
The Value Flow Graph: A Program Representation for
Optimal Program Transformations

Bernhard Steffen * Jens Knoop t Oliver Rfithing t

A b s t r a c t

Data flow analysis algorithms for imperative programming languages can be split into two
groups: first, into the semantic algorithms that determine semantic equivalence between terms,
and second, into the syntactic algorithms that compute complex program properties based
on syntactic term identity, which support powerful optimization techniques like for example
partial redundancy elimination. Value Flow Graphs represent semantic equivalence of terms
syntactically. This allows us to feed the knowledge of semantic equivalence into syntactic
algorithms. The power of this technique, which leads to modularly extendable algorithms, is
demonstrated by developing a two stage algorithm for the optimal placement of computations
within a program wrt the Herbrand interpretation.

1 I n t r o d u c t i o n

There are two kinds of data flow analysis algorithms for imperative programming languages. First,
the semantic algorithms that determine semantic equivalence between terms, e.g. the classical
algorithm of Kildall [Kil,Ki2]. Second, syntactic algorithms that compute complex program prop-
erties on the basis of syntactic term identity, which support powerful optimization techniques,
e.g. Morel/Renvoise's algorithm for determining partial redundancies [MR]. Value Flow Graphs
represent semantic equivalence syntactically. This allows us to feed the knowledge of semantic
equivalence into syntactic algorithms. We will demonstrate the power of this technique by devel-
oping a two stage algorithm for the optimal placement of computations within a program wrt the
Herbrand interpretation, which is structured as follows:

1. Construction of a Value Flow Graph for the Herbrand interpretation:

(i) Determining term equivalence wrt the Herbrand interpretation (in short Herbrand equiv-
alence) for every program point (Section 4.1).

(ii) Computing a sufficiently large syntactic representation of the semantic equivalences for
each program point (Section 4.2).

(iii) Connecting the representations of equivalence classes of 1.(ii) according to the actual
data flow. This results in a Value Flow Graph (Section 4.3).

2. Optimal placement of the computations:

(i) Determining the computation points wrt the Value Flow Graph of step 1.(ii) by means
of a Boolean equation system (Section 5.1).

(ii) Placing the computations (Section 5.2).

*Department of Computer Science, University of Aarhus, DK-8000 Aarhus C - - The work was done in part at the
Laboratory for Foundations of Computer Science, University of Edinburgh

*Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Uuiversit~t, D-2300 Kiel 1 -The authors
are supported by the Deutsche Forschungsgemeinschaft grant La 42619-1

390

This is the only known algorithm of its kind that is (proved to be) optimal wrt the Herbrand in-
terpretation for arbitrary control flow structures. It therefore generalizes and improves the known
algorithms for common subexpression elimination, partial redundancy elimination and loop invari-
ant code motion.

Rosen, Wegman and Zadeck developed an algorithm with a similar intent. However, they used
a weaker representation for global semantic equivalence, the s~a~ic single assignmen~ form (SSA
form), to represent global equivalence properties [RWZ]. Thus they could not apply the elegant
and structurally independent technique of Morel and Renvoise [MR]. Rather they developed their
own more complicated algorithm, which only works for particular program structures (reducible
flow graphs). Moreover, their algorithm is only optimal for acyctic flow graphs (note, Herbrand
equivalence is called transparen~ equivalence in [RWZ]).

It is worth mentioning that Steffen [Stl,St2] and later Rosen, Wegman and Zadeck [RWZ] were
the first who dealt with the second order effects of code motion. In our algorithm these effects are
an automatic consequence of its optimality (see Corollary 5.7).

Practical experience with an implementation of our algorithm, which is implemented in a joint
project with the NORSK DATA company, shows its practicality. In particular, all examples in this
paper are computed by means of this implementation.

2 A n E x a m p l e

The following example illustrates the main features of our two stage algorithm. First, it works
for arbitrary nondeterministic flow graphs (note that the loop construct of Figure 2.1 is not even
reducible). Second; it considers semantic equivalence between terms.

The diagrams below represent the nondeterministic branching s~ructure as arrows and parallel
assignments as nodes:

I 1 c - - -
Figure 2.1

] [

This program fragment has the following property:

while looping "a + b" and "x + y" evaluate to the same value

which suggests an optimization with the foUowing result:

Figure 2.2

I h:=zq-y } I h:=a+b I

I 11
Already the basic variant (see 4.2) of our algorithm achieves this optimization. The following
discussion demonstrates the effects of the five steps of our two stage algorithm.

The semantic analysis of step 1.0) designates the flow graph with partitions characterizing all
term equivalences wrt the Herbrand interpretation, i.e. all equivalences being valid independent
of specific properties of the term operators (Figure 2.3). In particular, it detects the equivalence
of "a + b" and "x + y" after the execution of either assignment.

