of a closure:

arity: Closure -9 {0, 1, 2 }

4.2 The analysis

We now give the closure analysis rules. Given a
set of procedure definitions, the function C1 com-
putes the two mappings gel and Pcl- The mappings
are computed as simultaneous fixed points. Ini-
tially, all labels and all variables are mapped onto
the empty closure set (since the input to a program
is first order and thus contains no closures).

Explicit quantification of indices is avoided
when clear from the context; primitive operators
and procedures may be nullary in which case the
index i ranges over the empty set. A case expres-
sion is used for syntax dispatching.

Closure analvsis

Ch Definition + -9 C]]Vlap x C~nv

CI~ (define (...) LIE1) ... (define (...) LnEn)~ =~IX(~(~CI , pcl). I liC1[LiEi]~clP¢1)

ch Labeled~:xpression -9 C~8p -9 C]]qnv -9 C~ap x C~nv

cln'~. E]) Ic lpc I =

let k = L[L] in

case [~.1[o f

[C]: (updk {} ~tcl , Pcl)

I[v]]: (upd k Pcl(V~V]) licl, Pcl)

(i f L1E 1 r.2E 2 LaE 3)]: let (gcl ' Pcl) = I l icl[Liei]gclPcl in

(upd k (~tcl(~[%D u g~l(~.[%D) ~c~, Pc,)
[(let ((V LIE1)) L2E2)]: let (~tcl, Pcl) =[-Jicl~LiEi]]gclPcl in

(upd k ~tcI(L[L2]) gel, upd v [v] $1cI(L[L1]) Pcl)

[(O LlV. 1 ... Lnr. n)]: let (~tcl, Pcl) =(gcl , Pcl) U I licl[LiEi]~tclPc 1 in

(upd k (u ~ q (q h])) ~th, P'¢l)

(v L1E 1 ... LnE n)]: let (~tcl, Pcl) = (~tcl, Pcl) U I licl~LiEi]~tclPc 1 in

(upd k ~tcl(P[V]) g~l, Pcl u I l i(upd (PIP], i) ~tcl(L~Li]) Pcl))

(~ (V 1 ... V n) L1E 1)]: let (gcl, Pcl)=cl[L1E1]gclPcl in

(upd k {LILt] } Ilcl, Pcl)

[(r.0E o L1E:t ... LnV. ~)]: let (gcl, Pcl) = I licl[LiEi]~tclPcl in

let c = {k']k 'e ~tcl(L[L0]) A arity(k')=n} in

(upd k (I Ik,ecgcl(k')) gel, Pcl U I li_>l,k, e c(upd (k', i) ~tcl(L[Li]) Pcl))
end

78

The rules for constants, variables, conditionals,
and let-expressions are straightforward. For primi-
tive operations, note that a closure occurring in an
argument may possibly be returned, but no new
closures may be introduced. For procedure calls, a
closure returned by the procedure body may be
returned; care must taken to account for the influ-
ence on the formal parameters of the procedure.
Both for primitive operations and for procedure
calls, it is taken into account that n may be 0
(therefore the term "(gcl, Pcl) u"). A lambda ab-
straction is the "source" of closures; note that (as
mentioned earlier) the closure is identified by the
label of the body.

The rule for applications is the most complex
one. First, the set c of lambda abstractions that E o
may evaluate to is found. Then ~tcl is updated: the
application (E) may evaluate to a closure being the
result of evaluating the body of any of the lambda
abstractions in the set c. Lambda abstractions are
identified by the body labels, so I.tcl is simply
applied to the elements (k') in c. Finally, Pcl is
updated: ~. influences the formal parameters of all
lambda abstractions, which E 0 may evaluate to.
The i ' th parameter is influenced by E i.

4.3 Finiteness

For any given program, there is a finite number of
closure sets. The mappings ~tcl and Pd are updated
monotonically, so they can only be updated a finite
number of times. Fixed point iteration will there-
fore stabilize.after a finite number of iterations. An
implementation of the analysis is thus guaranteed
to temainate.

4.4 Implementation issues

In the description, the subexpressions of a com-
pound expression are processed in a parallel way.
This simplifies the description, but sequential pro-
cessing is better from an implementation point of
view. Sequential processing means that there is
always only one active copy of IXcl as well as of
Pcl; the mappings are single-threaded [Schmidt 85]
and can therefore be implemented as global vari-
ables which are updated destructively.

In practice, the mappings are not kept as sepa-
rate variables, but the information is kept as at-
tributes (annotations) in the abstract syntax. This

means that expression labels are not actually
needed.

4.5 Application to the sample interpreter

We end the description of the closure analysis by
showing what it gives when applied to the sample
interpreter.

