
From Interpreting to Compiling Binding Times * 

Charles Consel t & Olivier Danvy ~ 

A b s t r a c t  
The key to realistic self-applicable partial evaluation is to analyze binding times 
in the source program, i.e., whether the result of partially evaluating a source 
expression is static or dynamic, given a static/dynamic division of the input. Source 
programs are specialized with respect to the static part of their input. When a 
source expression depends on the concrete result of specializing another expression, 
the binding time of this other expression is first interpreted. A safe approximation 
of these abstract values is computed by binding time analysis. 

This paper points out that this value-based information can be compiled into 
control-based directives driving the specializer as to what to do for each expression 
- instead of how to use the result of partially evaluating an expression. This compi- 
lation is achieved by a non-standard interpretation of the specialization semantics, 
based on the observation that a source expression is either reduced or rebuilt. The 
result is an action trees isomorphic to the abstract syntax tree of the source pro- 
gran~ This approach suggests to reorganize the specializer so that it is driven first 
by the action tree and then by the abstract syntax tree - instead of performing first 
a syntax analysis and then interpreting binding times. 

Some subtrees imply the corresponding expressions to be completely reduced or 
completely rebuilt. These expressions are completely evaluated or reproduced ver- 
batim. This suggests to refine the specializer so that it evaluates, reduces, rebuilds, 
or reproduces source expressions. This also suggests a more radical implementation. 

By pruning the source program based on its action trees, we extract combinators 
for each subtree that should be evaluated completely or reproduced verbatim. By 
implementing these combinators as runtime operators, we prune the text of the 
partial evaluator that was dedicated to evaluating or reproducing source expressions 
using symbolic interpretation. Because source programs are smaller, they can be 
specialized fa~ter. Because half of the specializer disappears, it is smaller and faster 
too. For these compound reasons self-application performs better. 

As a result, more processing is shifted away from the actual specializer. A pleas- 
ing symmetry appears in the actual specialization process. Its significance, e.g., in 
the structure of compilers generated by self-application, remains to be explored. 

Keywords :  partial evaluation, self-application, actions, combinators. 

*Extended abstract. 
tyale University (consel-charles@cs.yale.edu). This work was done jointly at University 

of Paris 6 under a MITES grant and at Yale under the Darpa grant N00014-88-K-0573. 
tThis work has been carried out during a visit to the Computer Science Department 

of Indiana University, in the fall of 1989 (danvyOiuvax.cs.indiana.edu). 



89 

I n t r o d u c t i o n  

Partial evaluation is a program transformation specializing a program with 
respect to a static part of its input. For self-application purposes, binding 
times in the source program are analyzed prior to the actual specialization. 
A binding time analysis automatically computes the binding time values 
(static: or dynamic) of each expression in the source program with respect 
to an abstraction of its input: the arguments that are available are declared 
static and the others are dynamic. The result of binding time analysis is 
a collection of binding time trees isomorphic to the source abstract syntax 
trees (one for each procedure). Then the source program and the binding 
time trees are processed by the specializer together with concrete values. 
Specializing a source expression is achieved by first determining its syntactic 
category and then interpreting the binding time value of its sub-components 
as the result of their specialization is needed. 

The point of this paper is that this interpretation of binding time val- 
ues cem be lifted from the specializer. Let us illustrate this through an 
example. Figure 1 displays a (first-order) program written in Scheme 
[Rees & Clinger 86] that computes the function concatenating two lists. 

Our goal is to specialize procedure append with respect to its second 
argument. The result of preprocessing (which includes parsing and binding 
time analysis) is displayed in figure 2. 

At the top, the program is parsed. Below, the binding time tree is 
reproduced. It is isomorphic to the corresponding syntax tree: the node 
corresponding to a dynamic identifier is (d), and to a static identifier is (a). 
In general, the first component of a binding time tree is the binding time 
value of the expression, and the rest (if any) are the binding time trees of 
the corresponding sub-expressions. 

Because its induction variable is dynamic in this example, procedure 
append is a specialization point. This means that all the calls to append 
will give rise to specializing append with respect to the value of its second 
argument. Also, the dynamic parameter x need not be renamed during 
specialization, while the binding of y will be unfolded. 