391

L
{(a,b,c):=(~,y,~+y)j

[a,x Ib, y Ic, a + b,a + y ,z + b,z + Yl

Figure l

11
(,,~,,~):=(,,,b,~+b) I

[a x]b, ylz,a-4-b,a+y,x+b,x-4-y]

J I

Afterwards, step 1.(ii) extends this designation for every program point to a syntactic representa-
tion of semantic equivalences which is large enough to perform our optimization:

ii]
[alblcl~lylzla+bl~+y] [alblcI=lyl~la+bl~+y]

[a,~t,~,ylc, a+b,~+y,~+b,=+y] I I [a,~lb,~lz, a+b,~+~,~+b,~+y]
[t J ~,, J [

Figure 2.4

Subsequently, step 1.(iii) produces the corresponding Value Flow Graph, whose relevant part is
shown in Figure 2.5:

Figure 2,5

[[albicl=lyl x+yl

[a,~l

The placement procedure only refers to term equivalences that are explicit in the Value Flow
Graph under consideration, i.e. two terms are equivalent at a program point if they axe displayed
as members of the same equivalence class in the Value Flow Graph at this point. Applying a
modification of Morel/Renvoise's algorithm (step 2.0)) to the Value Flow Graph above yields:

L L [alblclxlylzla+b~ [a l b l c l ~ x + y]

[alblclxlwl)la + b x+y]

[alblel=lYlzla + i f ~ / f ~

ta, = J b, ~ ¢~¢/f//z/yZ/z£/C-~.z//2/£/2A

Figure 2.6 [

The inserted nodes axe the optimal computation points (the insertion of synthetic nodes is common
for code motion, see Section 5). - Now, application of step 2.(ii) results in:

392

F i g u r e 2.7

L L
h3 := hi b4 := h2

](a,b,c, h4):=(x,y, h3, h3) I [(x,Y,z, h3):=(a,b, h4,h4) I

Subsequent variable subsumption [Ch,CACCHM] yields the desired result (Figure 2.2).

3 P r e l i m i n a r i e s

We consider terms t G T which are inductively built from variables v G V, constants c G C
and operators op G Op. To keep our notation simple, we assume that all operators are two-ary.
However, an extension to operators of an arbitrary ari ty is straightforward. The semantics of
terms of T is induced by the Herbrand interpretation H = (D, H0), where D=~, T denotes the
non empty da ta domain and H0 the function which maps every constant c E C to the datum
H0(c) = c E D and every operator op E O p to the total function H0(op) : D x D--* D, which
is defined by Ho(op)(tl,t2)=df(op, tl,t~) for all tl,t~ G D. ~ = { a l a : V---~D} denotes the set
of all Herbrand states and ao the distinct start state which is the identity on V (this choice
of a0 reflects the fact that we do not assume anything about the context of the program being
optimized). The semantics of terms t G T is given by the Herbrand semantics H : T--+ (~ ~ D),
which is inductively defined by: Va G ~ V t G T.

{ ~,(v)
H(t)(o-) =d/ Ho(c)

Ho(op)(H(tl)(*), H(t2)(a))

if t = v G V
if t = c E C
if t = op(h,t~)

As usual, we represent imperative programs as directed flow graphs G = (N, E, s, e) with node set
N and edge set E. (These flow graphs are obtainable for example by the algorithm of [All]).
Nodes n E N represent parallel assignments of the form (x l , . , z r) : = (tl,.,tr), where r > 0 and
zi = zj implies i = j , edges (n, m) G E the nondeterministic branching structure of G, and s and
e denote the unique start node and end node of G which are assumed to possess no predecessors
and successors, respectively. ~ r t h e r m o r e we assume that s and e represent the empty statement
"skip" and that every node n G N lies on a path from s to e. The set of all such flow graphs is
denoted by F G .

For every node n = (x~,., zr) := (t~,., tr) of a flow graph G we define two functions

5, : T--* T by 6 , (t)=q t[t l , . , tdz l , . , x~] for all t G T,

where tit1, .,tr/xl,., x~] stands for the simultaneous replacement of all occurrences of xi by ti in
t, i E { 1 , . , r } , and 8 = : ~ - - ~ , defined by: V a G ~ V y E V .

S H(ti)(a) if y = xi, i E {1 , . , r } #,(a)(Y) =d!
tr(y) otherwise

6= realizes the backward substitution, and 8~ the state transformation caused by the assignment
of node n. Additionally, let T(n) denote the set of all terms which occur in the assignment
represented by n.

393

A finite path of G is a sequence (nl, ..,nq) of nodes suchthat (nj,nj+~) E E for j e {1, . , q - l } .
P(n l , nq) denotes the set of all finite paths from nl to nq and ";" the concatenation of two paths.
Now the backward substitution functions Q : T ~ T and the state transformations 0~ : ~ --+
can be extended to cover finite paths as well. For each path p - - (m - n~,., nq - n) E P(m, n)
we define A v : T - * T by A v = a l Q ~ if q = l and A(~,.,~q_ 0 oQq otherwise, and 0 v : ~ - - ~ by
Op =dr O~ if q = 1 and O(~2,.,,,q) o O~x otherwise. The set of all possible states at a node n C N is
given by

Now, we can define:

D e f i n i t i o n 3.1 Let tl,t2 E T and n E N. Then tl and t~ are Herbrand equivalent at node n
i/~ Va e S , . H(t l) (a) = H(t~)(°).

4 C o n s t r u c t i o n o f a V a l u e F l o w G r a p h

The following subsections correspond to the three construction steps of a Value Flow Graph for a
flow graph G, which we consider as to be given from now on.

