
Complexity Analysis for a Lazy Higher-Order Language 

David Sands * 
Department of Computing, Imperial College 

180 Queens Gate, London SW7 2BZ 

email: d s ~ k . a c ,  i c . d o c  

Abstract 

This paper is concerned with the time-analysis of functional programs. Techniques which 
enable us to reason formally about a program's execution costs have had relatively little attention 
in the study of functional programming. We concentrate here on the construction of equations 
which compute the time-complexity of expressions in a lazy higher-order language. 

The problem with higher-order functions is that complexity is dependent on the cost of 
applying functional parameters. Structures called cost-closures are introduced to allow us to 
model[ both functional parameters and the cost of their application. 

The problem with laziness is that complexity is dependent on context. Projections are 
used to characterise the context in which an expression is evaluated, and cost-equations are 
paranmterised by this context-description to give a compositional time-analysis. Using this 
form of context information we introduce two types of time-equation: su.Oicient-time equations 
and necessary-time equations, which together provide hounds on the exact time-complexity. 

1 I n t r o d u c t i o n  

This paper is concerned with the time-analysis of functional programs. Techniques which enable us 
to reason formaily about a program's execution costs have had relatively little attention in the study 
of functional programming. There has been some interest in the mechanisation of program cost 
analysis, perhaps the main examples being [Weg75, LeM85, Ros89]. These works describe systems 
which analyse cost by first constructing (recursive) equations which describe the time-complexity of 
a functional program in a strict first-order language. A closed form expression for cost is obtained 
in some ca,ses by mechanised manipulation (transformation) of these equations. The average-case 
solution of such equations is considered in [HC88, Fla85]. We concentrate here on the first part of this 
process--the construction of equations which compute the time-complexity of a given program. For 
programs written a first-order strict (i,e. call-by-value) language this is very straightforward. In the 
first part of this paper we show how to deal with a strict higher-order language (a fuller development 
can be found in [San88]). In the remainder of the paper we adapt these ideas to a lazy language. 
This extension is based on Wadler's use of contezt-analysis in the construction of time equations for 
a lazy first-order language [Wad88]. 

The aim is to develop a calculus that enabtes us to reason about time-complexity. Given a 
program (which we will consider to be any expression, plus a set of mutually recursive function 
definitions):, the problem is to find a means of constructing equations which describe the cost (in 
terms of the number of certain elementary operations) of evaluating any expression. In this paper we 
choose to express cost in terms of the number of non-primitive function applications. One advantage 
of deriving cost-equations which are themselves expressed in a functional language is that they are 
amenable to a rich class of program transformation and analysis techniques c.f. [LeM85, Ros89]--this 
paper retains the functiorial flavour of these approaches. 

*This work was partially supported by ESPRIT Basic Research Action P3124 



362 

The paper is organised as follows. In section 2 we consider the analysis of first and higher-order 
strict languages. Section 3 introduces a description of context that will be used in the analysis of 
lazy languages. Section 4 presents sufficient-time analysis, an upper-bound analysis for a lazy first- 
order language, which uses contexts that describe information that is sufficient to compute a value. 
Section 5 presents necessary-time analysis, a corresponding lower-bound analysis. Section 6 extends 
these ideas to a higher-order language. 

2 S t r i c t  T i m e  A n a l y s i s  

In this section we consider the analysis of strict languages. A full presentation is given in [San88]. 

2.1  A F i r s t  O r d e r  L a n g u a g e  

Firstly we define a simple first-order functional language. We consider a set of mutually recursive 
function definitions of the form fi(xl, . . . .  x,~) = e~ and an expression to be evaluated in the context 
of these definitions. Expressions have the following syntax: 

e ::= f ( e l , . . . ,  ej) I ident I const I i f  el then e2 e l se  es 

Where f is one of the user-defined functions fl, or a strict primitive function or constructor p. 
For each equation of the form f i (z l , . . .  ,xni) = el it is straightforward to construct an equation 

taking the same arguments as the original function, which computes the cost (in terms of the number 
of non-primitive function calls) of applying fl to a tuple of values. The cost equation (or cost-function) 
is defined as: cf i (x l , . . . ,  x,~) = 1 + T[e~] where T is a syntax-directed abstraction given in figure 1. 
These rules clearly reflect the call-by-value evaluation order. For example, in the rule for appfication, 

T[const] = TIi&nt] = 0 
~'[i~ el then e2 e l se  e31 = T[el] + i~ el th~a ~'[e~] e l se  T|e3] 

TIp(el... e.)l = ~rle, l + . . .  + Tle.l 
Ti f f (e l . . .  en)] = ef~(e,...e.) + T[e~l ÷ . . .  + Tlenl 

Figure 1: First-Order Strict Cost Definition 

we sum the cost of evaluating the arguments, in addition to the function application. (N.B. We will 
use infix notation to ease presentation throughout this paper) 

Syntax directed derivations of this form, for similar first order languages can be found in [Weg75, 
LeM85, Ros89]. These works focus on some automatic techniques by which the recursive cost- 
equations can be manipulated to achieve non-recursive equations. 

Example  

As a simple example of the above scheme, consider the list-append function defined as: 

append(x,y) = if null(x) then y else cons(hd(x), append(tl(x),y)) 

From this definition, applying Y we obtain the cost-function which computes the number of 
non-primitive function applications: 

cappend(x,y) = 1 + if null(x) then 0 else cappend(tl(x),y) 
= I ÷ length(x) 

The aim of the systems described in the papers cited above is to derive just such a closed-form 
expression, by means of program transformation. This paper focuses on the process of obtaining the 



363 

initial cost~.functions, for languages using higher-order functions and laziness--a necessary precursor 
to the derivation of closed-form equations describing, for example, average-case complexity, 

2.2 A Higher-Order  Curried Language 
In this section we outline a means of deriving cost programs for a higher-order language. The time- 
equations are derived via two mappings. The first modifies the original equations so that functional 
values axe augmented with information needed to describe the cost of their application. The second 
constructs the time-equations using these modified equations. 