Let us specialize procedure append with respect to its second argument 
whose value is (s 4 s). The result is displayed in figure 3. 

Let us analyze each step of the specialization. Because append is a spe- 
cialization point, it gives rise to generating a residual procedure, named 



90 

(define append ;;; List(A) * List(A) -> List(A) 
(lambda (x y) 

(if (null? x) 

Y 
(cons (car x) 

(append (cdr x) 
y))))) 

Figure 1: Tagged concatenation of lists (source program) 

(append 
(*lambda-sp (x y) [i u] 

(*if (*app null? (*ide x)) 
(*ide y) 
(*app cons (*app car (*ide x)) 

(*app append (*app cdr (*ide x)) 
(*ide y)))))) 

(append 
(s d) 
(d (d (d)) 

(s) 
(d (d (d)) (d (d (d)) 

( s ) ) ) ) )  

Figure 2: Parsed and binding time analyzed source program 
append is a specialization point (lambda-sp). Its first parameter is dynamic 
and left identical. Its second parameter is unfoldable. This is indicated by 
the tags [i  u]. 



91 

append-O, which is a version of append specialized with respect to the static 
value (s 4 5). In a symbolic environment where x is bound to the residual 
identifier x and y is bound t o t h e  value (s 4 s) represented by ' ( s  4 s), we 
are ready to interpret the body of append symbolically. 

It is a conditional expression. This requires to interpret the test expres- 
sion in the same environment, which in turn needs interpreting the identifier 
(*ide z). The result is the residual identifier x. Because the binding time 
value of the argument of null? is dynamic, the application is rebuilt and the 
result of specializing the test part is (null? x). Because the binding time 
value of the test is dynamic, specializing the conditional expression will yield 
a residual conditional expression whose test part is (null? x), and whose 
consequent and alternative parts are the result of specializing the source 
consequent and alternative parts. 

Identifier (*ide y) is bound in the environment. Its interpretation yields 
' (S  4 S).  

Interpreting (*app cons . . . . . .  ) needs interpreting both arguments. In- 
terpreting the first needs interpreting (*±de x). Because its binding time 
value is dynamic, the car operation cannot be folded and the application is 
rebuilt instead. The arguments of the call to append are interpreted simi- 
larly. The results are two residual expressions. Because their static projec- 
tion (i.e., the pattern of static values in these arguments) coincides with the 
original one, we build a residual call to append-O. This call has only one ar- 
gument because append-0 is a unary procedure. At this point we return two 
residual expressions as actual arguments of the application (*app cons ... 
... ). Because the binding time values of the two arguments are dynamic, 
the application is rebuilt. 

Then the conditional expression is rebuilt, which concludes specializing 
procedure append. 

To summarize: partial evaluation is staged in two phases - preprocessing 
and specialization. Binding time information has been collected during pre- 
processing. Decisions as to how to treat the program are taken during 
specialization, i.e., which expression should be reduced, which should be 
rebuilt. This staging has been pioneered in [Jones et al. 89]. The remaining 
overhead (e.g., interpreting the binding time informations) is removed by 
self-applying the specializer. 

However, aside from self-application, something basic can be done: given 



92 

the program and the binding time tree, we can infer which actions the spe- 
cializer will be performing. The basic action of a specializer is to reduce or 
rebuild a source expression. Let us build an action tree isomorphic to the 
binding time tree and tagged with the two directives Rd (for reduce) and 
Rb (for rebuild). The result is displayed in figure 4. 

We can see this action tree as providing directives to the specializer. 
Our next observation is that  the specializer can do better than, e.g., re- 

producing large pieces of source program by symbolic interpretation. This 
suggests to introduce a directive Id at the root of each action subtree ex- 
pressing that the source program should be rebuilt verbatim. Symmetrically, 
expressions that should be reduced completely can be handled by introduc- 
ing a directive By. The new action tree is displayed in figure 5. 

Now we may wonder why the specializer, whose basic tasks are to re- 
duce and rebuild source expressions, and to coordinate these actions, should 
have the burden of evaluating or reproducing source expressions. There are 
faster ways to evaluate Scheme expressions - e.g., by compiling them using 
a regular Scheme compiler. Similarly, there are faster ways to implement 
the identity function. 

