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A b s t r a c t  

Data flow analysis algorithms for imperative programming languages can be split into two 
groups: first, into the semantic algorithms that determine semantic equivalence between terms, 
and second, into the syntactic algorithms that compute complex program properties based 
on syntactic term identity, which support powerful optimization techniques like for example 
partial redundancy elimination. Value Flow Graphs represent semantic equivalence of terms 
syntactically. This allows us to feed the knowledge of semantic equivalence into syntactic 
algorithms. The power of this technique, which leads to modularly extendable algorithms, is 
demonstrated by developing a two stage algorithm for the optimal placement of computations 
within a program wrt the Herbrand interpretation. 

1 I n t r o d u c t i o n  

There are two kinds of data flow analysis algorithms for imperative programming languages. First, 
the semantic algorithms that determine semantic equivalence between terms, e.g. the classical 
algorithm of Kildall [Kil,Ki2]. Second, syntactic algorithms that compute complex program prop- 
erties on the basis of syntactic term identity, which support powerful optimization techniques, 
e.g. Morel/Renvoise's algorithm for determining partial redundancies [MR]. Value Flow Graphs 
represent semantic equivalence syntactically. This allows us to feed the knowledge of semantic 
equivalence into syntactic algorithms. We will demonstrate the power of this technique by devel- 
oping a two stage algorithm for the optimal placement of computations within a program wrt the 
Herbrand interpretation, which is structured as follows: 

1. Construction of a Value Flow Graph for the Herbrand interpretation: 

(i) Determining term equivalence wrt the Herbrand interpretation (in short Herbrand equiv- 
alence) for every program point (Section 4.1). 

(ii) Computing a sufficiently large syntactic representation of the semantic equivalences for 
each program point (Section 4.2). 

(iii) Connecting the representations of equivalence classes of 1.(ii) according to the actual 
data flow. This results in a Value Flow Graph (Section 4.3). 

2. Optimal placement of the computations: 

(i) Determining the computation points wrt the Value Flow Graph of step 1.(ii) by means 
of a Boolean equation system (Section 5.1). 

(ii) Placing the computations (Section 5.2). 
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This is the only known algorithm of its kind that is (proved to be) optimal wrt the Herbrand in- 
terpretation for arbitrary control flow structures. It therefore generalizes and improves the known 
algorithms for common subexpression elimination, partial redundancy elimination and loop invari- 
ant code motion. 

Rosen, Wegman and Zadeck developed an algorithm with a similar intent. However, they used 
a weaker representation for global semantic equivalence, the s~a~ic single assignmen~ form (SSA 
form), to represent global equivalence properties [RWZ]. Thus they could not apply the elegant 
and structurally independent technique of Morel and Renvoise [MR]. Rather they developed their 
own more complicated algorithm, which only works for particular program structures (reducible 
flow graphs). Moreover, their algorithm is only optimal for acyctic flow graphs (note, Herbrand 
equivalence is called transparen~ equivalence in [RWZ]). 

It is worth mentioning that Steffen [Stl,St2] and later Rosen, Wegman and Zadeck [RWZ] were 
the first who dealt with the second order effects of code motion. In our algorithm these effects are 
an automatic consequence of its optimality (see Corollary 5.7). 

Practical experience with an implementation of our algorithm, which is implemented in a joint 
project with the NORSK DATA company, shows its practicality. In particular, all examples in this 
paper are computed by means of this implementation. 

2 A n  E x a m p l e  

The following example illustrates the main features of our two stage algorithm. First, it works 
for arbitrary nondeterministic flow graphs (note that the loop construct of Figure 2.1 is not even 
reducible). Second; it considers semantic equivalence between terms. 

The diagrams below represent the nondeterministic branching s~ructure as arrows and parallel 
assignments as nodes: 

I 1 c - - -  
Figure 2.1 

] [ 

This program fragment has the following property: 

while looping "a + b" and "x + y" evaluate to the same value 

which suggests an optimization with the foUowing result: 

Figure 2.2 

I h:=zq-y } I h:=a+b I 

I 11 
Already the basic variant (see 4.2) of our algorithm achieves this optimization. The following 
discussion demonstrates the effects of the five steps of our two stage algorithm. 