Firstly we define our language. We have function definitions of the form f i  e l . . .  en~ = expl along 
with curried primitive functions Pi (of arity ml). Expressions have the following syntax: 

eX, p ::..~-- eZp e [ e e ":= "1~ e I aGh@n e 2 @'lse e 3 [ ( exV)  [ f l  I Pi [ ident [ const 

For each definition fi Xl. . .  x,~ = ezpi we wish to construct a cost function cfi Xl. . .  x~ = ezp~ which 
computes the cost of applying f l  to nl values. 

Suppose we wish to construct a cost-function for an apply function defined as: apply f x = f x. 
The cost function associated with apply should have the form: 

Capply(f,x) = t + the cost of  applying f to x. 

But how do we syntactically refer to the cost function associated with f? 

Cost-Closures 

In order to reason about the cost of application of functions, as well as the functions themselves, 
we introduce structures called cost.closures. A cost-closure is a triple (f, c f, a) of a function f, its 
associated cost-function cf and some arity information a. Together with cost-closures we define two 
(left associative) infix functions @ and c© which define the application of cost-closures and the cost 
of application. Functions ~ and c@ satisfy: 

{ r e  if a = l  { c f e  i f n = l  
( f ,  e l ,  a) ~ e = ( f  e, c f  e, a - 1) otherwise (f, c f ,  n) cQ e = 0 otherwise 

The arity component of the cost-closure, and its use in the definition of cQ is explained by the fact 
that for reasons of efficiency and simplicity, there is no evaluation of the body of a function until 
the function is supplied with at least the number of arguments in it's definition (this avoids the 
potentially expensive resolution of name clashes, and is thus a feature of most functional language 
implementations)° 

Cost-closures are used in the following way. We define two syntax-directed translation functions 
and T. The purpose of P (figure 3) is to modify the original program so that all functional objects are 
translated into cost-closures, and to perform application via ~. T (figure 4) defines the cost-functions, 
using c~. ']:he cost of evaluating any expression ezp with respect to definitions f i  X l . . .  x m = expi, 
i = 1 , . . . ,  k is then defined by the program given in figure 2. 

Ze't = V(e ) 

efl Xl...x~ x = i "~ ~t'oV[el] 

in 7oV[d 

Figure 2: Higher-Order Cost-Program Scheme 



364 

V l ~ p  d 
];[if e I then e2 else es] 

v[(e~p)! 
];[f,l 

V[co~stl 

= Vle*p] @ V l d  

= i f  v I e , l  th , ,a  V ie , !  else v le~ ]  

= ( V l ~ , p ] )  

= ( f ' , c f ~ , n ~ )  VIpd = ( p ~ , c p ~ , m ~ )  
= cons t  ];[ident] = i d e n t  

Figure 3: Function Modification Map, 

Tie# ® eq = Tie,/] * 7[¢1 + (e# c® e) 

~r[if el th~ 4 else ~;] = TId] ÷ i~ 4 then ~'[41 el,e ~[e;] 

T [ ( e z f ) ]  = (T[exp']) 
T [ ( p i  , cpi , mi  ) ]  = T[ ( f+  , cf+ , ni ) l  = ~' [cons t ]  = 0 

Figure 4: Cost-Expression Construction Map, T 

l~ is defined on the structure of expressions ezp and e. 7" is consequently defined over the syntax 
of expressions generated by Y. 

Some Optimisat ions  

The code derived by the above translation schemes is rather more cumbersome than is necessary. This 
is because we introduce more ©% and c©'s than are necessary. Some straightforward optimisations 
simplify the cost program considerably, and can be defined according to the syntactic structure of 
expressions [San88]. 

Example  

The following simple example illustrates the derivation (and the optimisation): 

map f x ffi if (null x) then nil else (cons (f (hd x)) (map f (tl x))) 

The cost-function derived from this is: 

cmap f x = I + ((null,cnull,l) c© x) + 
if ((null,cnull,1) @ x) then nil 
else (((cons,ccons,2) cO (f @ ((hd,chd,1) @ x))) + 

((cons,ccons,2)@(f @ ((hd,chd,1)@ x)) c@ ((map',cmap,2)@ f @ ((tl,ctl,l)~ x))) 
+ f c@ ((hd,chd,l)@ x) + ((hd,chd, l)c@ x) + ((map',cmap,2)@ f c@ ((tl,ctl,1)@ x)) 
+ ((map',cmap,2)c~ f) + ((tl,ctl,l)c@ x) ) 

Using simple optimisation schemes, we get the equivalent cost-function definition: 

cmap f x = 1 + if (null x) then 0 else (f c@ (hd x)) + (cmap f (tl x)) 

2.3 Correctness  

The derived program computes the number of times a certain "step" is performed in the evaluation 
of the program. In [San88] we formalise our intuitive model of "evaluation steps" via an operat ional  
s eman t i c s  and prove that the number of steps our derived program computes is correct with respect 
to the actual operational behaviour of the original program. 



365 

3 Lazy Time Analysis: Describing Context 
A major obstacle in the time-analysis of lazy languages is the problem of context sensitivity: the cost 
of evaluating an expression depends on the context in which it is used. In order to give a compositional 
treatment of the analysis of lazy-evaluation we must take into account some description of context. 