So let us prune the action tree by extracting Ev- and Id-combinators 
from the source program. The append example is too simple for giving rise 
to actually defining interesting combinators, but in an interpreter, many 
combinators arise naturally, e.g., Ev-combinators for scope resolution and 
Id-combinators for store management. As a result, source programs are 
physically smaller. They can be expected to be specialized faster, besides 
the fact that there is no interpretation overhead anymore. 

To conclude: by abstracting the various treatments of the specializer for each 
syntactic construct, we have deduced four basic actions: Ev, Rd, Rb and 
Id. Rd expresses that the corresponding syntactic construct will be reduced. 
Ev is a particular case of Rd: it denotes an expression that  may be fully 
evaluated because it is completely static. Symmetrically, Rb indicates that  
the corresponding syntactic construct will be rebuilt. Id is a particular case 
of Rb: it denotes an expression that may be reproduced textually because 
it is completely dynamic. In the case of both Rd and Rb, subexpressions 
still have to be processed. 

Introducing combinators has three major effects: (1) because both Ev- 
combinators and Id-combinators are treated more efficiently than by sym- 



93 

(define append-0 ;;; List(lum) -> List(Num) 
(lambda (x) 

( i f  (null? x) 
'(3 4 5) 
icons (car x) 

(append-0 (cdr x))) ) ) )  

Figure 3: Residual program corresponding to specializing append with re- 
spect to (3 4 s) 

( 
(append 
(rb rd) 
(rb (rb (rb)) 

(rd) 
(rb (rb (rb)) (rb (rb (rb)) 

(rd)))))  

Figure 4: Action tree of procedure append 

(append 
(id ev) 
(rb (id (id)) 

(ev) 
(rb (id (id)) (rb (id (id)) 

Cev))))) 

Figure 5: Action tree of procedure append with Ev- and/d-directives 



94 

bolic interpretation, specialization is faster; (2) because these combinators 
are no more a part of the actual source program, the specializer has less data 
to process; (3) because self-application is a particular case of specialization, 
it benefits from points (1) and (2). 

It is interesting to notice that these combinators capture both purely 
static and purely dynamic semantics of the source program. The remaining 
actions are the essence of specialization: reducing and rebuilding expres- 
sions, and managing control. 

This paper is organized as follows. Section I describes the conventional spe- 
cialization of source programs after binding time analysis. Section 2 presents 
a semantics-based derivation of action trees. Section 3 describes how to spe- 
cialize source programs given their action trees. Section 4 investigates how 
to prune action trees and define combinators for specialization. Section 5 
draws some assessments. Section 6 compares this approach with related 
work. Finally this work is put in perspective. 

1 S p e c i a l i z i n g  P r o g r a m s  u s i n g  B i n d i n g  T i m e  T r e e s  

This section discusses the kernel of a self-applicable specializer. As gener- 
ally agreed in the partial evaluation community, all realistic self-applicable 
specializers (i.e., stand-alone and producing non-trivial compilers from in- 
terpreters) are based on some analysis of the binding times of the program 
[Bondorf et al. 88]. Interestingly enough, front-end strategies diverge widely 
(regarding generalizing, automatizing, polyvariance, partially static struc- 
tures, computation duplication, etc.). Still they all converge when it comes 
to the actual specialization. 

No decisions are taken as to how to specia~ze the program. However, to 
ensure termination and avoid code duplication, decisions as to how to treat 
procedure calls and let expressions are taken prior to the actual specializa- 
tion. These decisions are represented with annotations. 

Still there are computational evidences and reasons behind them to go 
further than the standard binding time-based specializer. 

1.1 T h e  language: first-order recursive equa t ions  

Source and residual programs are collections of recursive definitions for first- 
order Scheme procedures. Scheme expressions are constants, variables, con- 



95 

ditional expressions, uncurried applications of procedures and operators, and 
let blocks. The reduction order is call by value. 