The lambda abstractions are referred to by a
number (0 to s), the application points by a letter
(p to u) ; see the comments in the interpreter text.
Each use of upd is macro expanded into an ex-
pression containing a lambda abstraction ((k (vl)
...)) and an application ((r v l)) . t identifies the
application of f to (f ix f) , u the application of (f
(f i x f)) to x. The closure analysis gives the fol-
lowing possible abstractions at the application
points:

p, q, r: O, i, 5 S:2 t: 4 u: 3

We see that at environment application points, p,
q, and r, the environment closures o, x, and 5 (but
not closure 3!) are the (only) possibilities. Closure
2, which implements lambda abstraction in the in-
terpreted language, is the only one which may be
applied at application point a; s implements appli-
cation in the interpreted language. The only closure
that the functional f may be bound to at point t is
closure 4 that maps environments to environments.
Finally, an "unrolled" recursive environment at
point u can only be closure 3.

5 . Binding time a n a l y s i s

This section describes the binding time analysis
that assigns a binding time value to all variables
and all expressions (labels). The binding time uses
the information collected in closure analysis.

5.1 The binding time domain

The binding time domain is a four value lattice:

b ¢ BtValue = ({±, S, CL, D}, E)

The partial ordering is given by

D
/ \

S CL
\ /

1

70

S approximates ordinary first order static values
(constants), CL approximates closure values, and
D approximates dynamic values (residual code ex-
pressions). The value ± is needed because S and
CL are incomparable. S corresponds to Static in a
standard binding time analysis for first order pro-
grams, D to Dynamic.

At progmrn specialization time, a closure is gen-
erated for CL annotated lambda expressions: a clo-
sure contaJ[ns an identification of the lambda ex-
pression and values for its free variables. Closures
are always eventually (beta) reduced away during
program specialization, and CL is thus used for
eliminabte lambda expressions. For D annotated
lambda expressions, a residual lambda expression
(residual code) is generated. The lambda expres-
sion is thus suspended: no beta reduction is per-
formed. The body of the residual lambda expres-
sion is a residual version of the body of the source
lambda expression.

Let us consider an example:

((if (p x) (X (y) y) (X (z) (cdr zII) l)

If the result of the test is static, i.e. the binding
time value of (the label of) the expression (p x) is
S, then the: conditional expression always reduces
to one of its branches. Consequently, beta reduc-
tion can always be performed during program spe-
cialization: it is safe to classify the two lambda ex-
pressions etiminable (CL). If, however, the test is
dynamic, 'then residual code is generated for the
conditionad expression and beta reduction is not
possible. The two lambda expressions are there-
fore annotated residual (D). We note that we do not
consider more "exotic" (post-)reductions on resid-
ual code; for this particular example, the reduction
((if E 0 E 1 E 2) E 31 ~ (if E 0 (E 1 E3) (E 2

E 3)) would in fact enable beta reduction in case of
a dynamic test.

5.2 Annotating lambda expressions

It is clearly desirable to classify eliminable as many
lambda expressions as possible: this gives a more
reduced residual program. On the other hand, a
closure value must never be used in a context that
makes it part of a residual code piece: residual code
consists of expressions, not values internal to the
program specializer. Therefore, if (the value of) a
lambda expression may be used in such a context,

it must be annotated residual. Otherwise it can
safely be classified eliminable. (We note that one
could imagine a program specializer that always
generates a closure when processing a lambda ex-
pression (as proposed in [Mogensen 89a]). The
specializer should then convert the closure into an
expression if used in a residual code context. The
method requires tagging and (re-)traversing resi-
dual values to find the closures. This is undesir-
able, especially for self-application.)

The value of a lambda expression E~ may occur
as part of a residual code piece in the following
cases: (1) Some expression E has binding time
value D (i.e. the result of specializing v. is expected
to be a residual code piece) and E may i t se l f - - ac-
cording to the closure analysis - - evaluate to (the
value of) E~. (2) Some non-procedure call com-
pound expression is suspended (a residual version
of the expression is generated) and has an argu-
ment expression that may evaluate to (the value of)
E;v (3) The body of the program's goal procedure
(fixed for any particular program specialization)
may evaluate to (the value of) r%. In these three
cases, E~. must be classified residual.

Case (1) implies that whenever an expression
gets binding time value D, then all lambda expres-
sions that r. may evaluate to should be raised to be
classified residual. Case (3) is needed because
residual code is always generated for the body of
the goal procedure, regardless of its binding time
value. The point in case (2) is that suspending an
operation requires generating residual versions of
the argument expressions. Procedure calls are an
exception: in the residual version of a susPended
procedure call, the procedure name has been spe-
cialized with respect to the static arguments (this is
the point in polyvariant program specialization).
Closures are partially static structures [Mogensen
88] containing static and dynamic subparts; the dy-
namic parts become arguments to the residual pro-
cedure call. For the other compound expressions,
some simplification is possible, A case analysis
shows that case (1) covers case (2) for condition-
als, let-expressions, and primitive operations.
Conditionals are suspended in case of a dynamic
test and let-expressions are possibly suspended in
case of a dynamic actual parameter expression. The
point now is that if any other argument expression,
which because of the suspension gets "caught" in a

80

residual code context (conditionals: the "then" and
"else" branches; let-expressions: the body; primi-
tive operations: any argument expression), may
return a closure, then the closure analysis rules
imply that the whole expression may return the
same closure. Hence, the closure is "captured" by
case (1) since the whole compound expression has
binding time value D.