3.1 Modelling Contexts with Projections 

The formulation of a context which will be used in our time analysis is that provided by Wadler and 
Hughes [WH87] in the analysis of strictness. Wadler shows how this formulation of context can be 
useful for time analysis in [Wad88]. Here we provide an introduction to the use of projections to model 
contexts, b~r a fuller development the reader is referred to [WH87]; a more formal development is 
given in [DW89]. 

The basic problem is, given a function, how much information do we require from the argument 
in order to determine a certain amount of information about the result. Projections, in the domain 
theoretic sense, can provide a concise description of both the amount of information which is sufficient 
and the amount which is necessary. 

DEFINITION 8.1 A projection, a, is a continuous function from a domain l )  onto itself, such that 
a ___ ID/) and a o o~ = a,  where IDv is the identity function on 1) 

In other words, given an object u, a projection removes information from that object (a u _ u), 
but once this information has been removed further application has no effect (a(a  u) = a u). A 
projection is used to represent a context, where the information removed represents information not 
needed by [hat context. 

In the following the terms projection and context will be synonymous, and will be ranged over by 
a and 3. 

DEFINITION 3.2 Safe Projec t ions :  Given a (first order) function, f ,  of  n arguments, i f  

a(f(u:t . . . . .  ur,)) = ~ ( f (u l , . . . ,  (flu/),... un)) 

for  all objects U l , . . .  ,un, then we say that in context a, fl is a safe context for the i 'th argument of 
f. This is abbreviated by f l  : a =~ fl . 

Lifted Pro jec t ions  

We will require that projections describe two types of information: what information is sufficient, 
and what information is necessary. In order to describe the latter, Wadler and Hughes introduce a 
new domain element, %, called "abort". The interpretation of au = ~ is that context a requires a 
value more defined than u. To make this work, we must have % r- _L and all functions are naturally- 
extended to be strict in t~, i.e., f ( u l , . . . ,  ~ . . . . .  u,) = %. These technical devices are explained more 
formally in [Burg0] in terms of lifting. 

The  Pro jec t ion  Lat t ice  

A projection ~ : Tt~ --. Tt~, is called a projection over D. Projections over any domain form a lattice, 
with ordering r--, containing at least the following points: 

ID ID  u 

S T R u  

ABS ,i • STR 

FAIL 

= { %  i f u = _ k o r u = %  
u otherwise 

ABS u = otherwise 
FAIL U = 



366 

DEFINITION 3.3 A strict projection/s any projection a such that ct(L) = % 

The largest of such projections is STR, giving us an alternative definition of strict projections: a 
projection a is strict if and only if a ___ STR. Of the non-strict projections, the smallest is the 
projection ABS. This context is important since if it is safe to evaluate an expression in the context 
ABS, then the value of the expression will not be needed. FAIL is the unsatisfiable context. 

There may be infinitely many projections, which are all either strict (FAIL r- c~ r- STR) or non- 
strict (ABS E a _ ID). The four projections above will be used "polymorphically" to represent the 
corresponding projection over the appropriate domain. 

Given two projections a C/3, ct represents a more precise description of a context than/3. The 
context ID is therefore the least informative. Furthermore, if it is safe to evaluate some expression 
in a context a, then it is always safe to evaluate in a context/3, cr ff/3. 

Contexts  for Lists 

The following projections are useful for building contexts over the non-flat domain of lists ~D* of 
elements from some domain •: 

{ n i l  if u = nil C O N S a / 3 u = {  cons(az ) ( /3xs )  if u = cons x xs  
NIL u = ~ otherwise ~ otherwise 

NIL is the context which requires an empty-list, and CONS a fl is the context which requires a non- 
empty list whose head is needed in context a and whose tail is needed in context ft. For example, 
the context (CONS STR ABS) requires a non-empty list whose first element is needed, and the rest is 
not. 

Contex t  Analysis  

Analysing context is a backwards analysis [AH87]. Given a context ot for a function f ,  what can we 
say about the contexts of the arguments? We need to propagate the information about the result of 
a function backwards to it's arguments, i.e., given a function f of arity n, and a context a we need 
to find each 3~ such that f i  : ~ =~/3. 

Ideally we need to find the smallest/3i, since these describe the contexts most precisely. In order 
to give a computable approximation we may settle for some/3i satisfying the above property. 

Pro jec t ion  Transformers  

A function of a yielding such a/3i is called a projection transformer. We will adopt the following no- 
tation: The projection-transformer written f # i  is a function satisfying f i  : a ~ f # i a .  N.B. Strictly 
speaking we should distinguish between the syntactic objects--the program defining f ,  and the se- 
mantic objects--the projections, and the denotations given by some semantic function. Following 
the style of [WH87] we will mix these entities for notational convenience. 

Rules for defining recursive equations for the projection transformers are given in [WH87]--an 
important result here is that a solution to these equations can be determined automatically if we 
work with finite lattices of projections, although it is not difficult to modify the equations to give 
more accurate projection equations (which are harder to solve). 

4 Sufficient-Time Analysis 

In this section we show how context information can be used to aid the time analysis of a lazy 
first-order language; Sufficient-time analysis (with some minor differences) corresponds to the time 
analysis presented in [Wad88]. The information obtained by the backwards analysis is used to derive 
equations which compute an upper bound to the precise cost of a given program. This upper-bound 



367 

~leo,,.+t]o+ 
~T~[ftf e 1 then e2 else es]a 

ZIp(e~..-e.)]~ 
Z [ f ,  ( :el . . .  e . ) ] a  

= Z[ident]a = 0 

= a ~ , ,  T,[et]ID + i f  et then  LIe~l,~ eZss y, Ie~]~ 

= "r.[etlO,~'.)  + . . .  + ' r ,  le,,l(p+"o,) 
= cf , (ez . . ,  e , , c0  + T,[ez](f,#zvt) + ' "  + To[e,](f,#"c~) 

Figure 5: Definition of T~ 

is obtained by using information which tells us what values are sufficient to compute an expression. 
We call the resulting analysis a sufficient-time analysis. 