An expression and its associated binding time tree are related as follows: 
the expression is paired with a binding time value that specifies whether 
specializing the expression will yield a static value or a residual expression. 

1.2 Binding time trees 

The concept of binding time here is generalized from the traditional binding 
time of an identifier (compile time, link time, run time, etc.) to the binding 
time of an expression. The motivation is that during partial evaluation, an 
expression will be reduced if it depends solely on the static part of the input, 
or rebuilt if it depends on the rest of the input. This point is captured by 
the generalization of binding times from identifiers to expressions. As a con- 
sequence it is possible to know whether the result of partially evaluating any 
expression will yield a static value or a residual expression, independently 
of the concrete result of partially evaluating this expression. Binding time 
analysis produces a safe approximation of this information. 

For example, the specializer does not need the actual result of partially 
evaluating the test part of a conditional expression to decide whether it 
can solve the test and reduce the expression to one of its alternatives, or 
whether it; needs to build a residual conditional expression. Again, this is 
important for self-application purposes since it makes it possible to avoid 
processing both parts of the specializer that handle reducing and rebuilding 
a conditional expression. This makes self-application faster and residual 
programs smaller. 

1.3 An example: conditional expressions 

As pointed out in the introduction, specialization occurs in a context. For 
example, all the sub-expressions of a static expression are evaluated. For 
another example, all the sub-expressions of a completely dynamic expression 
will be reproduced verbatim. For a last example, a conditional expression 
may be reduced if its test part is static, or rebuilt if it is dynamic. In the 
former case, the consequent and the alternative are specialized in the same 
context as the conditional expression. 

Next section describes how we can build action trees by using a non- 
standard interpretation of the present semantics. These action trees repre- 
sent :further exploitation of the results of binding time analysis. 



96 

2 S e m a n t i c s - B a s e d  D e r i v a t i o n  o f  A c t i o n  T r e e s  

This section describes how to derive action trees from the specialization 
semantics. We have factorized it and defined a non-standard interpreta- 
tion [Jones ~: Nielsen 89] generating action trees. We have instantiated the 
domain of residual programs to be the domain of action trees, and have pro- 
vided a set of combinators to generate these trees. The result is a semantics- 
directed specification for deducing action trees from source programs and 
binding time trees. 

2.1 T h e  set  o f  act ions  

In the factorization, there are two combinators for each syntactic construct. 
One captures the action of reducing the syntactic construct; the other rep- 
resents the action of rebuilding the syntactic construct. Let us call these 
two actions respectively Rd and Rb. 

This set of actions may be refined. Indeed Rd and Rb include respectively 
purely static expressions and purely dynamic expressions. Therefore, using 
this set, a specializer would interpret a purely static expression symbolically 
and would rebuild a purely dynamic expression. As an optimization, we 
enrich the set of actions with Ev, that denotes a purely static expression, 
and Id, that denotes a purely dynamic expression. Because the actions are 
more predse, the specializer may perform more accurate treatments, and 
thus be more efficient. 

2.2 T he  act ion  trees  interpretat ion  

Action trees are built using a non-standard interpretation of the factor- 
ized semantics: instead of residual expressions, we want to build action trees 
isomorphic to the binding time trees. This derivation is not detailed in this 
extended abstract. Instead, we give a set of simplified rules that capture the 
interpretation, in figure 6 and in appendix. 

These rules are simplified because they only specify the action associated 
to each expression. Also, they do not account for the accumulation of trees. 

Constant expressions are either evaluated or left identical according to 
their binding time value. Static and dynamic identifiers denote an action. 



97 

p ~- ~(*cst c)] s : Ev p [- ~(*cst c)] d:Id 

pF- ~(*ide I ) ] s : p I  pk~ [(*ide I ) ] d : p I  

p [- [E-1] s : Ev p [- [[E-2] b2 : Ev p b" ~E-3] 53 : Ev 
p~- ~(*if E-I E-2 E-3)](s, b2,b3):Ev 

p F ~E-1]s:al  pb~E-2]b2:a2 pbiE-3Ib3:a3 
p ~- [[(*if E-1 E-2 E-3)](s, b2,b3) :Rd 

pb- ~(*iI E-1 E-2 E-3)](d, b2,b3):Id 

p ~ ~E-1] d : al  p b ~E-2] b~ : a2 p F- ~E-3] b3 : a3 
pb- ~(*if E-1 E-2 E-3)](d, b2,b3):Rb 

p ~ ~(*am, op ~.-1... ~.-m)~ (8 , . . . ,  8) : Ev 

i ] . . . .  