4.1 D e t e r m i n i n g Local Semant i c Equivalence

The semax~tic analysis determines all equivalences between program terms wrt the Herbrand inter-
pretation (see 1.Optimality Theorem 4.6). These are expressed by means of structured partition
DAGs (cp. [FKU]), which are directed, acyclic multigraphs, whose nodes are labeled with at most
one operator or constant and a set of variables. Given a structured parti t ion DAG, two terms
are equivalent iff they are represented by the same node of the DAG. - T o define the notion of a
structured part i t ion DAG precisely, let ioS~,=d f {TI TC(VU CU Op) A I T] Ew\{0}}.

De f i n i t i on 4.1 A structured partit ion DAG is a triple D = (No, ED, LD), where

• (ND, ED) is a directed acyclic multigraph with node set ND and edge set ED C_ ND x ND.

• L D : ND --+ ~fin is a labelling f~nction, which satisfies

1. v~ e No. I L~(~)\Vl < 1 and
~. V~,~' e No. ~ # ~ ' ~ Lo(~)nLD(~')COp

• Leaves of D are the nodes 7 E ND with LD(~')AOp = ~.

• An inner node 7 of D possesses exactly two successors, which we denote by 1(7) and r(7).

• VT,'y'C ND. LD(7)ALD(7')NOp ¢ 0 A l (7)=I(7 ') A r (7) = r (7 ') = > 7 = ' } ''.

If ND is finite, D is called a finite structured parti t ion DAG. The set of all structured parti-
tion DAGs and the set of all finite structured partition DAGs are denoted by IP:D and iPDlln,
respecHvelyo

A node -? E N D of a structured part i t ion DAG is meant to represent an equivalence class of
program terms:

TD(7) = ((VU C)ALD(7))u {(op, t, t') lope (OpALD(7)) A (t, t ') E TD(I(')')) x TD(r("?))}

Thus a full DAG represents a parti t ion (or equivalence relation) on:

T(D) =~ U {TD(~) I ~ ~ N~} CT

394

This can be illustrated as follows:

partition

[a, x lb, y la + b,a 4- y ,x 4- b,z + y,z]

DAG

+,z

a , x ~ , y
Figure 4.2

Viewing DAGs as equivalence relations makes 7~:D a complete lattice, with inclusion defined set
theoretically as usual. This guarantees existence and well definedness of ~ (P) in:

Definition 4.3 Let D E T':D. Then

1. ~ (D) is the smallest structured partition DAG with Dc_7~(D) and T(Ti(D)) = T.

~. tl,t2 E T ar]e syntactically D-equivalent, iff D possesses a node 7 with ta,t2 E TD(7).

3. ta,t2 E T are semantically D-equivalent, iff they are syntactically ~(D)-equivalent.

We have (cf. [St2]):

T h e o r e m 4.4 Let tl,t2 E T, n E N, and We[n] E 7~2~yi~ be the structured partition DAG of the
entry information at node n computed by Algorithm A.1. Then t 1 and t~ are Herbrand equivalent
at node n iff they are semantically pre[n]-equivalent.

Structured partition DAGs characterize the domain which is necessary to compute all term equiv-
alences which do not depend on specific properties of the term operators. Moreover, they allow
us to compute the effects of assignments essentially by updating the position of the left hand side
variable:

Figure 4.5

pre-DA G assignment

+ ,z
b : = a + b

a, , y

post-DAG

4-~z,b

/ ' , , ,
a, x y

As a consequence of Theorem 4.4 we obtain:

Theorem 4.6 (1 .Opt imal i ty Theo rem)
Given an arbitrary flow graph, Algorithm A.I terminates with a DA G-designation which ezactly
characterizes all equivalences of program terms wrt the Herbrand interpretation.

4.2 C o m p u t i n g t h e S y n t a c t i c R e p r e s e n t a t i o n

In the last section we constructed finite structured partition DAGs that characterize Herbrand
equivalence semantically (Definition 4.3(3)). However, the placement procedure (Section 5.1) con-
siders the pre-DAGs and post-DAGs of a designation of a flow graph as purely syntactical objects,
i.e. terms are considered equivalent iff they are syntactically equivalent (Definition 4.3(2)). Of
course, it is not possible to finitely represent all Herbrand equivalences syntactically. However, it
is possible to represent finite subsets that are sufficient for obtaining our optimality results (see
Section 5.3). This is done by computing for every node n of G a finite set of terms T~, f that is

395

sufficient to represent all necessary equivalences at n syntactically, i.e. as the restriction of 7-/(D)
to T,~ I.

Here, we sketch two strategies for the construction of such term closures. The first strategy
associates every node n with the set of terms representing values that must be computed on every
continuation of paths from s to n that end in e, and the second strategy with the set of terms
representing values that may be computed on a continuation of a path from s to n ending in e.
Both term closures are computed by backward analysis. The first strategy algorithm iteratively
computes approximations of the closure for a node as the meet over the current approximations
of the closures of its successors. The second strategy algorithm is essentially dual. However, it
is necessary, to constrain the iteration here because the straightforward dual algorithm would not
terminate. These two strategies define the basic and full variant of our two stage algorithm.

There is another important variant of our algorithm, which we call RWZ-variant. It is based
on a strategy for computing closures, which starts by invoking the first strategy algorithm. Sub-
sequently, it applies this algorithm to all flow graphs that result from considering nodes as end
nodes whic]5 possess at least one "brother".