The semantic analysis of step 1.0) designates the flow graph with partitions characterizing all 
term equivalences wrt the Herbrand interpretation, i.e. all equivalences being valid independent 
of specific properties of the term operators (Figure 2.3). In particular, it detects the equivalence 
of "a + b" and "x + y" after the execution of either assignment. 
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L 
{(a,b,c):=(~,y,~+y)j 

[a,x Ib, y Ic, a + b,a + y ,z  + b,z + Yl 

Figure l 

11 
(,,~,,~):=(,,,b,~+b) I 

[a x]b, ylz,a-4-b,a+y,x+b,x-4-y ] 

J I 

Afterwards, step 1.(ii) extends this designation for every program point to a syntactic representa- 
tion of semantic equivalences which is large enough to perform our optimization: 

ii ] ........ 
[alblcl~lylzla+bl~+y] [alblcI=lyl~la+bl~+y] 

[a,~t,~,ylc, a+b,~+y,~+b,=+y] I I [a,~lb,~lz, a+b,~+~,~+b,~+y] 
[ t J ~,, J [ 

Figure 2.4 

Subsequently, step 1.(iii) produces the corresponding Value Flow Graph, whose relevant part is 
shown in Figure 2.5: 

Figure 2,5 

[ [albicl=lyl x+yl 

[a,~l 

The placement procedure only refers to term equivalences that are explicit in the Value Flow 
Graph under consideration, i.e. two terms are equivalent at a program point if they axe displayed 
as members of the same equivalence class in the Value Flow Graph at this point. Applying a 
modification of Morel/Renvoise's algorithm (step 2.0) ) to the Value Flow Graph above yields: 

L L [alblclxlylzla+b~ [ a l b l c l ~ x + y ]  

[alblclxlwl)la + b x+y] 

[alblel=lYlzla + i f ~ / f ~  

ta, = J b, ~ ¢~¢/f//z/yZ/z£/C-~.z//2/£/2A 

Figure 2.6 [ 

The inserted nodes axe the optimal computation points (the insertion of synthetic nodes is common 
for code motion, see Section 5). - Now, application of step 2.(ii) results in: 
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F i g u r e  2.7 

L L 
h3 := hi  b4 := h2 

](a,b,c, h4):=(x,y,  h3, h3) I [(x,Y,z, h3):=(a,b, h4,h4) I 

Subsequent variable subsumption [Ch,CACCHM] yields the desired result (Figure 2.2). 

3 P r e l i m i n a r i e s  

We consider terms t G T which are inductively built from variables v G V, constants c G C 
and operators op G Op. To keep our notation simple, we assume that  all operators are two-ary. 
However, an extension to operators of an arbitrary ari ty is straightforward. The semantics of 
terms of T is induced by the Herbrand interpretation H = ( D, H0 ), where D=~, T denotes the 
non empty da ta  domain and H0 the function which maps every constant c E C to the datum 
H0(c) = c E D and every operator op E O p  to the total  function H0(op) : D x D--* D, which 
is defined by Ho(op)(tl,t2)=df(op, tl,t~) for all tl,t~ G D. ~ = { a l a  : V---~D} denotes the set 
of all Herbrand states and ao the distinct start state which is the identity on V ( this  choice 
of a0 reflects the fact that  we do not assume anything about the context of the program being 
optimized). The semantics of terms t G T is given by the Herbrand semantics H : T--+ (~ ~ D), 
which is inductively defined by: Va G ~ V t G T. 

{ ~,(v) 
H(t)(o-) =d/ Ho(c) 

Ho(op)(H(tl)(*), H(t2)(a)) 

if t = v G V  
if t = c E C  
if t = op(h,t~) 

As usual, we represent imperative programs as directed flow graphs G = (N, E, s, e) with node set 
N and edge set E.  (These flow graphs are obtainable for example by the algorithm of [All] ). 
Nodes n E N represent parallel assignments of the form ( x l , . , z r ) : =  (tl,.,tr), where r > 0 and 
zi = zj implies i = j ,  edges (n, m) G E the nondeterministic branching structure of G, and s and 
e denote the unique start node and end node of G which are assumed to possess no predecessors 
and successors, respectively. ~ r t h e r m o r e  we assume that  s and e represent the empty statement 
"skip" and that  every node n G N lies on a path from s to e. The set of all such flow graphs is 
denoted by F G .  

For every node n = (x~,., zr) := (t~,., tr) of a flow graph G we define two functions 

5, : T--* T by 6 , ( t )=q  t[ t l , . ,  tdz l , . ,  x~] for all t G T,  

where tit1, .,tr/xl,., x~] stands for the simultaneous replacement of all occurrences of xi by ti in 
t, i E { 1 , . , r } ,  and 8 = : ~ - - ~ ,  defined by: V a G ~  V y E V .  