pb ~.-1 bl"Id pb~E-m]bm:Id 
p b [[(*app op E-1... E-m)] (bl, . . . ,  bm) :Id 

p~- ~(*app op E-1.. .E-m)](bi, . . .  ,bin):Rb 

p~- ~(*app up E-1.. E-n)] (b l , . . .  ,bn):Ev 

p~-iE-1]bl:ai .. .  p}-~E-a]bn:an 
[ ~" 8(*app up E-1... E-n)~ (b l , . . . ,  bn) : Rd 

p ~- ~(*app sp E-1...E-n)] (b l , . . .  ,bn):Id 

. . .  

p~-~(*app ,p E-1...E-n)](bl, . . .  ,bn):Rb 

Figure 6: Inference rules for deducing actions 
In the rules for application, op, up, and sp denote the names of an operator, 
an unfoldable procedure, and a specialization point, respectively. 



98 

In general all syntactic constructs that would be reduced are either Ev if all 
their components are Ev, or Rd; and all syntactic constructs that  would be 
rebuilt are either Id if all their components are Id, or Rb. 

3 S p e c i a l i z i n g  P r o g r a m s  u s i n g  A c t i o n  Trees  

This section discusses the structure of a specializer driven by action trees. 
Our set of actions abstracts the treatment of a specializer processing binding 
time trees. Therefore this treatment will be part of the new specializer 
processing action trees. The major difference concerns the decision as to 
which action to apply - since this decision has already been taken. Thus 
specialization essentially amounts to dispatching on the action. 

As a result, the specializer is structured in four parts, evaluating, re- 
ducing, rebuilding, or reproducing each syntactic construct. Next step is to 
introduce the combinators for Ev and/d-expressions. 

4 D e f i n i n g  C o m b l n a t o r s  fo r  S p e c i a l i z a t i o n  

Two out of the four specialization contexts entail a treatment that  is com- 
pletely independent from specialization: in a context Ev, source expressions 
are merely evaluated; in a context Id, expressions ar~e merely reproduced. 
As computer scientists we have better ways than symbolic interpretation to 
evaluate or to reproduce constant Scheme expressions: 

• we can run the Ev-expressions using the underlying Scheme processor; 

• we could invoke the identity function on/d-expressions. 

Using the underlying Scheme processor is faster by an order of mag- 
nitude, since we can compile the Ev-expressions instead of interpret them 
symbolically. It is not the rSle of a partial evaluator to mimic an evaluator 
by symbolic interpretation. 

Nothing can beat the identity function, speedwise. It is not the r61e 
either of a partial evaluator to mimic the identity function by symbolic in- 
terpretation. 

These observations suggest to extract the expressions annotated with these 
actions and to transform them into combinators. The idea is that both 



99 

Ev- and Id-combinators can be considered as primitive operations by the 
specializero 

Extracting Ev- and Id-combinators from a source program using its ac- 
tion trees is straightforward. Free variables are collected and abstracted. 
The corresponding definitions are added as static operators (i.e., primitive 
procedures) or as residual procedures in the residual program. 

Once Ev- and Id-combinators have been extracted from a source pro- 
gram~ what remains is the essence of this program with respect to its partial 
input. It is also the essence of specialization: reduction and reconstruction 
of source expressions, and their management. 

Because Ev-expressions are encapsulated in combinators, they are now 
treated as a call to a primitive and executed by the underlying machine. 
Because /d-expressions are encapsulated in combinators, a call to an Id- 
combinator is simply frozen. As a consequence, the specializer does not 
have to treat actions Ev and Id. To avoid multiplying trivial combinators, 
the treatment of some syntactic constructs survives: this concerns constants, 
variables, and calls to an operator. 