4.3 T h e Value F l o w G r a p h

A Value Flow Graph connects the term equivalence classes of a DAG designation according to the
data flow. Essentially, its nodes are the equivalence classes and its edges representations of the
data flow. For technical reasons we define the nodes of a Value Flow Graph as pairs of equivalence
classes. However, identifying these pairs with their second component leads back to the original
intuition, which will be referred to in the next section.

In the following let us assume that every node n of G is designated by a pre-DAG pre(n)
and a post-DAG pos t (n) according to the remits of Section 4.2. For the sake of readabifity we

abbreviate 0 (Npre(,) x Npost(,)) by I" and define a subset 8 _ C I" (in the following 7~ 6 7'
nf iN

stands for (% 7') 6 ~ -) by:

V(7,7') 6 F. 7' ~ 7' 4~)'4t 3n 6 N. Tpre(n}(7)_D&(Tpost(n}(7')).

Let now ® denote a new symbol, and preda and suceG functions that map a node of G to its
set of predecessors and successors, respectively. Then the technical definition of the Value Flow
Graph for the DAG designation under consideration is as follows:

Definit ion 4.7 A Value Flow Graph V F G is a pair (VFN, VFE) eonsistin 9 of

• a set of nodes VFN C_ . ON ((Npre(,}U {{D}) x (Npost{.}U {(D})), where

6
71 ~---72

6
v=(71,72) 6 VFN ¢=~ /~78.71~--7s

6
if 71 # ®A~2 =®
if ~ = ® ^ ~ 2 # ®

• a set of edges VFE C_ VFN x VFN, where

(v, u') 6 VFE ¢=~# { v ' h # ® A u $ 2 # 0 A
~;(~') e su~a(X(~)) ^
Tpre{~{v,}}(v'h)_CTpost{~{u}}(u$2)

where ".h" and "~.2" denote the projection of a node v to its first and second component respec-
tively, and A/'(u) the node of the flow graph ~,hat is related to v.

396

Thus, nodes v of the Value Flow Graph are pairs (71,72), where 71 is a node of the pre-DAG and
72 a node of the post-DAG of a node n of G, such that 71 and 72 represent the same values, i.e.
satisfy the inclusion Tpre(n)(71)D{t] 3t' e Tpost(n)(72). t = ~,(t')}. Edges of the Value Flow

Graph are pairs (v,v'), such that A/'(v) is a predecessor of A/'(v') and values are maintained along
the connecting edge, i.e. Tpre(./V'(v,))(V'~l)GTpost(.h~(v))(v~2). Finally, given a Value Flow Graph
VFG, we define:

and

VFNs=41 { u 1N(predvFG(V)) # preda(N(u)) V A/'(v) = s}

VFN e =af { u IN(8ttCCVFG(Y)) # 8uccG(4~ (1/)) V .~ (v) -~ e}

where predVFG and succvFG denote functions that map a node of V F G to its set of predecessors
and successors, respectively.

5 Optimal Placement of Computations

The placement procedure is optimal in its own right. It works for any Value Flow Graph, which
need not be produced by the first stage algorithm or restricted to Herbrand equivalence.

Before going into details, let us mention a technicality, which is typical for code motion (cf.
[I~WZ]). Edges, leading from a node with more than one successor to a node with more than
one predecessor, are split by insertion of a synthetic node. This is necessary in order to avoid
"deadlock" during the code motion process, which may arise as illustrated in Figure 5.1(a). There
the computation of "a + b" at node 3 is partially redundant wrt to the computation of "a + b" at
node 1. However, this partial redundancy cannot safely be eliminated by moving the computation
of "a + b" to node 2, because this may introduce a new computation on a path which leaves node
2 on the right branch. On the other hand, it can safely be eliminated by moving the computation
of "a + b" to the synthetic node 4 as it is displayed in Figure 5.1(b).

11 I 21/ I 11 h:=a L 2i/

o+b l h I
Figure 5.1 ~

I \

The following consideration assumes this simple transformation. In fact, the corresponding trans-
formation of the Value Flow Graph is trivial as well, because all the inserted nodes represent
skip-statements.

5.1 Determinat ion of the Computat ion Points

The point of the placement procedure for computations is the solution of the following Boolean
equation system (see Equation System 5.2), which we modified to work on Value Flow Graphs
rather than flow graphs directly, in order to capture semantic equivalence. FoUowing [MR], the
names of the predicates are acronyms for the properties "local auticipabili~y", "availability" and
"placemen~ possible":

397

Equat ion Sys t em 5.2 (Boolean Equat ion Sys tem)

• The Frame Conditions (Local Properties):

ANTLOC(v) ¢=~ vhn T(tC(v)) # 0

AVIN(v) = PPIN(v)= fa l s e if v E VFNs

P P O U T (v) =false if v E VFNe

• The Fixed Point Equations (Global Properties):

AVlN(v) ¢=* I] AVOUT(v ')
v' e pr,d(v)

AVOOT(v) ~ AVIN(v) V P P O U T (v)

P P IN(v) ¢=~ AVlN(v) A (A N T L O C (v) V P P O U T (v))

PPOUT(v) ¢==> I I ~ P P I N (#)

Algorithm A.2 computes the greatest solution of this system, which determines the computation
points by means of

I N S E R T (v) = # P P O U T (v) A -~PPIN(v)

5.2 Placing the Computations

The placement Algorithm A.3 proceeds in three steps:

1. It marks all nodes of the Value Flow Graph that occur on paths that lead from nodes
satisfying I N S E R T to nodes satisfying ANTLOC.