S H(ti)(a)  if y = xi, i E {1 , . , r }  #,(a)(Y) =d! 
tr(y) otherwise 

6= realizes the backward substitution, and 8~ the state transformation caused by the assignment 
of node n. Additionally, let T(n) denote the set of all terms which occur in the assignment 
represented by n. 
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A finite path of G is a sequence (nl, ..,nq) of nodes suchthat  (nj,nj+~) E E for j e {1, . , q - l } .  
P(n l ,  nq) denotes the set of all finite paths from nl to nq and ";" the concatenation of two paths. 
Now the backward substitution functions Q : T ~ T and the state transformations 0~ : ~ --+ 
can be extended to cover finite paths as well. For each path  p - -  (m - n~,., nq - n) E P(m,  n) 
we define A v : T - * T  by A v = a l Q  ~ if q = l  and A(~,.,~q_ 0 oQq otherwise, and 0 v : ~ - - ~  by 
Op =dr O~ if q = 1 and O(~2,.,,,q) o O~x otherwise. The set of all possible states at a node n C N is 
given by 

Now, we can define: 

D e f i n i t i o n  3.1 Let tl,t2 E T and n E N.  Then tl and t~ are Herbrand equivalent at node n 
i/~ Va e S , .  H( t l ) ( a )  = H(t~)(°).  

4 C o n s t r u c t i o n  o f  a V a l u e  F l o w  G r a p h  

The following subsections correspond to the three construction steps of a Value Flow Graph for a 
flow graph G, which we consider as to be given from now on. 

4.1 D e t e r m i n i n g  Local Semant i c  Equivalence  

The semax~tic analysis determines all equivalences between program terms wrt the Herbrand inter- 
pretation (see 1.Optimality Theorem 4.6). These are expressed by means of structured partition 
DAGs (cp. [FKU]), which are directed, acyclic multigraphs, whose nodes are labeled with at most 
one operator or constant and a set of variables. Given a structured parti t ion DAG, two terms 
are equivalent iff they are represented by the same node of the DAG. - T o  define the notion of a 
structured part i t ion DAG precisely, let ioS~,=d f {TI TC(VU CU Op)  A I T ] Ew\{0}}. 

De f i n i t i on  4.1 A structured partit ion DAG is a triple D = (No, ED, LD), where 

• (ND, ED) is a directed acyclic multigraph with node set ND and edge set ED C_ ND x ND. 

• L D  : ND --+ ~fin is a labelling f~nction, which satisfies 

1. v~ e No. I L~(~)\Vl < 1 and 
~. V~,~' e No. ~ # ~ '  ~ Lo(~)nLD(~')COp 

• Leaves of D are the nodes 7 E ND with LD(~')AOp = ~. 

• An inner node 7 of D possesses exactly two successors, which we denote by 1(7) and r(7 ). 

• VT,'y'C ND. LD(7)ALD(7')NOp ¢ 0 A l (7)=I(7 '  ) A r ( 7 ) = r ( 7 ' ) = >  7 = ' }  ''. 

If  ND is finite, D is called a finite structured parti t ion DAG. The set of all structured parti- 
tion DAGs and the set of all finite structured partition DAGs are denoted by IP:D and iPDlln, 
respecHvelyo 

A node -? E N D  of a structured part i t ion DAG is meant to represent an equivalence class of 
program terms: 

TD(7) = ((VU C)ALD(7))u {(op, t, t') lope (OpALD(7)) A (t, t ')  E TD(I(')')) x TD(r("?))} 

Thus a full DAG represents a parti t ion (or equivalence relation) on: 

T(D) =~ U {TD(~) I ~ ~ N~} CT 
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This can be illustrated as follows: 

partition 

[a, x lb, y la + b,a 4- y ,x  4- b,z + y,z] 

DAG 

+,z  

a , x ~ , y  
Figure 4.2 

Viewing DAGs as equivalence relations makes 7~:D a complete lattice, with inclusion defined set 
theoretically as usual. This guarantees existence and well definedness of ~ ( P )  in: 

Definition 4.3 Let D E T':D. Then 

1. ~ ( D )  is the smallest structured partition DAG with Dc_7~(D) and T(Ti(D)) = T. 