Binding time values for formal parameters of
eliminable lambda expressions depend on the
binding time values of the argument expressions at
any relevant application point. The relevant appli-
cation points are those where the lambda expres-
sion may possibly be applied (computed by the
closure analysis). In the example from section 5.1,
there is only one such point, and y and z get the
same binding time value as 1. In general, least up-
per bounding over all relevant application points is
needed. Lambda expressions annotated residual are
not beta reduced, and so the formal parameters all
become dynamic.

One might think of introducing a binding time
value S-or-CL lying above S and CL, but below
D. This makes sense since Scheme is dynamically
typed. Introducing S-or-CL gives additional preci-
sion in the description, but the program speciaiizer
is burdened in two ways: first, any value of the S-
or-CLtype needs to be tagged as either an S-value
or a CL-value; second, the program speciaiizer
needs to type check such values. This is avoided
by letting S u CL = D.

5.3 Domains and functions

The binding time value of an expression (o L-~ 1
._ n-E n) is typically IAi(the binding time value of
L-V i) u S. Treating primitive operations working
on higher order structures (such as Scheme's pro-
cedure?) introduces complications since the pro-
gram specializer represents closures in its own
way; this problem is inherent to the very idea of
treating higher order operations intensionaUy. By
least upper bounding the arguments with S, any
primitive operation on a closure becomes dynamic
whereby the problem is avoided (since no reduc-
tion takes place at partial evaluation time).

It is possible for the user to define a more con-
servative binding time function for primitive op-
erations than the one above. This is for instance

useful for generalizing [Turchin 86], i.e. forcing a
static value to become dynamic (sometimes needed
for ensuring termination of program specializa-
tion). The binding time value of a primitive appli-
cation is therefore defined via a function o:

O: OperatorName -~ BtValue* --~ BtValue

In practice, a binding time function is user defined
for each prin~tive [Bondoff & Danvy 90].

The binding time analysis computes two map-
pings:

gbt E BtMap = Label --~ BtValue

Pbt e BtEnv = Variable ~ BtValue

These are dual to the closure mappings gcl and PeP
and they are updated in a similar way.

The closure analysis identifies a closure by the
label of the body of the lambda expression. The
binding time value of a lambda abstraction will be
assigned to the label of the lambda expression itself
(the body has its own binding time value), so we
introduce the function k2k:

k2k: Label --~ Label

Given the label of the body of a lambda expres-
sion, k2k returns the label of the lambda expres-
sion itself.

Given the label of art expression, the following
function raises the annotations of the set of lambda
expressions, which that expression may return:

raise: Label--> BtMap---> BtEnv---> BtMap x BtEnv

raise k gbt Pbt =

I Ik,~gel(k)(Upd k2k(k') D gbt,

[lie {l . . .ar i ty(k3}(Upd (k', i) D Pbt))

lJ (I.tbt, Pbt)

Note that the formal parameters of the lambda ex-
pressions are also raised (Pbt is updated).

5.4 The analysis

We now give the binding time analysis rules.
Given a set of procedure definitions, a label identi-
fying the body of the goal procedure, and an initial
binding time description ,.,input the program is I"bt ,
binding time analysed by propagating binding time
values through the program.

81

Bindin~ time analvsis

Bt: Definition + -9 Label -9 B~nv -9 B~dap x B~nv
lt- _input _ Bt~(define (._) LIE I) ... (define (.,.) LnEn)z,~gos/Pbt --

fix(~'(llbt , I)bt) t init ini%. ¢. init pinit) = raise3 1. • _input • ~ktbt , Pbt) ~ Llibt~LiV'i]ixbtPbt) where ~bt • bt ~'goal±BtMap Pbt

bt: LabeledF.xpresslon -9 BtMap -9 B~nv -9 B~4ap x Bfl~nv

bt[v. ~.]]l.tbtPbt =
let k = L[I'~] in I~°bt(k) = D ---)raise 1 k p.°bt P°bt D (~°b t, P°b t)

where (ix°bt, P°bt) =
case ~ E] o f

[c] : (upd k S ~tbt, Pbt)

~v]: (upd k Pbt(V[V]) ~tbt, Pbt)

(i f LIE 1 LZE 2 r.Sv. 3)]: let ([t~t, Pbt) = I libt~Limi]VtbtPbt in let b i = Ix~t(Z~Li]) in

(upd k (bx=D ~ D D b 2 u bs) ~t~t, Pbt)

(l e t ((v LIE 1)) L2E 2)]: let (ixbt, P~) = Uibt~LiEi]ixbtPbt in let b i = IX~t(L[Li]) in

(upd k (bx=O -9 O D b 2) ~t~t, upd ~ v] b x Pbt)

(O L1E 1 .- LnE n)] : let (t.t~t, Pbt) = (ixbt, Pbt) U I.Jibt~Limi]kLbtPbt in let b i = ~L~t(L[Li]) in

(upd k (o[o]][b 1 bn]) I'tbt' PbO

1[(P ~r.lE 1 ... T'nE n)]]: let (I.tl)t, Pl)t) = (Pbt, Pbt)LI LJibt~'r'igi]PbtPbt in let b i = I.t~t(L[Li'[]) in