5 A s s e s s m e n t s  

This section investigates various consequences of having observed and intro- 
duced action trees in the process of specialization and combinators in source 
programs. 

5.1 S o u r c e  p r o g r a m s  

Because source programs are smaller, once they are pruned, they are faster 
to specialize. It is hard to characterize the average improvement, but ex- 
perience confirms that pruning By- and Id-subtrees increases the speed of 
specialization. 

5.2 Sel f -appl ica t ion  

Still the classical question may be raised: is this self-applicable? To this 
question there is an immediate answer: it is self-applicable a fortiori because 
compiling binding times goes beyond binding time analysis, by exploiting 
binding time information further and moving static computation away from 



100 

the specialization process. Because self-application is only a particular case 
of specialisation, the technique applies to self-application as well. 

5.3 Combinators ttd and Rb? 

One could imagine collecting Rd- and Rb-combinators as well. This would 
lead to fragment the process of specialization in even smaller units: each 
reduction and reconstruction would be handled by dedicated combinators, 
and specialization would be reduced to coordinating and combining these 
operations. 

However is it worth it? A dedicated specializer (i.e., the result of spe- 
cializing a regular, Mix-like, specializer with respect to a source program) 
precisely offers this. As a matter of fact, all the Ev-, Rd-, Rb-, and Id- 
combinators can be identified in the text of the dedicated specializer - under 
unfolded form. 

This observation again stresses the problem of granularity in semantics- 
based program manipulation. Aiming at exploiting binding time information 
further, we have succeeded to implement a new binding time shift in a 
self-applicable partial evaluator, by reorganizing and simplifying the basic 
steps of specialization. Because this has been achieved through a semantics- 
based derivation, it is not surprising that the result is the same in the end. 
However, intensionally the development is significant because it has been 
achieved without resorting to self-application. Source programs have become 
smaller and faster to specialize. 

5.4 Pure ly  stat ic  and purely dynamic semantics 

Extracting Ev- and Id-combinators amounts to defining the purely static 
semantics of the source program as well as its purely dynamic semantics. We 
are now exploring what are the extensional meaning and the computational 
counterpart of these in, e.g., the interpretive specification of a programming 
language, and their impact in the corresponding compilers obtained by self- 
application [Consel & Danvy 90]. 

5.5 On the purely dynamic semantics of specialization 

During specialization, dynamic identifiers denote residual expressions, where 
potentially free variables occur. Among rebuilt expressions there may be 



101 

binding declarations, e.g., let expressions or residual lambda-expressions. 
This potentially yields name clashes that are usually avoided by systemati- 
cally renaming residual variables. 

Unfortunately this renaming impedes the purely dynamic semantics of 
spec~alization, since it is carried even for completely dynamic subexpressions 
- where there just cannot be any name clash, and thus no variable need to 
be renamed. 

This problem is addressed and solved in [Danvy 89]. The practical con- 
sequence concerns the abstract syntax of source programs, where formal 
para:meters are now qualified by a tag, as in figure 2. Each tag expresses 
whether the corresponding binding should be unfolded or whether it should 
be left residual; and if it is to be residual, whether the variable needs to be 
renamed. 

5.6 An ins t ruc t ion  set for specialization 

We conjecture that the combinators we succeeded to extract from a source 
program hint at the existence of an instruction set in an architecture for 
specialization. This could be the basis for an algebra of specialization. We 
are currently investigating this issue. 

5.7 An experiment:  the generation of a linear string matcher 

In [Consel ~ Danvy 89], we illustrated how the Knuth, Morris & Pratt lin- 
ear matching algorithm could be derived from a naive, quadratic matching 
program by binding times analysis, staging, and specialization. Running 
both versions of the specializer (i.e., the binding time-based version and the 
action-based one) shows an order-of-magnitude improvement of specializa- 
tion when the static string is repetitive. This is due to the fact that in one 
case, matching the pattern (statically) against itself is interpreted whereas 
it is compiled in the other case. 