~. tl,t2 E T ar]e syntactically D-equivalent, iff D possesses a node 7 with ta,t2 E TD(7). 

3. ta,t2 E T are semantically D-equivalent, iff they are syntactically ~(D)-equivalent. 

We have (cf. [St2]): 

T h e o r e m  4.4 Let tl,t2 E T,  n E N, and We[n] E 7~2~yi~ be the structured partition DAG of the 
entry information at node n computed by Algorithm A.1. Then t 1 and t~ are Herbrand equivalent 
at node n iff they are semantically pre[n]-equivalent. 

Structured partition DAGs characterize the domain which is necessary to compute all term equiv- 
alences which do not depend on specific properties of the term operators. Moreover, they allow 
us to compute the effects of assignments essentially by updating the position of the left hand side 
variable: 

Figure 4.5 

pre-DA G assignment 

+ ,z  
b : = a + b  

a, , y 

post-DAG 

4-~z,b 

/ ' , , ,  
a, x y 

As a consequence of Theorem 4.4 we obtain: 

Theorem 4.6 (1 .Opt imal i ty  Theo rem)  
Given an arbitrary flow graph, Algorithm A.I  terminates with a DA G-designation which ezactly 
characterizes all equivalences of program terms wrt the Herbrand interpretation. 

4.2  C o m p u t i n g  t h e  S y n t a c t i c  R e p r e s e n t a t i o n  

In the last section we constructed finite structured partition DAGs that characterize Herbrand 
equivalence semantically (Definition 4.3(3)). However, the placement procedure (Section 5.1) con- 
siders the pre-DAGs and post-DAGs of a designation of a flow graph as purely syntactical objects, 
i.e. terms are considered equivalent iff they are syntactically equivalent (Definition 4.3(2)). Of 
course, it is not possible to finitely represent all Herbrand equivalences syntactically. However, it 
is possible to represent finite subsets that are sufficient for obtaining our optimality results (see 
Section 5.3). This is done by computing for every node n of G a finite set of terms T~, f that is 
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sufficient to represent all necessary equivalences at n syntactically, i.e. as the restriction of 7-/(D) 
to T,~ I. 

Here, we sketch two strategies for the construction of such term closures. The first strategy 
associates every node n with the set of terms representing values that must be computed on every 
continuation of paths from s to n that end in e, and the second strategy with the set of terms 
representing values that may be computed on a continuation of a path from s to n ending in e. 
Both term closures are computed by backward analysis. The first strategy algorithm iteratively 
computes approximations of the closure for a node as the meet over the current approximations 
of the closures of its successors. The second strategy algorithm is essentially dual. However, it 
is necessary, to constrain the iteration here because the straightforward dual algorithm would not 
terminate. These two strategies define the basic and full variant of our two stage algorithm. 

There is another important variant of our algorithm, which we call RWZ-variant. It is based 
on a strategy for computing closures, which starts by invoking the first strategy algorithm. Sub- 
sequently, it applies this algorithm to all flow graphs that result from considering nodes as end 
nodes whic]5 possess at least one "brother". 

4.3 T h e  Value  F l o w  G r a p h  

A Value Flow Graph connects the term equivalence classes of a DAG designation according to the 
data flow. Essentially, its nodes are the equivalence classes and its edges representations of the 
data flow. For technical reasons we define the nodes of a Value Flow Graph as pairs of equivalence 
classes. However, identifying these pairs with their second component leads back to the original 
intuition, which will be referred to in the next section. 

In the following let us assume that every node n of G is designated by a pre-DAG pre(n) 
and a post-DAG pos t (n)  according to the remits of Section 4.2. For the sake of readabifity we 

abbreviate 0 (Npre(,) x Npost(,)) by I" and define a subset 8 _  C I" (in the following 7~ 6 7' 
nf iN  

stands for (% 7') 6 ~ - )  by: 

V(7,7') 6 F. 7' ~ 7' 4~)'4t 3n 6 N. Tpre(n}(7)_D&(Tpost(n}(7')). 