4.1 C o n t e x t - P a r a m e t e r i s e d  Cost  Funct ions  

As in the first-order time analysis of section 2, we will define a cost-function, cfi, for each function 
fi defined in the original program. As before the cost functions will take as parameters the original 
arguments to the functions, but in addition they will be parametefised by a context, representing the 
context in which the functions are evaluated. 

How can cos t - func t ions  m a k e  use of  con t ex t  ? 

We know that any expression in the context ABS will be ignored, so the cost in this context is zero. 
In any other context the cost of a function application will be (approximated above by) 1 + the cost 
of evaluating the body of the function, in that context. 

We define the cost functions associated with each function f+(xl. . ,  zn+) = ei to be 

c f , (x~ , . . . , x , , ,a )  = a ~-% 1 + T.[e,]a 

where we introduce the notation a ,--% e to abbreviate cost e "guarded" by context a :  

0 if a = ABS 
Ot t--.--),s e ~ 

e otherwise 

The syntactic map T~ defined in figure 5 is very similar to that defined in figure 1, but is defined 
with respect to a particular context. ~ [ e ]  a defines the cost of evaluating expression e in context 
c~. It makes use of the context transformers f~#z ..  f~#,~ defined for each function f~, which satisfy 
the required safety criterion. In particular it will be appropriate to set f#i(ABS) = ABS, since if the 
result of a function is not needed, then neither are its arguments. 

The rule for function application tells us that the cost of evaluating a function application is the 
associated cost-function applied to the arguments (and the context) plus the sum of evaluating the 
arguments in the contexts prescribed by the context-transformers. 

The conditional expression, like any other, has zero cost in the context ABS (guaranteed by the 
use of ~--%). Otherwise ~we sum the cost of evaluating the condition (which may or may not be 
evaluated, hence the safe-context for boolean values ID, c.£ [Wad88] ) plus either the cost of the 
alternate or the consequent, depending on the value of the condition. 

The cost of evaluating any expression in the context ABS is zero, so we have: 

PROPOSITION 4.1 For every expression e, 'T,[e]ABS = 0 

PROOF Straightforward structural induction in e [] 



368 

A Smal l  E x a m p l e  

Consider the program: hd (cons (not  ( t r u e ) ,  exp)) ,  where not  (x) ffi i f  x then  f a l s e  e l s e  t r u e  
and e:cp represents some arbitrary expression. The cost-function for not  is 

c n o t ( x , a )  ,, a ~-~, 1 ÷ ( a '--% 0 + i f  x t h e n  0 e l s e  0 ) 

We assume a boolean-valued program is evaluated in the context STR, and so the cost program is 
defined by: T,[hd( cons(not  ( t r u e ) ,  exp))] STR, which is, by definition 

¢not ( t r u e ,  cons #1 (hd #1 (STR))) + 0 + T,[exp] cons #2 (hd #1 (STR)) 

The context transformers for the primitive functions satisfy 

hd*l(~) = CONS ~ ABS cons#l(CONS a 8) ---- ~ cons*~(CONS ~ 8) = 

and so the cost is c ~ o t ( t r u e  , STR) + T,[exp] ABS = 1, for any expression exp. 

4 . 2  Approximation and Safety 
What are the precise properties of the cost programs? Here we consider the approximation and 
correctness properties of the "lazy" cost-program. 

A p p r o x i m a t i o n  

The expression Y,[e]~ gives an upper-bound estimate to the cost of lazy evaluation of e in context 
a.  The cost expressions formed by T, are a refinement of the caU-by-value cost-expression (section 2) 
in which subexpressions whose values are not needed do not contribute to the cost equation. Since 
the safety condition for projections does not specify that we require the smallest possible projection, 
the context ABS may be approximated by any larger projection. This approximation is reflected in 
the cost-program as an over-estimation of cost. (In the extreme case the context transformers are 
such that  the context ABS is never derived in the cost-program, and so the value of the cost program 
is the same as that given by the strict derivation of figure 1.) Note also that  in computing the cost 
of a function application f(e)  in context a the cost due to e will only be counted once. The context 
of c, f # l ( a )  will be the net context of the possible contexts in which e is shared, and so the process 
properly models call-by-need. 

Safe ty  

Whenever the cost-program terminates yielding a value, that value is indeed an upper bound to the 
time cost of evaluating the program lazily. A problem with this analysis method is that there are 
cases when the cost-pr0gram does not yield a value when it should do so. Firstly the cost-program 
may not terminate even when the program does--non-terminating cost expressions can be thought of 
as "computing" the worst possible upper-bound to the cost. However the approximation in the cost- 
program can leoxl to arbitrary run-time errors (i.e, not just nontermination). In the next section we 
introduce necessary-time equations which allow us to place a lower-bound on the precise complexity 
and which have better termination properties. 