2. It associates with every marked node of the Value Flow Graph an auxiliary variable. This
is a new auxiliary variable, if the marked node either satisfies I N S E R T or has more than
one predecessor in the Value Flow Graph. Otherwise the auxiliary variable of its unique
predecessor in the Value Flow Graph is taken.

3. It initializes at every node of the Value Flow Graph satisfying I N S E R T its associated aux-
iliary variable by its initialization term. (Initialization terms of a node v of the Value Flow
Graph are minimal representatives of its corresponding equivalence class v.L2.)

If two marked nodes which are associated with different auxiliary variables, say h~ and hi,
are connected by an edge in the Value Flow Graph, a trivial assignment hi := hk is added
at the end of the first node.

Finally, original computations of the flow graph are replaced by the corresponding auxiliary
varial)les.

Note, in order to eliminate all redundancies at once, the initializations of auxiliary variables are split
into sequences of assignments that only have a single operator in their right hand side expression.

398

5 .3 O p t i m a l i t y R e s u l t s

An analysis of the Boolean Equation System 5.2 delivers not only the correctness of the derived
program transformation, but also its optimality. Intuitively, a flow graph is defined to be optimal
wrt a Value Flow Graph if it is "best" in the class of branching structure preserving flow graphs
that are "safe" and "complete" for it. Here "best" means that it possesses a minimal number of
computations on every path, and "safe" ("complete") that it computes on every path at most (at
least) as many values. A formal definition of this notion of optimality is complicated, because
all these properties need to be defined in terms of the Value Flow Graph. We will therefore only
sketch the formal treatment. For this purpose we will assume (without loss of generality) that the
synthetic nodes are already inserted, that linear sequences of nodes are abbreviated by a single
node (basic block), and that the Value Flow Graph covers all computations of the underlying flow
graph, i.e.:

V n e N VteT(n) 3~EVFN. Af(v)=r~ A tETpre(,)(v~t)

Now, let V F G be a Value Flow Graph for a flow graph G = (N, E, s, e) , and G' = (N', E', s', e') a
branching structure preserving flow graph for G, i.e. there exists a graph isomorphism k~ from G'
onto G with V(s') = s and k~(e') = e. Furthermore assume that p e P(s, e) and p' = (nl, .., nq) e
P(s ' , e') with q~(p') = p, and let VFG(p) denote the graph that results from uurolfing V F G along
the path p. Then VFG(p) is a collection of trees, which we will refer to as the VFG-values of p.
This notion is motivated by the fact that VFG(p) defines an equivalence relation on (potential)
term occurrences wrt p whose equivalence classes contain computations that evaluate to the same
value during the execution of p, and that these classes are maximal such wrt V F G . Given a V F G -
value C of p, rgv(C)-=a I {nl 13v E VFNe. Af(t,) = nl} denotes the range of C. A computation t'
of p' at node nl is q!-covered by a VFG-value C of p if ~(ni) e rgv(C) and if t ' is covered by
C at k~(ni), or if Q,_t(t') is kg-covered by C at ni-1. This complicated definition is necessary
because a computation in p' need not match a term in V F G , for example because of additional
(auxiliary) variables in G'. CwG(p) denotes the set of all VFG-values of p that cover at least
one computation of p, and Cw¢(~,p') the maximal set T, or the smallest set of VFG-values of
p which ~-cover all computations of p', if such a set exists.

After this preparation we are able to define the central notions of our optimality concept. G' is
VFG-safefor G if CVFG(ffJ,p ') C_ Cvm(ffd(p')), andi t is VFG-complete for G if Cvm(q2,p ') D Cvm
(q2(p')) for all p' e P(s ' , e'). Moreover, p' is better than p if it contains at most as many (non
trivial) computations as p, and G' is better than G if p' is better than q~(p') for all p t e P(s ' , e').
Finally, G is VFG-optimal if it is better than any branching structure preserving G' that is
VFG-safe and VFG-complete for G.

T h e o r e m 5.3 (2 .Opt ima l i ty T h e o r e m)
Every flow graph transformed by the second s~age of our algorithm is VFG-optimaI.

Let us now consider the combined effect of the two stages of our algorithm. As mentioned already,
it is not possible to finitely represent all Herbrand equivalences syntactically. However, using the
1.Optimality Theorem 4.6 we can show that there exists an infinite Value Flow Graph VFGo¢
that even represents all global Herbrand equivalences. This Value Flow Graph is the natural
extension of a given Value Flow Graph where all partition DAGs D are replaced by 7/(D), see
Definition 4.3.

Definit ion 5.4 A VFGc,~-optimal program is called Herbrand optimal.

We have:

T h e o r e m 5.5 (H e r b r a n d Op t ima l i ty)
Every flow graph transformed by our two stage algorithm in the full variant is Herbrand optimal.

399

Herbrand optimal transformations may cause unboundedly many reinitializations of auxiliary vari-
ables in order to eliminate a single redundant computation. Thus, the costs of these reinitializations
can easily exceed the costs of the eliminated computation. Motivated by this problem Rosen, Weg-
man and Zadeck introduced a notion of optimality, which is based on an additional technical
constraint (see [RWZ] for details). Referring to this notion as RWZ-optimallty we can prove:

Theorem 5.6 (RWZ-Optimality)
Every flow graph transformed by our two stage algorithm in the RWZ-variant ~ RWZ-optimal.