(updk (some bi=D - g D [I I.t~t(p[p]])) P'bt, Pbt t-I I li(upd (P~'P]], ±) bi Pbt))

l[(X (v a ... v n) r.x~. 1)]: let (ixbt, Pbt)= bt~'L1F'l]]~tbtPbt in

" ' raise 2 L~Lx]] IX = ~tbt(k) = D --> bt Pbt D (l'tbt , Pbt) where I.tbt updk CL IX'bt

I[(r.0z~ 0 LxE 1 ... LnV. n)]: let (IXbt, Pbt) = [-Jibtl[LiEi]ktbtPbt in let b i = IX~t(r.l[Li]) in

let c = {k' [k 'e ktcl(r.~L0]) ^ adty(k')=n} in

Id.']~t(L[L0]) = D ~ (IX'bt' P'[~t) U Ui_>l(raise2 z~r.±]] IX'bt P'bt) ~ (kt'bt, P'bt)
where kt'~t = upd k (some bi=D --> D D I lk,eckt~t(k')) [It~ t

P'bt = Pbt LI LJi>-t,k'~c(UP d (k', ±) ~{)t(z,[I~±]) Pbt)
end

The applications of the function raise have been su-
perscripted; the numbers refer to the cases (1)-(3)
that cause lambda annotations to be raised (section
5.2).

5 . 5 Fin i t eness

There is a finite number of binding time values.
Since the mappings gbt and Pbt are only updated
monotonically, they can only be updated a finite
number of times. Fixed point iteration will there-
fore stabili~ after a finite number of iterations.

5 . 6 Appl i ca t ion to the s a m p l e interpreter

When applied to the sample interpreter with static
program input and dynamic data input, the binding
time analysis correctly annotates the lambda ab-
stractions for environment processing, 0, 1, 3, 4,
and 5, as eliminable. Dually, the applications p, q,
r, t , and u, become eliminable: the expression to
be applied in all cases gets binding time value CL.
The lambda expression 2 and the application s be-
come residual.

82

The formal parameters to the lambda expres-
sions o, l , 3, and 5 are all static (S). The parame-
ter of abstraction 4 is a closure (CL), but this is
only what one could expect: the parameter is an en-
vironment. Finally, the parameter of abstraction 2
is dynamic (D).

6 . Resul ts

In this section we use Similix-2 to specialize the di-
rect style A-interpreter and two other A-inter-
preters: one written in continuation passing style
and one implementing normal order reduction.

6.1 Direct style

Specializing the sample interpreter with respect to
the factorial A-program yields the following
Scheme target program:

Machine m'oduced factorial target Drom'am.
generated from direct style A~intemreter

(loadt "scheme. adt")
(loadt "lam-int. adt")

(define (run-0 w) ((_E-I w) w))

(define (__E-I r)
(I (w)

(if (ext '= w 0)
1
(ext ' *

w
((_E-I r) (ext '- w i))))))

For readability, we have "cheated" by renaming
some of the machine generated names (but this is a
trivial conversion).

run-0 is the name of the goal procedure in the
target program, i.e. run-0 computes the factorial
function. We observe that the interpretation level
has almost been completely removed: the inter-
preter's syntax analysis and environment opera-
tions have been performed. Only run time opera-
tions are left, with a small overhead due to the ext
encodings. When computing factorial of 10, it is
around 14 times faster to run the target program
than to interpret the source program (see the next
section on performance).

Recursion is expressed by the procedure _E-x.
The redundant variable r corresponds to the input

variable in the factorial A-program: k is not actually
referred to inside the recursive body of the
l e t r e c , but it is accessible, and this is reflected in
the target program.

The target program can be generated either by
directly specializing the A-interpreter with respect
to the factorial program or by first generating a
stand-alone compiler (using self-application) and
then applying it to the factorial program.

6.2 Continuation passing style

The interpreter below can be derived from a con-
tinuation semantics for A. Continuations are strict
and map values into values:

Continuation nassing stvle A-intemreter

(loadt "scheme. adt")
(loadt "lam-int, adt")
(load "lam-aux. sim")

(extend-syntax (eta-convert)
((eta-convert c) (lambda (w) (c w))))

(extend-syntax (c-id)
((c-id) (~ (w) w)))

(define (run E w)
(_E E (l (V) w) (c-id)))

(define (_E E r c)
(cond
((isCst? E)
(c (cst-C E)))

((isVar? E)
(c (r (var-V E))))

((isBinop? E)
(__E (binop-El E)

r
(~ (wl)

(_E (binop-E2 E)
r
(~ (w2)

(C (ext (binop-B E)
wl
w2)))))))

((isIf? E)
(_E (if-E1 E)

r
(~ (wl)

(if wl
(_E (if-E2 E) r c)
(_E (if-E3 E) r c)))))

((isLambda? E)
(c (~ (wl el)

(E (lambda-E E)
(upd (lambda-V E) wl r)
(eta-convert cl)))))