5 N e c e s s a r y - T i m e  A n a l y s i s  

So far we have outlined th6 use of contexts to derive equations which can give an upper-bound to the 
time-complexity of an expression in a particular context. As mentioned previously, this idea is based 
on [Wad88]. The cost-functions which compute this sufficient-complexity are only partially correct in 
the sense that if they compute a value, then that value is indeed an upper-bound to the time-cost of a 
program. There is potentially much more information about context using the projections described: 



369 

~[constla 
~ [ J . f  el then e2 else e3]a 

:r . [P(el . . .  en)]a  

~ [ f i ( e l . . .  e . ) ] a  

= T.[ident]ct = 0 

= a ,--~. T~[e~ISTR + i f  e~ then T.[e2]a e l s e  T.[ea]a 

= ~[ed(p~ '~ )  + . . .  + ~I~. l (p#-~)  
= e f i ( e l . . ,  e.,a) + T~[el](fi#la) + . - .  + ~[e.](/,#"o,) 

Figure 6: Definition of T~ 

strict contexts allow us to describe the amount of information which is necessary to compute a value. 
In this section we show how the use of this information can give us equations which describe a lower 
bound to the precise time-cost (the necessary-time) and which overcome the termination deficiencies 
of sufficient-time analysis. The key to sufficient-time analysis is the use of the context ABS to deduce 
that an expression will not be evaluated. The key to necessary-time is the operational interpretation 
of the strict projections. 

5 . 1  N e c e s s a r y - C o s t  F u n c t i o n s  

In order to construct functions which compute the necessary-cost of evaluating a function in a 
particular context, we make the following operational connection between expressions which can be 
safely evaluated in a strict context, and their operational behaviour. 

• If it is safe to evaluate an expression of the form f ( e l , . . . ,  e,)  in a strict context, then opera- 
tionally, we know that this outermost application must be reduced. 

Conversely', if an expression is evaluated in a non-strict context then that expression may or may not 
be reduced (only the context ABS allows us to conclude that it definitely will not). 

Motivated by this observation, we now define the necessary-cost. The cost of evaluating an 
expression e in a context a is given by T,[e]a  where T, is once again a mapping defined over the 
syntax of expressions, and assuming some safe context transformers for the user-defined functions. 

For each function definition of the form f i ( x l . . ,  xm) = ei we will define an associated necessary- 
cost-function e l i (x1 , . . . ,  x , , ,  a) = a '--*n 1 +Tn [ei]a, where we use the notation a '--% e to abbreviate 
necessary-cost e modulo context a: 

l e if a _ STR 
t~ ~--~,~ e = 0 otherwise 

The definition of T. is given in figure 6. The rules are very similar to the definitions for T. but we 
use ~--~= in place of ~-%. The only other difference is in the translation for the conditional expression. 

PROPOSITION 5.1 For all contexts a, if c~ E_ STR then 

OL(if Ul then u2 e i s e  u3)= a ( i f  STR(Ul) then u2 e i s e  us) 

PROOF Straightforward by cases according, ul -3 .l_ and ui U _l_ [] 

This tells us that  in any strict context it is safe to evaluate the condition in the context STR, arid 
thus gives us the appropriate context for determining the cost due to the condition in the conditional 
expression. 

5 . 2  E x a m p l e  

As a example of necessary-time analysis we use insertion-sort (as in [Wad88]). The definitions are 
given in figure 7. The necessary-time equations constructed according to T~ are given in figure 8: 
In this example we wish to consider the cost of evaluating rain in a strict context. We are not 
particularly concerned here with the techniques for deriving the safe projection transformers. We 



370 

insert(x,xs) 

sort(xs) 

min(xs) 

= if null(xs) then cons(x,nil) 
else if x < hd(xs) then cons(x,xs) 

else cons(hd(xs),insert(x~tl(xs))) 
= i f  n u l l ( x s )  then n i l  

e l s e  i n s e r t ( h d ( x s ) , s o r t ( t l ( x s ) ) )  
= hd(sort(xs)) 

Figure 7: Insertion So~ 

c i n s e r t ( x , x s , a )  = 

csort(xs.a) 

cmin(xs,a) = 

a~-~. I + if null(xs) then 0 
else if x < hd(xs) then 0 

else cinsert(x.tl(xs),cons#~(a)) 
a~-% 1 + if null(xs) then 0 

else cinsert(hd(xs),sort(tl(xs)),a) + 
csort(tl(xs),insert#2(a)) 

a~-% I + csort(xs,hd#1(~)) 

Figure 8: Necessary-Cost Functions 

hd#I(STR) 
cons#2(CONS STR ABS) 

insert#2(CONS STR ABS) 

Now we examine the cost of rain: 
cmin (xs, STR) 

note however that the projection transformers needed in this example are members of the finite 
domains for lists (and integers) described in [WH87] for the purpose of strictness analysis, and as 
such can be determined mechanically by fixpoint iteration. The equations we require are: 

= CONS STR ABS 

= ABS 

---- CONS STR ABS 

csort (xs, CONS STR ABS) 

cinsert (y, ys, CONS STR ABS) 

= STR~-%l + csort(xs,hd#1(STR)) 
= i + csort(xs,CONS STRABS) 
= I + if null(xs) then 0 

else cinsert (hd(xs), sort (tl (xs)), CONS STR ABS) + 
csort (tl (xs), insert #2 (CONS STR ABS) ) 

---- 1 + if null(xs) then 0 
else cinsert(hd(xs) ,sort(tl(xs)) ,CONS STR ABS) + 

csort (tl(xs) ,CONS STR ABS) 
= 1 + if null(ys) then 0 

else if y < hd(ys) then 0 
else ¢insert(y,tl(ys) ,cons#2(CONS STR ABS)) 

= 1 + if null(ys) then 0 
else if y < hd(ys) then 0 

else cinsert (y,tl (ys),ABS) 

= 1 

and so csor t  (xs,CONS STR ABS) = 1 + i f  n u l l ( x s )  then  0 
else 1 ÷ csort(tl(xs).CONS STRABS) 

This simple recurrence has the exact solution 1 + 2*length(xs)  and so 



371 

c m i n ( x s , S T R )  = 2 + 2 * l e a g t h ( x s )  

In this example the sufficient-time equations derive the same result, since the contexts (CONS STR 
ASS) and STR are very precise (i.e. they are the smallest safe projections). Therefore we can conclude 
that this is the exact  time complexity. 