As usual for code motion, our algorithm is devoted to the costs of computations. However, costs for
register loading and storing are subsequently taken care of by variable subsumption. An algorithm
based on the graph coloring techniques of [Ch,CACCHlVl] is implemented for this purpose.

Finally, let Trans : F G --* F G be the operator specified by the full variant of our algorithm.
Then we obtain by means of the 2.Optimality Theorem 5.3:

Coro l l a ry 5.7 Trans i8 idempotent, i.e. VG e FG. Trans(G) = Trans(Trans(G)).

In particular, the full variant of our algorithm covers all second order effects (cf. [RWZ]).

6 Complexity

The second stage of our algorithm can be applied to arbitrary Value Flow Graphs, yielding optimal
results relative to the equivalence information represented (see 2.Optimality Theorem 5.3). We
therefore estimate the worst case time complexity, which as usual is based on the assumption
of constant branching and constant term depth, independently for both stages. This requires the
following t:hree parameters: the number of nodes of a flow graph n, the complexity of computing the
meet of two equivalence informations m, and the maximal number of Value Flow Graph nodes which
are associated with a single node of the underlying flow graph, p. This yields for the complexity
of the five steps of our algorithm:

1. Construction of a Value Flow Graph for the Herbrand interpretation:

(i) Determination of semantic equivalences: O(n2.m). Here "n 2" reflects the maximal length of
a descending chain of annotations of a flow graph. In fact, the number of analysis steps of
Algorithm A.1 is linear in this chain length. This can be achieved by adding those nodes to
a workset whose annotations have been changed. Then processing a worklist entry consists
of updating the annotations of all its successors. This can be done in O(m) because of our
assumption of constant branching.

To our knowledge, the exact nature of m is not studied in previous papers. This is probably
due to the fact that, in practice, this effort hardly increases linearily in the size of the
analysed program, and therefore is regarded as harmless. However, DAGs that arise during
the analysis may represent sets of terms which increase exponentially in n. Inspire of this
fact, we conjecture that the compact representation of these sets by means of structured
partition DAGs, together with the constraint that the DAGs arise during the analysis of a
particular program, allows us to show that the number of nodes in such a DAG only increases
quadratically in n. This conjecture would suffice to prove an overall complexity of O(n 4) for
the first step, because we know that the meet of two DAGs can be computed essentially
linearily in the size of the resulting DAG.

400

(ii) Computation of the syntactic representation of the semantic equivalences: This complexity
depends on the variant chosen. Whereas the basic variant and the RWZ-variant are both
O(n3), the full variant seems to be exponential in n.

(iii) Construction of the Value Flow Graph: O(n*#). This is based on two facts. First, if there
exists an edge in the Value Flow Graph between two nodes vl and v2 then the corresponding
nodes A]'(vl) and AZ(v2) of the flow graph are connected as well. Thus every edge of the
Value Flow Graph is associated with an edge of the original flow graph. Second, the effort
to construct all edges of the Value Flow Graph that correspond to a single edge (n, m) in
the original flow graph is linear in the number of Value Flow Graph nodes that annotate n,
which can be estimated by ~u.

2. Optimal placement of the computations:

(i) Determination of the computation points: O(n*/~). The argument needed here is based on
that of the first step, however, we do not have constant branching, and the algorithm here is
bidirectional. This leads to the product n*# because all nodes of the Value Flow Graph can
be updated once by executing only two elementary operations per edge of the Value Flow
Graph, and the number of edges in a Value Flow Graph can be estimated by O(n*#).

(it) Placing the computations: O(n*#). This is straightforward.

Let us finally give an estimation of the worst case time complexity of the practically motivated
RWZ-variant. Here, O(/~) can be approximated by O(n2). In fact, exploiting the specific nature of
the RWZ-closure already during the first step, we arrive at an algorithm with an overall complexity
of O(n4). Assuming our conjecture, this result is also true for the RWZ-vadant of our two stage
algorithm presented above.

? Conclusion

We have shown, how to combine semantic algorithms with syntactic ones, in order to obtain
maximal optimization results. This technique, which is based on the introduction of Value Flow
Graphs, has been illustrated by developing a two stage algorithm for the optimal placement of
computations within a program.

In addition to their optimality, algorithms developed by means of this technique are easily to
extend, because the separation of their semantic part from their (independently optimal) syntactic
transformation part makes them modular. This modularity allows to independently enhance the
semantic properties by modifying the first stage, and the transformation capacity by strenghtening
the second stage. In our current implementation, the first stage is extended to deal with cor~tant
propagation and constant folding (see [SK1,SK2]). An extension of the second stage to strength
reduction ([ACK,CK,JD1,JD2 D is under development.

Acknowledgements

The presentation in this paper profited from discussions with Torben Hagerup, Mark Jerrum, Barry
Rosen and Ken Zadeck.