Let now ® denote a new symbol, and preda and suceG functions that map a node of G to its 
set of predecessors and successors, respectively. Then the technical definition of the Value Flow 
Graph for the DAG designation under consideration is as follows: 

Definit ion 4.7 A Value Flow Graph V F G  is a pair (VFN, VFE) eonsistin 9 of 

• a set of nodes VFN C_ . ON ( (Npre(,}U {{D}) x (Npost{.}U {(D} ) ), where 

6 
71 ~---72 

6 
v=(71,72) 6 VFN ¢=~ /~78.71~--7s 

6 
if 71 # ®A~2 =® 
if ~ = ® ^ ~ 2  # ®  

• a set of edges VFE C_ VFN x VFN, where 

(v, u') 6 VFE ¢=~# { v ' h # ® A u $ 2 # 0  A 
~;(~') e su~a(X(~)) ^ 
Tpre{~{v,}}(v'h)_CTpost{~{u}}(u$2) 

where ".h" and "~.2" denote the projection of a node v to its first and second component respec- 
tively, and A/'(u) the node of the flow graph ~,hat is related to v. 
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Thus, nodes v of the Value Flow Graph are pairs (71,72), where 71 is a node of the pre-DAG and 
72 a node of the post-DAG of a node n of G, such that 71 and 72 represent the same values, i.e. 
satisfy the inclusion Tpre(n)(71)D{t ] 3t' e Tpost(n)(72 ). t = ~,(t')}. Edges of the Value Flow 

Graph are pairs (v,v'),  such that A/'(v) is a predecessor of A/'(v') and values are maintained along 
the connecting edge, i.e. Tpre(./V'(v,))(V'~l)GTpost(.h~(v))(v~2). Finally, given a Value Flow Graph 
VFG,  we define: 

and 

VFNs=41 { u 1N(predvFG(V) ) # preda(N(u)  ) V A/'(v) = s} 

VFN e =af { u IN(8ttCCVFG(Y) ) # 8uccG( 4~ (1/ ) ) V .~ ( v ) -~ e} 

where predVFG and succvFG denote functions that map a node of V F G  to its set of predecessors 
and successors, respectively. 

5 Optimal Placement of Computations 

The placement procedure is optimal in its own right. It works for any Value Flow Graph, which 
need not be produced by the first stage algorithm or restricted to Herbrand equivalence. 

Before going into details, let us mention a technicality, which is typical for code motion (cf. 
[I~WZ]). Edges, leading from a node with more than one successor to a node with more than 
one predecessor, are split by insertion of a synthetic node. This is necessary in order to avoid 
"deadlock" during the code motion process, which may arise as illustrated in Figure 5.1(a). There 
the computation of "a + b" at node 3 is partially redundant wrt to the computation of "a + b" at 
node 1. However, this partial redundancy cannot safely be eliminated by moving the computation 
of "a + b" to node 2, because this may introduce a new computation on a path which leaves node 
2 on the right branch. On the other hand, it can safely be eliminated by moving the computation 
of "a + b" to the synthetic node 4 as it is displayed in Figure 5.1(b). 

11 I 21/ ......... I 11 h:=a  L 2i/ 

o+b l h I 
Figure  5.1 ~ 

I \ 

The following consideration assumes this simple transformation. In fact, the corresponding trans- 
formation of the Value Flow Graph is trivial as well, because all the inserted nodes represent 
skip-statements. 

5.1 Determinat ion of  the Computat ion Points 

The point of the placement procedure for computations is the solution of the following Boolean 
equation system (see Equation System 5.2), which we modified to work on Value Flow Graphs 
rather than flow graphs directly, in order to capture semantic equivalence. FoUowing [MR], the 
names of the  predicates are acronyms for the properties "local auticipabili~y", "availability" and 
"placemen~ possible": 
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Equat ion  Sys t em 5.2 (Boolean Equat ion  Sys tem)  

• The Frame Conditions (Local Properties): 

ANTLOC(v)  ¢=~ vhn T(tC(v)) # 0 

AVIN(v) = PPIN(v )= fa l s e  if v E VFNs 

P P O U T ( v )  =false if v E VFNe 

• The Fixed Point Equations (Global Properties): 

AVlN(v)  ¢=* I ]  AVOUT(v ' )  
v' e pr,d(v) 

AVOOT(v)  ~ AVIN(v) V P P O U T ( v )  

P P IN(v )  ¢=~ AVlN(v) A ( A N T L O C ( v ) V  P P O U T ( v ) )  

PPOUT(v) ¢==> I I  ~ P P I N ( # )  

Algorithm A.2 computes the greatest solution of this system, which determines the computation 
points by means of 

I N S E R T ( v ) = #  P P O U T ( v )  A -~PPIN(v) 

5.2 Placing the Computations 

The placement Algorithm A.3 proceeds in three steps: 

1. It marks all nodes of the Value Flow Graph that occur on paths that lead from nodes 
satisfying I N S E R T  to nodes satisfying ANTLOC.  