((iaLetrec? E)
(__E (ietrec-E2 E)

(fix (~ (rl)
(upd (letrec-V E)

83

(__E (letrec-El E)
rl
(c-id))

r)))
c))

((isApply? P:)
(__E (apply-E1 E)

r
(I (wl)

(_E (apply-E2 E)

(~ (w2)
(wl
w2
(eta-convert c)))))))

(else
(error ' E "unknown form: ~s" E))))

(define (fix f) (~ (x) ((f (fix f)) x)))

Binding time analysis (with static program and dy-
namic data input) classifies the environments
eliminable (CL). The lambda expression (~. (wz
ol) ...) is classified residual (just as the corre-
sponding lambda expression in the direct style in-
terpreter was), and therefore the formal parameter
continuation o l also becomes residual (D). The
eta-conversions are then inserted to achieve that the
binding time analysis classifies _z 's continuation
parameter o eliminable rather than residual. This
implies that the program specializer will beta re-
duce continuation applications at partial evaluation
time, thus giving better, more reduced target pro-
grams.

The following target program is generated when
specializing the interpreter with respect to the fac-
torial program:

Machine produced factorial target Dram'am.
generated from continuation stvle A-intemreter

(loadt "scheme. adt")
(loadt "lam-int. adt")

(define (run-0 w)
((__E-I w) w (l (w) w)))

(define (E-I r)
(i (wl cl)

(if (ext '= wl 0)
(cl i)
((_E-I r)
(ext '- wl I)
(i (w) (cl (ext '* wl w)))))))

The target: program is written in continuation
passing style since the interpreter was.

6 . 3 Normal order reduction

The third interpreter is a variant of the direct style
one, but it implements normal order reduction se-
mantics. Normal order reduction is achieved by
suspending the evaluation of arguments to applica-
tions. Instead of keeping values in environments,
we thus now keep thunks of the form (I () ...).

Normal order reduction A-interoreter

(loadt "scheme. adt")
(ioadt "lam-int. adt")
(load "lam-aux. sim")

(extend-syntax (my-delay)
((my-delay w) (lambda () w)))

(extend-syntax (my-force)
((my-force w-delayed) (w-delayed)))

(define (run E w)
(E E (lambda (V) (my-delay w))))

(define (_E E r)
(cond
((isCst? E)
(cst-C E))

((isVar? E)
(my-force (r (var-V E))))

((isBinop? E)
(ext (binop-B E)

(_E (binop-El E) r)
(_E (binop-E2 E) r)))

((isIf? E)
(if (_E (if-E1 E) r)

(__E (if-E2 E) r)
(E (if-E3 E) r)))

((isLambda? E)
(lambda (w)

(_E (lambda-E E)
(upd (lambda-V E) w r))))

((isLetrec? E)
(_E (letrec-E2 E)

(fix (lambda (rl)
(upd (letrec-V E)

(my-delay
(E (letrec-El E) rl))

r))T))
((isApply? E)
((__E (apply-E1 E) r)
(my-delay (_E (apply-E2 E) r))))

(else
(error ' E "unknown form: ~s" E))))

(define (fix f) (I (x) ((f (fix f)) x)))

Note that primitive operations are still call-by-
value; only applications of lambda abstractions are
call-by-name.

84

The following program produces a list of the
first n even numbers. The function evens-from
produces an infinite list of even numbers starting
from a given number. Since l a z y - c o n s is a
lambda expression, the evaluation of its arguments
is suspended and therefore calls to evens-from do
not loop. Using a call-by-value interpreter, any call
to evens-from would loop.

t~v~o n~mber progam written in normal order A

((~ lazy-cons
((~ lazy-car

((l lazy-odr

(let rec first-n
(k n (k 1

(if (= n O)
,()

(cons
(lazy-car i)
((first-n (- n i))
(lazy-cdr i))))))

(letrec evens-from
(~ n

((lazy-cons n)
(evens-from (+ n 2))))

((first-n input) ;main
(evens-from O)))))

(l x (x (l a (~ dd))))))
(~ x (x (~ a (~ d a))))))

(k x (k y (k z ((z x) y)))))

The A-language has no let-expressions and only
unary lambda expressions, so the program looks
somewhat clumsy.

Specializing the normal order interpreter with
respect to the even number program yields a target
program in which syntax analysis and environment
operations have all been performed. The program
contains lots of thunks and is rather hard to read
(we do not include it here). It is, however, quite
efficient: running the target program is around 25
times faster than interprtting.

This example nicely shows the effect of partial
evaluation: Scheme is call-by-value, so to achieve
caJl-by-name evaluation, one would need to insert
thanks everywhere by hand. This is complex, so
instead one can write an interpreter for a call-by-
name language. However, running the interpreter
gives a siginificant interpretation overhead. But
using partial evaluation, programs in the call-by-

name language are compiled into efficient Scheme
code (which is eventually itself compiled).

7. Performance

This section contains some benchmarks for Sim-
ilix-2. The tables below show the speedups
achieved by partial evaluation. Each table has four
columns. The first one describes the result com-
puted by the job in the second column. The third
column shows the run time, the fourth column the
speedup.