401

References

[All] F.E. Alien. "Control Flow Analysis". ACM Sigplan Notices, July 1970

[ACK] F.E. Allen, J. Cocke and K. Kennedy. "Reduction of Operator Strength". In: St. S. Much-
nick and N. D. Jones, editors. "Program Flow Analysis: Theory and Applications", Pren-
tice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1981

[Ch] G.J . Chaitin. "Register Allocation and Spilling via Graph Coloring". IBM T. J. Watson
Research Center, Computer Science Department, P.O. Box 218, Yorktown Height, N. Y.
10598, 1981

[CACCHM] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins and P.
W. Markstein. "Register Allocation via Coloring". IBM T. J. Watson Research Center,
Computer Science Department, P.O. Box 218, Yorktown Height, N. Y. 10598, 1980

[CK] J. Cocke and K. Kennedy. "An Algorithm for Reduction of Operator Strength". Commu-
nications of the ACM, 20(11):850-856, 1977

[FKU] A Fong, J. B. Kava and J. D. Ullman. "Application of Lattice Algebra to Loop Optimiza-
tion'. 2 ~a POPL, Polo Alto, California, 1 - 9, 1975

[JD1] S.M. Joshi and D. M. Dhamdhere. ".4 Composite Hoisting-Strength Reduction Transfor-
mation for Global Program Optimization - Part I n. Internat. J. Computer Math. 11, 21 -
41, 1982

[JD2] S.M. Joshi and D. M. Dhamdhere. ".4 Composite Hoisting-Strength Reduction Transfor-
mation for Global Program Optimization - Part II'. Internat. J. Computer Math. t l , 111

- 126, 1982

[Kil] G.A. Kildall. "Global Expression Optimization during Compilation". Technical Report No.
72-06-02~ University of Washington, Computer Science Group, Seattle, "yVashington, 1972

[Ki2] G.A. Kildall. ".4 Unified Approach to Global Program Optimization". 1 .t POPL, Boston,
Massachusetts, 194 - 206, 1973

[MR] E. Morel and C. Renvoise. "Global Optimization by Suppression of Partial Redundancies".
Communications of the ACM, 22(2):96-103, 1979

[RWZ] B. K. Rosen, M. N. Wegman and F. K. Zadeck. "Global Value Numbers and Redundant
Computations'. 15 ~h POPL, San Diego, California, 12 - 27, 1988

[St1] B. Steffen. "Optimal Run Time Optimization. Proved by a New Look at Abstract Interpre-
tations". TAPSOFT'87, Pisa, Italy, LNCS 249, 52 - 68, 1987

[St2] B. Steffen. "Abstrakte Interpretationen beim Optimieren yon Programmlaufzeiten. Ein
()ptimalitgtskonzep~ und seine Anwendung". PhD thesis, Christian-Albrechts-Universit£t
Kiel, 1987

[SK1] B. Steffen and J. Knoop. "Finite Constants: Characterizations of a New Decidable Set of
Constants". 14 ~h MFCS, Por~bka-Kozubnik, Poland, LNCS 379, 481 - 491, 1989

[SK2] B. Steffen and J. Knoop. "Finite Constants: Characterizahons of a New Decidable Set of
Constants'. Extended version of [SK1], LFCS Report Series, ECS-LFCS-89-79, Laboratory
for Foundations of Computer Science, University of Edinburgh, 1989

402

A A p p e n d i x : T h e A l g o r i t h m s

Algori thm A.1 (The Semantic Analysis of Step 1.(i))

Input: An arbitrary flow graph G = (N, E, s, e)with unique start node s and unique stop node
e, which are assumed to possess no predecessors and no successors, respectively.

Output : A designation of G with pre-DA Gs (stored in pre) and post-DA Gs (stored in post),
characterizing valid and complete equivalence information at the entrance and at the exit of every
node n • N, respectively.

Remark: _1. denotes the "empty" data flow information and T its complement, the "universal"
data flow information, which is assumed to "contain" every data flow information. [] denotes
the local analysis component and [q the meet operation. ([] and [1 operate on DAG-structures).
pred(n)=d! {m I(m,n) e E} and succ(n)=df {m I(n,m) • E} denote the set of all predecessors
and successors of a node n, respectively. The variable workset controls the iterative process, and
the auxiliary variable meet stores the result of the most recent meet operation.

(Initialization of the designation arrays pre and post and the variable workset)
FOR all nodes n • N DO

IF n = s
THEN (pre[n], post In]):= (±, [n 2(1))
ELSE (pre[n],post[n]):= (-1-, T) FI

OD;
workset := {s};

(Iterativc fixed point computation)
WHILE workset ~ ~) DO

LET n • workset
BEGIN

workset := workset\ {n } ;
(Update the "environment" of node n)
FOR all nodes m • succ(n) DO

meet := pre[m] n post[n];
IF pre [m] -1 meet

THEN
pre[m] := meet;
post [m]:= i m](pre [m]);
workset := worksetU {m}

FI
OD

END
OD.

Algori thm A.2 (Solution of the Boolean Equation System (Step 2(i)))

Input: A Boolean equation system which is completely initialized wrt the local property ANTLOC.

Output : The greatest solution of the Boolean equation system.

Remark: With every node of the Value Flow Graph the predicates ANTLOC, AVIN, AVOUT,
PPINand P P O U T are associated. However, only ihe later four are involved in the fixed point
iteration, which therefore operates on the fourfold cartesian product of the complete semi-lattice
{false, true} with false r- true. pred(u)=df {#] (#, u) fi gEE} and succ(v)=~ {# [(u, I~) • gEE}
denote the set of all predecessors and successors of a node u, respectively. The variable workset

403

controls the iterative process. For notational convenience we abbreviate (AVIN(u), AVOUT(v),
PPIN(u), P P O U T (u)) by fu. The auxiliary variable f store8 the result of the most reeen~
application of the local analysis component, and avin and ppout are further auxiliary variables.