2. It associates with every marked node of the Value Flow Graph an auxiliary variable. This 
is a new auxiliary variable, if the marked node either satisfies I N S E R T  or has more than 
one predecessor in the Value Flow Graph. Otherwise the auxiliary variable of its unique 
predecessor in the Value Flow Graph is taken. 

3. It initializes at every node of the Value Flow Graph satisfying I N S E R T  its associated aux- 
iliary variable by its initialization term. (Initialization terms of a node v of the Value Flow 
Graph are minimal representatives of its corresponding equivalence class v.L2.) 

If two marked nodes which are associated with different auxiliary variables, say h~ and hi, 
are connected by an edge in the Value Flow Graph, a trivial assignment hi := hk is added 
at the end of the first node. 

Finally, original computations of the flow graph are replaced by the corresponding auxiliary 
varial)les. 

Note, in order to eliminate all redundancies at once, the initializations of auxiliary variables are split 
into sequences of assignments that only have a single operator in their right hand side expression. 
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5 .3  O p t i m a l i t y  R e s u l t s  

An analysis of the Boolean Equation System 5.2 delivers not only the correctness of the derived 
program transformation, but also its optimality. Intuitively, a flow graph is defined to be optimal 
wrt a Value Flow Graph if it is "best" in the class of branching structure preserving flow graphs 
that are "safe" and "complete" for it. Here "best" means that it possesses a minimal number of 
computations on every path, and "safe" ("complete") that it computes on every path at most (at 
least) as many values. A formal definition of this notion of optimality is complicated, because 
all these properties need to be defined in terms of the Value Flow Graph. We will therefore only 
sketch the formal treatment. For this purpose we will assume (without loss of generality) that the 
synthetic nodes are already inserted, that linear sequences of nodes are abbreviated by a single 
node (basic block), and that the Value Flow Graph covers all computations of the underlying flow 
graph, i.e.: 

V n e N  VteT(n)  3~EVFN. Af(v)=r~ A tETpre(,)(v~t) 

Now, let V F G  be a Value Flow Graph for a flow graph G = (N, E, s, e) ,  and G' = (N',  E', s', e') a 
branching structure preserving flow graph for G, i.e. there exists a graph isomorphism k~ from G' 
onto G with V(s') = s and k~(e') = e. Furthermore assume that p e P(s,  e) and p' = (nl, .., nq) e 
P(s ' ,  e') with q~(p') = p, and let VFG(p)  denote the graph that results from uurolfing V F G  along 
the path p. Then VFG(p)  is a collection of trees, which we will refer to as the VFG-values of p. 
This notion is motivated by the fact that VFG(p)  defines an equivalence relation on (potential) 
term occurrences wrt p whose equivalence classes contain computations that evaluate to the same 
value during the execution of p, and that these classes are maximal such wrt V F G .  Given a V F G -  
value C of p, rgv(C)-=a I {nl 13v E VFNe. Af(t,) = nl} denotes the range of C. A computation t' 
of p' at node nl is q!-covered by a VFG-value C of p if ~(ni) e rgv(C ) and if t '  is covered by 
C at k~(ni), or if Q,_t(t') is kg-covered by C at ni-1. This complicated definition is necessary 
because a computation in p' need not match a term in V F G ,  for example because of additional 
(auxiliary) variables in G'. CwG(p) denotes the set of all VFG-values of p that cover at least 
one computation of p, and Cw¢(~,p') the maximal set T, or the smallest set of VFG-values of 
p which ~-cover all computations of p', if such a set exists. 

After this preparation we are able to define the central notions of our optimality concept. G' is 
VFG-safefor G if CVFG(ffJ,p ') C_ Cvm(ffd(p')), andi t  is VFG-complete for G if Cvm(q2,p ') D Cvm 
(q2(p')) for all p' e P(s ' ,  e'). Moreover, p' is better than p if it contains at most as many (non 
trivial) computations as p, and G' is better than G if p' is better than q~(p') for all p t e  P(s ' ,  e'). 
Finally, G is VFG-optimal if it is better than any branching structure preserving G' that is 
VFG-safe and VFG-complete for G. 

T h e o r e m  5.3 (2 .Opt ima l i ty  T h e o r e m )  
Every flow graph transformed by the second s~age of our algorithm is VFG-optimaI. 