For simplicity, we identify programs with the
functions they compute. Following the tradition,
the program specializer is referred to as mix, the
compiler generator as cogen. Binding time anno-
tated (preprocessed) programs have the superscript
"ann". The run time figures are in CPU seconds
with one or two decimals; they exclude time for
garbage collection (typically 0 to 40% additional
time), but include postprocessing. The speedup ra-
tios have been computed using more decimals than
the ones given here; in some cases, the time has
been computed by performing I0 successive runs
and then dividing. The system is implemented in
Chez Scheme [Dybvig 87] version 2.0.3, and the
figures are for a Sun 3/160.

For the direct and continuation style examples,
the source A-program is the factorial program; the
figures are for 100 computations of factorial of 10.
For the normal order example, the even number
program is used; the figures are for 10 computa-
tions of "evens" of 20.

output
result

target

comp

run ~'~/s speedup
int(source, data) 5-7 14.3
target(data) 0-40
mix(int ann, source) 0-53 7-8
comp(source) 0.07
mix(mix ann , int ann) 11.5 2.9
cogen(int ann) 4.0

Direct style A-intemmter

85

output
result

target

comp

run time/s speedup

hit(source, data) 6.1 17.1
target(data) 0.36

mix(int ann, source) 1.2 7.8

comp(source) 0.15
mix(mix ann, int ann) 49.8 2.3
cogen(int ann) 21.9

Continuation oassinu stvle A-interoreter

output
resuk

target

comp

run fime/s speedup

int(source, data) 35.0 25-7
target(data) 1-4

mix(int ann, source) 6.0 5.4
comp(source) 1.1
mix(mix ann, int ann) 16.3 3.2

cogen(int ann) 5.1

Normal order reduction A-interoreter

output run time/s speedup
cogen mix(mix ann, mix ann) 82-3 3-0

cogen(mix ann) 27.6

Comoiler ~enerator

The first table shows that running the factorial tar-
get program is around 14 times faster than inter-
preting the factorial source program. Compiling by
the stand-alone compiler is 8 times faster than by
specializing the interpreter; this shows that the par-
tial evaluator really is effectively self-applicable.
Finally, generating the compiler by the mix-gener-
ated compiler generator cogen is 3 times faster than
by specializing mix. The second and third tables
are similar. The last table shows that generating
cogen by running cogen is 3 times faster than by
specializing mix.

Here are some additional figures: it takes 2-4
seconds to preprocess an interpreter (includes clo-
sure and binding time analyses); preprocessing mix
takes around 19 seconds. The size of mix is 2.5K
cells (measured as the number of "cons" ceils
needed to represent the program as a list), cogen
13.9K cells, the interpreters 0.18K-0.26K cells,
and the compilers 1.9K-7.6K cells. For mix, this
gives an expansion factor of 5.5 (13.9/2.5), for the
interpreters factors in the range 10-29.

The figures all in all compare well to similar
published benchmarks for first order languages
[Jones, Sestoft, & Scndergaard 89] [Bondorf &
Danvy 90] [Consel 89], and also to those of
Lambda-mix [Gomard 89].

8 . D i s c u s s i o n

Partial evaluation is no panacea: some programs
specialize well, but others do not. Program genera-
tors in general take some specification as input; in
the case of partial evaluation, the specification is a
program. The quality of a program generated by
any program generator depends on the quality of
the specification. For partial evaluation, the quality
of the residual program depends on the quality of
the source program supplied to the partial evalua-
tor.

The "quality" of a source program does not nec-
essarily mean its clarity or efficiency. It often hap-
pens that less efficient and/or less clear programs
lead to better (more efficient, more clear) residual
programs.

8.1 Exploiting stat ic information

Programs have to be expressed carefully not to
lose static information. A simple example: suppose
x and y are static and z dynamic. Then (+ (+ x
y) z)specializes betterthan (+ x (+ y z l) : i n
the former case, the inner + is reduced, but in the
latter no reduction takes place.

8.2 Cur ry ing

It was mentioned earlier (section 3.2) that uncurry-
ing functions sometimes gives better specialization.
When binding time analysing a curded expression
such aSE = (L (x) (X (y) (+ (+ y y) x))) ,
the binding time analysis might annotate x dynamic
and y static. That is, a dynamic argument is sup-
plied before a static argument. During program
specialization, an application of E like ((s
"code") 3) could be beta reduced to the residual
code piece (+ 6 "code").

However, to avoid that procedure call unfolding
and beta reduction of higher order applications
duplicates or discards dynamic actual argument ex-
pressions, let-expressions are inserted for all for-
mal parameters in source programs before prepro-

86

cessing [Bondorf & Danvy 90]. The expression
which is actually binding time analysed is therefore
not E, but the semantically equivalent

(;t (x) (let ((x x)) (~ (y) (let ((y y))
(+ (+ y y) x)))))

Since x is dynamic, the result of the body of the
outer lambda expression becomes dynamic. The
(value of the) inner lambda expression is a possible
result of evaluating this body, and therefore the in-
ner lambda expression becomes annotated residual.
Hence, its parameter y becomes dynamic whereby
static information is lost. It thus never happens that
dynamic arguments are supplied before static ar-
guments. This confmns the intuition in [Nielson &
Nielson 88]: "early bindings before late bindings".