5 . 3  A p p r o x i m a t i o n  a n d  S a f e t y  

The expression 7", [e]a gives a lower-bound estimate to the cost of the lazy evaluation of e in context 
~. For a non-strict context a the lower bound must be zero since an expression in such a context 
m a y  or  m a y  n o t  need to be evaluated; Proposition 5.2 below establishes this property. 

PROPOSITI[ON 5.2 For  every  expression e, ABS ~ a E ID =~ 'Tn[e]ot = 0 

PROOF Structural induction in e. 13 

S a f e t y  

The necessary-cost programs enjoy better termination properties than the sufficient-cost programs, 
being at least as well defined as the original program. We state this property in the following way: 

THEOREM 5.3 Given  mu tua l l y  recursive f u n c t i o n s  f l , . . ,  f ,~,  def ined by equat ions:  

f i ( x l  . . . . .  , x m )  = ei, i = 1 . . . m  

then  f o r  all objects ux, . . . u,~, and  contez t s  a 

ol( f i ('ul . . . .  , u,~, ) ) "7 .L =,. c f i ( u l , . . . , un, , ot ) "7 .L 

where c f i  is def ined by the equation e l i ( x 1 , . . . ,  xni, a )  = a '--% T~[e~la 
PROOF Omitted--a fixed point induction over the functions and cost-functions simultaneously. [] 

6 Higher-Order Lazy Time-Analysis 
In this section we develop an extension to the techniques for lazy time analysis to incorporate 
higher-order functions. This is achieved by adaptation of the higher-order analysis given in section 2, 
illustrated "with a conservative extension to the context information available for first-order functions. 

6 .1  C o n t e x t  I n f o r m a t i o n  

The extension of lazy-time analysis to higher-order functions also needs context information. Here we 
immediately run into some problems. The techniques which we have assumed so far, concerning the 
form and derivation of context transformers, cannot be directly extended to higher-order functions. 
Consider, for example, an instance of the apply function, apply f x, in some context cx. The 
problem here is that there is no useful context information that can be propagated to x (by any 
context function apply #2) which is i ndependen t  of the function f .  

Wray's thesis [Wra86] shows how to handle a "second order" language (for strictness analysis) 
by additional parameterization of the context transformers to include the context transformers for 
functional arguments. An approach to fully higher-order backwards analysis is outlined in [Hng87]. 
This is based on a mixture of abstract interpretation (forwards analysis) and first-order backwards 
analysis. For the purposes of this section it will not be necessary to introduce these devices. Instead 
we will deraonstrate our methods with a sufficient-time analysis using a very simple extension of 
the context information to higher-order functions. It is expected that the information provided by a 
full development of context analysis for higher-order functions could be accommodated in the time 
analysis we present here. 



372 

The language we use here is defined by the same grammar as that of the higher-order language 
in section 2. 

6 . 2  T h e  P r o j e c t i o n  T r a n s f o r m e r s  

The method we shall describe for constructing the time equations will require the use of the same 
style of projection transformers that are used for the first-order analysis--for each function definition 
fi we will require projection transformers fi #k such that f k~ =~ (f~#ka)" 

Since we are working with a higher-order language, we may expect expressions of the form 

f~ e l . . .  e,~,e,,~+l.., e,~ 

Here the contexts propagated to expressions e l . . .  e~ are determined by the projection transformers 
of fi. For a conservative estimate we know it is safe to propagate the context ID to the expressions 
e ~ + l . . ,  e,~. In fact, the analysis we present will be able to use more precise information in this 
instance. 

Objects of function type will also require projections to describe the context in which they are 
needed. A projection of a function gives a function which has less defined results on some of its 
arguments. For the purpose of time analysis it is sufficient to use the four-point context domain to 
describe the amount of evaluation of a functional argument (i.e. all or nothing). In an expression of 
the form exp e in a context a ,  we can safely set the context for exp to be a mapping of a into the 
four-point domain for functions. For convenience we define a functional <> to perform this task: 

FAIL if ot = FAIL 
Oc~ = ABS if a = ABS 

STR if FAIL v- a E STR 
ID if ABS r'- c~ E_ ID 

6 . 3  A c c u m u l a t i n g  C o s t - F u n c t i o n s  

As in the strict higher-order language we will define for each function in the language a cost function, 
constructed via two syntactic maps. The first, l)~, plays the same rble as that of 12 in the higher- 
order strict language - -  it constructs cost-closures and makes their application explicit via an apply 
function @~. The second, T~, is used to define the cost-expressions. In the following we use the term 
cost-expression to refer to objects of type context --* cost. The definitions of 12L and TL are given in 
figures 9 and 10. These definitions will be explained in the following sections. 

User -def ined  func t ions  

For each function defined fi  x l . . .  x,~ = el we define a sufficient-cost function to be 

cfi (xa ,c~) . . .  (x m ,an,) a = a ¢--% 1 q- ~ o V , [ e , !  ,~ + e l ( f / ' ~ , ~ )  + . . .  + an,(fi#m~) 

In addition to the context-transformers, the cost functions require modified versions of functions 
themselves: f" =~ . . . = . ,  = VLIe,I 

A p p l i c a t i o n  a n d  it's Cost  

The cost-functions defined above now have additional parameterisation in the form of cost-expressions 
paired with each argument. We will explain this choice by considering the cost associated with 
function application exp e. 