5.8 Genera l i ty  and extensibi l i ty  of the approach 

Compiling binding times is a general strategy because it does not rely on 
particular binding time analyses: action trees are solely generated from bind- 
ing time information. This approach is extensible because the set of actions 
is extensible: the actions reflect the specialization process. Traditionally, 



102 

when one wants to strenghten partial evaluation, e.g., to handle higher or- 
der functions or partially static structures, both the binding time analysis 
and the specializer have to be extended. The binding time analysis has to 
collect new information for the additional elements. The specia~zer has to 
be modified to treat these additional elements according to the binding time 
information. In our approach, we can extract additional actions from the 
specializer for capturing the new aspects of the specialization process. This 
has successfully been done when extending Schism to handle higher order 
functions and partially static structures, as reported in [Consel 90]. 

6 C o m p a r i s o n  w i t h  R e l a t e d  W o r k  

6.1 Binding time analysis 

Binding time analysis is commonly agreed to be the necessary tool for re- 
alistic self-application. The problem with it is that it is too general: from 
[Jones ~ Muchnick 78] to [Nielsen & Nielsen 88], there is more in binding 
time analysis than self-applicable partial evaluation. 

In this paper we argue that the information collected by the binding 
time analysis (namely: the binding time trees) can be exploited further, and 
that this exploitation can be dedicated to the process of specialization. We 
introduce action trees as characterizing specialization more precisely. Action 
trees are built by interpreting the binding time trees, which is done once and 
for all. 

6.2 Actions in MIX 

In Mix, a program is annotated with specialization actions after the bind- 
ing time analysis. A set of two actions is used: eliminable and residual 
[Sestoft 86]. They respectively denote an expression whose syntactic con- 
struct will be statically reduced and an expression whose syntactic construct 
will be residual. Because nothing distinguishes a purely static expression 
from a purely dynamic one, both are interpreted symbolically. 

6.3 Semantics-based compiler generation 

Due to its self-application properties, partial evaluation has interesting ap- 
plications to semantics-directed compiler generation. The point is that  self- 



t03 

applying the specializer with respect to the interpretive specification of a 
programming language yields a residual program having the functionality 
of a compiler. Correspondingly, the intensional Curry program obtained by 
specializing the specializer with respect to itself has the functionality of a 
compitler generator. Because we extract combinators from source specifica- 
tions automatically, our generated compilers extract combinators as well. 

In Mitchell Wand's framework and Peter Mosses's Action Semantics, a 
great emphasis is put on extracting or designing combinators. In contrast, 
our set of combinators is automatically abstracted during partial evaluation 
according to the binding times of the source program. Not surprisingly, 
considering that the goal is to specialize programs, such combinators are 
not as general as those found in Action Semantics. However they add up 
to automatizing the derivation of compilers and machine architectures from 
interpretive specifications. 

C o n c l u s i o n s  a n d  Issues  

Compiling binding times in a self-applicable partial evaluator goes beyond 
the effect of self-application and contributes to improving it too. 

Extracting combinators captures the purely static and purely dynamic 
semantics of source programs. 

Combining both provides two basic items abstracting structures from se- 
mantic specifications: in the case of an interpreter, self-application provides 
the compiling algorithm, and our combinators provide the instruction set 
of the corresponding machines, both for the compilation and the runtime 
program. The Ev-combinators are the instruction set for the compiler, and 
the Id-combinators are a part of the dynamic semantics. 

B a c k g r o u n d  and  A c k n o w l e d g e m e n t s  

Actions were coined in [Consel 89] and implemented in Schism, a self- 
applicable partial evaluator for a dialect of Scheme. Then the second author 
observed that action trees and the corresponding specializer could be derived 
using a non-standard interpretation of the binding time-based specializer. 
Action trees have been successfully extended to tackle higher order functions 
and partially static structures [Consel 90]. 



104 

Thanks go to Karoline Malmkj~er, Siau Cheng Khoo, and Carolyn Tal- 
cott for commenting earlier versions of this paper. 