If a curried expression is always applied to all
its arguments simultaneously, then it is advanta-
geous to use an uncurried version. In the uncurried
version, the binding time values of the parameters
do not influence each other. Uncurrying thus pre-
vents a possible loss of smile information.

9. Conclusion and open problems
We have presented an approach to treat a higher
order subset of Scheme in autoprojection. We have
implemented the ideas by extending the existing
Similix autoprojector. To our knowledge, our
system is the first fully automated and implemented
autoprojector for a higher order language. We have
presented a binding time analysis based on a clo-
sure analysis. The domain of binding time values
is finite and no structured binding time values are
needed.

We have shown examples of interpreters from
which target programs and stand-alone compilers
were generated. Because the language is higher
order, we are able to treat continuation passing
style interpreters and interpreters that use "thunks"
to implement normal order reduction.

Several problems remain open. In the line of
compiler generation, the system should be applied
to bigger, more realistic examples. It would also be
interesting to experiment with interpreters for real
lazy (i.e. call-by-need rather than call-by-name)
languages; we have made some promising experi-
ments in this direction.

The autoprojector itself could also be improved.
One problem is that the binding time analysis is

monovariant, i.e. it only generates one binding
time annotated version of each procedure. If a pro-
cedure is called with different binding time pat-
terns, then the least upper bound is taken. This
implies a possible loss of static information at pro-
gram specialization time. It is not clear how to ex-
tend the closure analysis based binding time analy-
sis to a polyvariant one.

Acknowledgements
This work has been carried out within the Similix
project, a joint work of Olivier Danvy and the au-
thor. I am most grateful to Olivier for his many
comments and proposals. Many other people have
contributed in various ways; thanks to Lars Ole
Andersen, Hans Dybkj~er, Frank Frauendorf,
Harald Ganzinger, Carsten K. Gomard, Nell D.
Jones, Jesper Jcrgensen, Karoline Malmkj~er, Tor-
ben Mogensen, Peter Sestoft, and Jtirg SiJggel.

References
[Aho, Sethi, & Ullman 86] Alfred V. Aho, Ravi Sethi, and

Jeffrey D. Ullman" Compilers: Principles, Techniques
and Tools, Addison-Wesley 1986.

[Bj~rner, Ershov, & Jones 88] Dines Bj~rner, Andrei P. Er-
shov, and Nell D. Jones (edS.): Partial Evaluation and
Mixed Computation, G1. Avern~es, Denmark, October
1987, North-Holland 1988.

[Bondorf 89] Anders Bondorf: A self-applicable partial eval-
uator for term rewriting systems, TAPSOFT'89, Pro-
ceedings of the International Joint Conference on Theory
and Practice of Software Development, J, Diaz and F.
Orejas (eds.), Barcelona, Spain, Lecture Notes in Com-
puter Science No 352 pp 81-96, Springer-Verlag 1989.

[Bondorf 90] Ph.D. thesis (forthcoming). DIKU, University
of Copenhagen, Denmark.

[Bondorf & Danvy 90] Anders Bondorf and Olivier Danvy:
Automatic autoprojection of recursive equations with
global variables and abstract data types, Technical RelX~
No 90-4, DIKU, University of Copenhagen, Denmark.

[Bondorf, Jones. Mogensen, & Sestoft 90] Anders Bondorf,
Neil D. Jones, Torben ~ . Mogensen, and Peter Sestoft:
Binding time analysis and the taming of self.application,
submitted for publication, DIKU. University of Copen-
hagen. Denmark.

[Bulyonkov 84] Mikhail A. Bulyonkov: Polyvariant mixed
computation for analyzer programs, Acta Informatica 21
pp 473-484, 1984,

[Consel 88] Charles Consel: New insights into partial eval-
uation: the SCIIlSM experiment, ESOP'88 (ed. Harald
Ganzinger), Nancy, France, Lecture Notes in Computer
Science No 300 pp 236-247, Springer-Verlag 1988.

[Consei 89] Charles Consel: Analyse de programmes, Eval-
uation partielte et G#n~ration de compilateurs, Ph.D.
thesis, LITP, University of Paris 6, France 1989.

87

[Consel & Danvy 89] Charles Consel and Olivier Danvy~
Partial ewiluation of pattern matching in strings, Infor-
mation Processing Letters 30, No 2 pp 79-86, 1989.

[Dybvig 87] R. Kent Dybvig: The SCHEME Programming
Language, Prentice-Hall, New Jersey 1987.

[Ershov 77] Andrei P. Ershov: On the partial computation
principle, Information Processing Letters 6, No 2 pp 38-
41, April 1977.

[Futamura 711[Yoshihiko Futamura: Partial evaluation of
computing process - - an approach to a compiler-com-
piler, Systems, Computers, Controls 2, 5, 45-50, 1971.