In the higher-order strict language, application is first translated to ex/¢ @ d (were exit is defined 
according to ~') and the cost of evaluation is T[exp'] + T[e'] + exlt c• e'. Suppose we begin by 
re-using Y, and we attempt to define (with respect to some context/~) a lazy version of T,  TL. 



373 

In the rule for TL[exp' © e']/~ we must propagate the context ~ to the appropriate cost-expressions. 
We can map fl into a four-point domain (overloading <>) to get a safe context for the function exp'. 
We do not know the appropriate context for d, but we can always safely use the context ID and set 

~[ezp' @ d]/~ = :TL[exp']<)~ 4" ~[e ']!D 4" (exp' ¢@ e') 

Two major problems make this rule unsatisfactory. 

1. No useful context information is propagated to e'. The information we have available is the 
projection transformers, but this is not used since we do not in general know which projection 
transformer is appropriate. 

2. If we have a partial application, for example if ezp is cons (ezp' is (cons ,coons,2))  then e 
may not be evaluated at all. 

We solve both of these problems by passing both the argument, and the cost-expression to the cost 
function. It is then the cost function's task to apply the appropriate context (which is determined by 
the projection transformers of the function) to these cost expressions--see the cost-function scheme 
above. We introduce new versions of ¢ and c¢ to accommodate these requirements. 

Cost-closures and  the  apply  funct ion 

For these reasons we need to define a new version of Y and a different version of the function ~. The 
"lazy" version of Y, 1)L is defined in figure 9. Because, in the rule for application, the cost-closure 
YL[exp] is applied to the cost-expression TL[e], we need a new version of the © function which satisfies: 

(f, c f ,  a) ¢L (e. ce) = { f e if a = 1 
( f  e, c f  (e.ce),a-- 1) otherwise 

Note that cost-closures retain the same function-costfunction-aritv structure. 

Defining the  cost-expressions 

Figure 10 also defines cost-expressions via a mapping TL. A significant difference here is that we do 
not make t]he definition with respect to a particular context. This is because we wish to pass cost- 
expressions (functions context ~ cost) to the cost-functions without applying them to a particular 
context. 

To define T~ we define a couple of useful functions: 

• Addition of cost expressions: we use a speclalised addition operator, ¢+, which (for the left 
operand) maps the context into the four-point projection domain of the left operand: (cel ~- 
ee2) c~ = (ce~(<>a)) + (ce2 c O. By allowing <> to be polymorphic, ot- is associative. 

• The null cost-expression: the function 0 gives zero-cost in any context, so 0 er = 0 for any ~. 

Consider the rule for application: Tr[exp' ©,. (e'.ce')] = TL[ezp'] 04- (exf  ¢@L (d,ce') ) 
If we apply this expression to a context/~, we get TL[ezI/] <>/~ + (ez~ c@,. (e',cd)) ~. To ensure 

c©L gives us~ a cost expression, only a small change is needed in the definition of cQ 

(f ,  cf, n) c©~ (e,ce) = ~ e._f (e,ce) i fn  = 1 
0 otherwise ( 

Pr imi t ive  funct ions  

The cost-function associated with a primitive function p~ of arity rni is 

cpi (X! , C l ) . . .  {Xra i semi ) ~ = Cl(Pi#10~) 4 . . . .  4. ~mi(pi#miot) 



374 

"P~lezp el 
PL[if el then e 2 else es] 

= VLIe=Pl ®~ (v~M,~oV~ld) 
= if Vale,] the= V, le~l else V~[e~] 

= (V~[ezp]) 
= ( f [ , c f i , n i )  'PL[Pl] = ( p l , c p i , m i )  

= const PL|ident] = ident 

Figure 9: The function modification map 

~li~ d *h~n 4 sls ,  e~l 

~ [ ( p ~ ,  ep~, m~ )l 

= ~[e =p ' l  o+ (ezp' c®~ (e,ce)) 
= ~ld]  o+ i~ d then ~14l.ls* ~{e~] 

= T ~ ( f ~ ,  c f~ ,  n~ )] = T~[cons t]  = ~ [ i d e n t l  = 

Figure 10: The cost-function construction map 

Applying the above schemes in the construction of time-equations requires that we remove (par- 
tially evaluate) unnecessary instances of ~L, and cQL, as we outlined in section 2.2. In addition we 
need to specialise functions to remove unnecessary parameters--this is because of the additional 
parameterisation involved in both modified functions, and cost-functions. The (somewhat lengthy) 
examples have been omitted, but it is worth noting that the process could benefit from some simple 
mechanical support. 

7 Conclusions 

We have presented a method of analysing the time complexity of a lazy higher-order functional 
language. The techniques for a strict higher-order language are more fully developed in [San88]. 
We have extended of these ideas to give a treatment of lazy higher-order languages, based upon 
[Wad88]: projections are used to characterise the context in which an expression is evaluated, and 
cost-equations are parameterised on this context-description. We have introduced two types of time- 
equation: sufficient.time equations (corresponding to the equations in [Wad88]), and necessary.time 
equations, which together provide bounds on the exact time-complexity. 

% 1  R e l a t e d  W o r k  

A (non-compositional) means of analysing a call-by-name language is considered in [LeM88]. Le 
M~tayer's solution involves transforming a call-by-name program into a strongly equivalent one with 
call-by-value semantics. The call-by-vahe program can be analysed using "strict" techniques (such 
as those presented in section 2). The translation, however, makes the program significantly more 
complex, and it not clear that the translation preserves the number of steps that are being counted 
in the analysis. 