References 

[Bondoff et aL 88] Anders Bondorf, Neil D. Jones, Torben ~.  Mogensen, 
Peter Sestoft: Binding Time Analysis and the Taming of Self- 
Application, to appear in TOPLAS, DIKU, University of Copenhagen, 
Denmark (1988) 

[Consel & Danvy 89] Charles Consel, Olivier Danvy: Partial Evaluation of 
Pattern Matching in Strings, Information Processing Letters, Vol. 30, 
No 2 pp 79-86 (1989) 

[Consel 89] Charles Consel: Analyse de Programme, Evaluation Partielle, et 
Gdndration de Compilateurs, PhD thesis, University of Paris VI, Paris, 
France (June 1989) 

[Consel 90] Charles Conseh Higher Order Partial Evaluation with Data 
Structures, Working paper, Computer Science Department, Yale Uni- 
versity, New Haven, Connecticut (January 1990) 

[Consel & Danvy 90] Charles Consel, Olivier Danvy: Static and Dynamic 
Semantics Processing, Technical Report 761, Computer Science Depart- 
ment, Yale University, New Haven, Connecticut (November 1989) 

[Danvy 89] Olivier Danvy: Avoiding Name Clashes during Self-Applicable 
Partial Evaluation, Working paper, Computer Science Department, In- 
diana University, Bloomington, Indiana (fall 1989) 

[Jones ~ Muchnick 78] Neil D. Jones, Steven S. Muchnick: TEMPO: A 
Unified Treatment of Binding Time Parameter Passing Concepts in Pro- 
gramming Languages, G. Goos & J. I-Iartmanis (eds.), Lecture Notes in 
Computer Science No 66, Springer-Verlag (1978) 

[Jones et al. 89] Neil D. Jones, Peter Sestoft, Harald S¢ndergaard: MIX: a 
Self.Applicable Partial Evaluator for Experiments in Compiler Genera- 
tion, Vol. 2, No 1 pp 9-50 of the International Journal LISP and Symbolic 
Computation (1989) 



105 

[Jones & Nielsen 89] Nell D. Jones, Flemming Nielsen: Abstract Interpre- 
tation: a Semantics-Based Tool for Program Analysis, to appear in the 
Handbook of Logic and Computer Science, University of Copenhagen 
and Aaxhus University, Denmark (1989) 

[Nielsen & Nielsen 88] Flemming Nielsen, Hanne R. Nielsen: Automatic 
Binding Time Analysis for a Typed Lambda-Calculus, proceedings of the 
ACM Symposium on Principles of Programming Languages pp 98-106 
(1988) 

[Rees & Clinger 86] Jonathan Rees, William Clinger (eds.): Revised 3 Report 
on the Algorithmic Language Scheme, Sigplan Notices, Vol. 21, No 12 
pp 37-79 (December 1986) 

[Sestoft 86] Peter Sestoft: The Structure of a Self-Applicable Partial Evalu- 
ator, pp 236-256 of Programs as Data Objects, Harald Ganzinger and Nell 
D. Jones (eds.), Lecture Notes in Computer Science No 217, Springer- 
Verlag (1986) 

[Wand 82] Mitchell Wand: Semantics-Directed Machine Architecture, pro- 
ceedings of the ACM Symposium on Principles of Programming Lan- 
guages pp 234-241 (1982) 

A In f e r ence  rules  for d e d u c i n g  ac t ions  (con t inued)  

pt- i(*let  ['u...] ( I - i . . . )  ... E)]((bl, . . . ,bk),b):Ev 

pF'[E-1]bl:al ...p~-[E-k]bk:ak [I-l~-+al,... ,I-k~+ak]p~-[E]b:a 
p~-[(*let [u...] (I-1.. .) (E-1...) E)]((bl, . . . ,bk),b):Rd 

p~" [E-l~bl :Id ... pl-~E-k~bk :Id ['f-l ~-'+ Id, . . . , I -k~-* Id]p~-[E]b:Id 
pl - [ (* l , t  [ i . . . ]  (I-1.. .)  (E-1...) E)]((bl,...,b~),b):Id 

... pl-- [E-x] b,~ :a,~ ... pl- [E-y]b~ :% ... pF [E-z]b~ :a~ ... 
[..,,I-x ~+ az,. . . ,I-y ~+ ay,. . . ,I-z ~ az,...]p~- ~E]b:a 

p~(*let [...u...i...r...] (...I-x...I-y...I-z...) (...E-x...E-y...E-z...) E), 