[Gomard 89] (~arsten K. Gomard: Higher Order Partial Eval-
uation --HOPE for the Lambda Calculus, Master's the-
sis, DIKU student report 89-9-11, University of Copen-
hagen, 1989.

[Gomard 90] Carsten K. Gomard: Partial Type Inference for
Untyped Functional Programs, submitted for publica-
tion, DIKU, University of Copenhagen, 1989.

[Gomard & Jones 89] Carsten K. Gomard and Neil D.
Jones: Compiler generation by partial evaluation, Infor-
mation Processing '89. Proceedings of the l l th IFIP
World Cotaputer Congress, G. X. Ritter (ed.), lrP 1139-
1144, North-Holland, 1989.

[Hudak & Young 88] Paul Hudak and Jonathan Young: A
collecting interpretation of expressions (without power-
domains), Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages pp 107-118, San Diego, Califor-
nia, January 1988,

[JonGomBonDanMog 90] Neil D. Jones, Carsten K. Go-
mard, Anders Bondorf, Olivier Danvy, and Torben ~E.
Mogensen: A self.applicable partial evaluator for the
tambda calculus, IEEE Computer Society 1990 Interna-
tional Conference on Computer Languages, 1990.

[Jones, Sestoft, & Sendergaard 85] Neil D. Jones, Peter
Sestoft, and Harald Sendergaard: An experiment in par-
tial evaluation: the generation of a compiler generator,
Rewriting Techniques and Applications (ed. L-P. Jouan-
nand), Dijon, France, Lecture Notes in Computer
Science No 202 pp 124-140, Springer-Verlag 1985.

[Jones, "Sestoft, & S¢ndergaard 89] Neil D. Jones, Peter
Sestoft, and Harald Sendergaard: MIX: a self-applicable
partial evaluator for experiments in compiler generation,
International Journal LISP and Symbolic Computation
2, 1, pp 9-:50, 1989

[Kohlbecker 86] Eugene E. Kohlbecker: Syntactic Exten-
sions in the Programming Language Lisp, Ph.D. thesis,
Indiana University, Bloomington 1986.

[Mogensen 8811 Torben ~E. Mogensen: Partially static struc-
tures in a self-applicable partial evaluator, pp 325-347 of
[Bjomer, Ershov, & Jones 88].

[Mogensen 89a] Torben /E. Mogensen: Binding Time
Aspects of Partial Evaluation, Ph.D. thesis, DIKU,
University of Copenhagen, Denmark 1989.

[Mogensen 89b] Torben hL Mogensem Binding time analy-
sis for polymorphically typed higher order languages,
TAPSOFT'89, Proceedings of the International Joint
Conference. on Theory and Practice of Software Devel-
opment, J. Diaz and F. Orejas (eds.), Barcelona, Spain,
Lecture Notes in Computer Science No 352 pp 298-312,
Springer-Verlag 1989.

[Nielson & Nitelson 88] H_anne R. Nielson and Flemming
Nielson: Automatic binding time analysis for a typed ~.-
calculus, Proceedings of the Fifteenth Annual ACM SI-
GACT-SIGPLAN Symposium on Principles of Pro-

gramming Languages pp 98-106, San Diego, Calinfor-
nia, January 1988.

[Rees & Clinger 86] Jonathan Rees and William Clinger
(eds.): Revised 3 Report on the Algorithmic Language
Scheme, Sigplan Notices 21, 12, pp 37-79, December
1986.

[Romanenko 88] Sergei A. Romanenko: A compiler genera-
tor produced by a seif-applicable speeialiser can have a
surprisingly natural and understandable structure, pp 445-
463 of [Bjerner, Ershov, & Jones 88].

[Schmidt 85] David A, Schmidt: Detecting global variables
in denotational specifications, ACM Transactions on
Programming Languages and Systems 7, No 2 pp 299-
310, April 1985.

[Schmidt 86] David A. Schmide Denotational Semantics, a
Methodology for Language Development, Allyn and Ba-
con, Boston 1986.

[Sestoft 88a] Peter Sestoft: Automatic call unfolding in a
partial evaluator, pp 485-506 of [Bjc~rner, Ershov, &
Jones 88].

[Sestoft 88b] Peter Sestoft: Replacing Function Parameters
by Global Variables, Master's thesis, DIKU student re-
port 88-7-2, University of Copenhagen, 1988.

[Sestoft 89] Peter Sestoft: Replacing function parameters by
global variables, Proceedings of the Fourth International
Conference on Functional Programming and Computer
Architecture, London, UK, pp 39-53, ACM Press,
September 1989.

[Turchin 80] Valentin F. Turchin: Semantic definitions in
Refal and the automatic production of compilers, Pro-
ceedings of the Workshop on Semantics-Directed Com-
piler Generation, Nell D. Jones (ed.), Arhus, Denmark,
Lecture Notes in Computer Science No 94 pp 441-474,
Springer-Verlag 1980.

lTurchin 86] Valentin F. Turchin: The concept of a super-
compiler, ACM Transactions on Programming Lan-
guages and Systems 8,No 3 pp 292-325, July 1986.