(Initialization)
F O R all nodes u E VFN DO flu := (true, true, true, true) OD;
F O R all nodes u e VFNs DO (AVIN(u), P P I N (v)) : = (falze, fulse) OD;
F O R all nodes u E VFNe DO P P O U T (u) := false OD;
workset := VFNsU VFNe;

(Iterative fixed point computation)
W H I L E workset ¢ 0 DO

L E T v E workset
B E G I N

workset := workset \ {u};
(Update the Uenvironment" of node u)
F O R all nodes # e pred(v)Usucc(u) DO

IF # e pred(v)
T H E N

ppout := P P O U T (#) A E{PPIN(A) I A e succ(#) A Af(~) = Af(u)};
/~:= (AVIN(#), AVIN(#) Y ppout, AVIN(#) A (ANTLOC(#) Y ppout), ppout)

ELSE
avin := AVIN(#) ^ AVOUT(u);
f : = (avin, av/nVPPOUT(#), avinA(ANTLOC(p)VPPOUT(,u)) , PPOUT(#))

OD.

FI ;
IF ~ - T f

T H E N
f . :=~
workset := workset U {#} FI

OD
E ~

Algorithm A.3 (The Optimizing Program Transformation (Step 2(ii)))

I N P U T : A flow graph G and an accoeiated Value Flow Graph V F G with attached predicate
designation characterizing the greatest solution of the Boolean Equation System 5.~.

O U T P U T : The transformed flow graph GT. In GT auxiliary variables are initialized at the
optimal computation points by their minimal computation form, wrt to the equivalence information
expressed by VFG. Original computations are replaced by auxiliary variables.

R E M A R K : The algorithm consists of three phases, namely

• Marking of the definition.use chains in VFG.

• Allocating of the auxiliary variable numbers.

• Transforming of the flow graph, namely

- Initializing auxiliary variables at their computation points by their computation forms.

- Introducing spill code for the generated auxiliary variables.

- Substituting original computations by a reference to their covering auxiliary variable.

404

The marking of a node u G VFN is indicated by the predicate mark(u), the number of an
associated auxiliary variable is denoted by nr(u) and the variable count indicates the number of
the last generated auxiliary variable.

(Phase 1: Marking of the definition-use chains in V F G)
F O R all nodes u G VFN D O mark(v) := false OD;
zoorkset := { u e VFN IANTLOC(u)} ;
W H I L E workset ¢ ~ D O

L E T u G workset
B E G I N

workset := workset \ { u } ;
mark(u) := true;
I F - , INSERT(y) T H E N wor~et := work~ct U {u' G pred(u) 1-~ mark(u') } F I

E N D
OD;

(Phase 2: Allocating auxiliary variable numbers)
count := O;
F O R all nodes u G VFN DO nr(u) := 0 0 D ;
workset := {u e VFN I INSERT(u)};
W H I L E workset ~ 0 DO

L E T u G workset
B E G I N

~oor/~et : = ~,orkset \{u};
mark(v) := f~l~e;
I F I N S E R T (v) V I pred(u) I > 2

T H E N
count := count + 1;
nr(u) := count

ELSE (assume pred(u) = {u'})
nr(u) := ~r(u')

FI ;
~,or~,et := ~,or~et u {u' e sure(u) I mark(u) }

E N D
OD;

(Phase 3: Transformation of the flow graph)
(Initializing auxiliary variables at their computation poin~ by their computation forrn~)
F O R all nodes n G N D O

wor~et := {u e VFN I I N S E R T (u) ^ N(v) = n };
W H I L E wor~et ~ O D O

LET uE {u' E worluet [VP 6 worl~et . ~ ~ succ*(u'~2)}
BEGIN

~or~et := wor~et \{u};
IF npost(n)(Ui2)n (VU C) # 0

THEN
L E T z E Lpost(n)(U$2)n (VU C)

B E G I N
Attach the assignment hnr(u) := x] at the end of node n

E N D

405

ELSE
LET op E Lpost(n)(V~2),. .

v' e VFN. v'~2=l(vl2),
P E VFN. V~2=r(VI2)

BEGIN
a**ach ~he a.ignment [h . . ,) : = h..,,)o~,h..(~,)] at ~he end of node n

END
FI

END
OD

OD;

(Introduc~ing spill code for the generated auxiliary variables)
FOR all nodes v, u' e {~ e YFglnr(P) # 0} DO

IF ~ e pred(~') ^ nr(~) # ~r(~')
THEN

a~a~h a eo~ponen~ of spill ~ode [(.., h , , , ,) , ..) := (.., h,~C~,),..)] a~ ~he en,~ of,~ode .~'(~,)
FI

OD;

(Substituting original computationz by a reference to their covering auxiliary variable)
FOR all nodes n G N DO

workaet := {v e V FNIANTLOC(v) AAf(v) =n};
W H I L E worh~et • $ DO

LET ve {v 'e workset IVp e worI~et. P+I ~ pred*(v'~a)}
BEGIN

workaet := workaet \{V};
Replace all original computation, t • T(n)N Tpre(n)(V.~,) by h.,w)

END
OD

OD.