Bjerner's time analysis for programs in the language of Martin-LSf type-theory [Bje89] has rele- 
vance to the analysis of first-order lazy functional languages, mad provided inspiration for Wadler's 
work. His operational model of contexts, evaluation degrees could form an alternative basis for the 
work presented here. More recently, Bjerner and Holmstr6m [BH89] have adapted the ideas in [Bje89] 
to give a calculus for the time analysis of a first-order functional language. The equations used to 
describe context are precise, thus specifying an ezact time-analysis. The problem here is  that the 
equations cannot be solved mechanically. The main correctness theorem developed (independently) 



375 

in [BH89] (apart from the correctness of the context equations) corresponds very closely to theo- 
rem 5.3--if we view their model of context (called "demands") as projections, we get a class of 
projections for which necessary and sufficient times will always be equal. Equations for this class of 
"exact" projections can be derived with a straightforward modification of the projection equations 
in [WH87]. 

7 . 2  F u r t h e r  W o r k  

Higher -Order  Contex t  In format ion  

The use of first-order context analysis in the analysis of a higher-order language means that, even 
though cost-expressions are passed as arguments so they are applied to the appropriate context, 
there are many cases where the contexts derived for higher-order functions are not sufficiently 
precise. Consider the following function definition: For satisfiable contexts c~, the apply function 
(apply f x = f x) has the following projection transformers: apply#lc~ = Oa, and apply#2c~ = ID. 

Without knowing about the context of the function apply, the context for x is approximated by 
the least informative context ID. 

The suliident-time equation constructed with these projection transformers is 

capply <f,fc> <x,xc> ~ = a ~--% I + fc(<>a) + xc ID + (f c@ <x,O>) a 

The lack of accurate projection transformers means that the cost-expression xc is applied to the 
imprecise context ID---it is not difficult to construct examples where this gives an unsatisfactory time 
analysis. Context-analyses for higher-order languages are not well-developed. As mentioned before, 
Wray's strictness analysis handles "second order" functions--projection equations can be extended to 
handle such functions, and the resulting context descriptions can be used by cost-functions presented 
here. Fully higher-order analyses still present problems for the construction of  both approximate and 
precise context equations. 

An alternative solution to this problem further utilises the technique of "passing" cost-expressions. 
The expression bound to x in the function apply above is evaluated in the context of the function 
bound to f ,  so we can pass the cost expression on to the cost function associated with f as follows: 

capply <f , f¢> <x,x¢> a = ct ~--% 1 + fc(<>a) + (f  c@ <x,xc>) a 

To generalise this technique we must check that any parameter whose cost-expression we wish to 
propagate is not shared (i.e. it is not required in more than one context). For a sufficient-time analysis 
we could propagate to all contexts, while in a necessary-time analysis we could choose to propagate 
the cost expression to a single context. In addition we need to determine when the propagation is 
necessary, since unnecessary propagation (i.e. when the context information is sufficiently precise) 
decreases t]he compositionality of cost-functions with no additional benefit. 

A c k n o w l e d g e m e n t s  

Thanks to Jesper Andersen, Chris Hankin, Sebastian Hunt and Daniel Le M~tayer for their useful 
suggestions relating to earlier drafts of this paper. 

References  

[AH871 

[BH891 

S. Abramsky and C.L. Hankin, editors. Abstract Interpretation of Declarative Languages. 
Ellis Horwood, 1987. 

B. Bjerner and S. HolmstrSm. A compositional approach to time analysis of first order lazy 
functional programs. In Functional Programming Languages and computer architecture, 
conference proceedings. ACM press, 1989. 



376 

[Bje89] 

[Bur90] 

[DW89] 

[Fla85] 

[HC88] 

[HugS7] 

[LeM85] 

[LeMS8] 

[Ros89] 

[San88] 

[Wad88] 

[Weg75] 

[WH87] 

[Wra86] 

B. Bjerner. Time Complezity of Programs in Type Theory. PhD thesis, Chalmers University 
of Technology, 1989. 

G.L. Burn. A relationship between abstract interpretation and projection analysis (extended 
abstract). In 17th ACM Symposium on Principals of Programming Languages, January 
1990. 

K. Davis and P. Wadler. Backwards strictness analysis: Proved and improved. In Proceed- 
in#s of Glasgow Workshop on Functional Programming, August 1989. 

P. Flajolet. Mathematical methods in the analysis of algorithms and data structures. Rep- 
port 400, INRIA, Le Chesnay, France, May 1985. 

T. Hickey and J. Cohen. Automating program analysis. J. ACM, 35:185-220, January 
1988. 

R. J. M. Hughes. Backwards analysis of functional programs. DoC Research Report 
CSC/87/R3, University of Glasgow, March 1987. 

D. LeM6tayer. Mechanical analysis of program complexity. In ACM SIGPLAN 85 Sympo- 
sium, July 1985. 

D. LeM6tayer. Analysis of functional programs by program transformation. In Second 
France-Japan Artificial Intelligence and Computer Science Symposium. North-Holland, 
1988. 

M. Rosendahl. Automatic complexity analysis. In Functional Programming Languages and 
computer architecture, conference proceedings. ACM press, 1989. 

D. Sands. Complexity analysis for a higher order language. Technical Report DOC 88/14, 
Imperial College, October 1988. 

P. Wadler. Strictness analysis aids time analysis. In 15th ACM Symposium on Principals 
of Programming Languages, January 1988. 

B. Wegbreit. Mechanical program analysis. C.ACM, 18:528-539, September 1975. 

P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In 1987 Conference on 
Functional Programming and Computer Architecture, Portland, Oregon, September t987. 

S. C. Wray. Programming techniques for functional languages. Technical Report 92, Uni- 
versity of Cambridge Computer Laboratory, June 1986. 