Let us now consider the combined effect of the two stages of our algorithm. As mentioned already, 
it is not possible to finitely represent all Herbrand equivalences syntactically. However, using the 
1.Optimality Theorem 4.6 we can show that there exists an infinite Value Flow Graph VFGo¢ 
that even represents all global Herbrand equivalences. This Value Flow Graph is the natural 
extension of a given Value Flow Graph where all partition DAGs D are replaced by 7/(D), see 
Definition 4.3. 

Definit ion 5.4 A VFGc,~-optimal program is called Herbrand optimal. 

We have: 

T h e o r e m  5.5 ( H e r b r a n d  Op t ima l i ty )  
Every flow graph transformed by our two stage algorithm in the full variant is Herbrand optimal. 
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Herbrand optimal transformations may cause unboundedly many reinitializations of auxiliary vari- 
ables in order to eliminate a single redundant computation. Thus, the costs of these reinitializations 
can easily exceed the costs of the eliminated computation. Motivated by this problem Rosen, Weg- 
man and Zadeck introduced a notion of optimality, which is based on an additional technical 
constraint (see [RWZ] for details). Referring to this notion as RWZ-optimallty we can prove: 

Theorem 5.6 (RWZ-Optimality) 
Every flow graph transformed by our two stage algorithm in the RWZ-variant ~ RWZ-optimal. 

As usual for code motion, our algorithm is devoted to the costs of computations. However, costs for 
register loading and storing are subsequently taken care of by variable subsumption. An algorithm 
based on the graph coloring techniques of [Ch,CACCHlVl] is implemented for this purpose. 

Finally, let Trans : F G  --* F G  be the operator specified by the full variant of our algorithm. 
Then we obtain by means of the 2.Optimality Theorem 5.3: 

Coro l l a ry  5.7 Trans i8 idempotent, i.e. VG e FG. Trans(G) = Trans(Trans(G)). 

In particular, the full variant of our algorithm covers all second order effects (cf. [RWZ]). 

6 Complexity 

The second stage of our algorithm can be applied to arbitrary Value Flow Graphs, yielding optimal 
results relative to the equivalence information represented (see 2.Optimality Theorem 5.3). We 
therefore estimate the worst case time complexity, which as usual is based on the assumption 
of constant branching and constant term depth, independently for both stages. This requires the 
following t:hree parameters: the number of nodes of a flow graph n, the complexity of computing the 
meet of two equivalence informations m, and the maximal number of Value Flow Graph nodes which 
are associated with a single node of the underlying flow graph, p. This yields for the complexity 
of the five steps of our algorithm: 

1. Construction of a Value Flow Graph for the Herbrand interpretation: 

(i) Determination of semantic equivalences: O(n2.m). Here "n  2" reflects the maximal length of 
a descending chain of annotations of a flow graph. In fact, the number of analysis steps of 
Algorithm A.1 is linear in this chain length. This can be achieved by adding those nodes to 
a workset whose annotations have been changed. Then processing a worklist entry consists 
of updating the annotations of all its successors. This can be done in O(m) because of our 
assumption of constant branching. 

To our knowledge, the exact nature of m is not studied in previous papers. This is probably 
due to the fact that, in practice, this effort hardly increases linearily in the size of the 
analysed program, and therefore is regarded as harmless. However, DAGs that arise during 
the analysis may represent sets of terms which increase exponentially in n. Inspire of this 
fact, we conjecture that the compact representation of these sets by means of structured 
partition DAGs, together with the constraint that the DAGs arise during the analysis of a 
particular program, allows us to show that the number of nodes in such a DAG only increases 
quadratically in n. This conjecture would suffice to prove an overall complexity of O(n 4) for 
the first step, because we know that the meet of two DAGs can be computed essentially 
linearily in the size of the resulting DAG. 
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(ii) Computation of the syntactic representation of the semantic equivalences: This complexity 
depends on the variant chosen. Whereas the basic variant and the RWZ-variant are both 
O(n3), the full variant seems to be exponential in n. 

(iii) Construction of the Value Flow Graph: O(n*#). This is based on two facts. First, if there 
exists an edge in the Value Flow Graph between two nodes vl and v2 then the corresponding 
nodes A]'(vl) and AZ(v2) of the flow graph are connected as well. Thus every edge of the 
Value Flow Graph is associated with an edge of the original flow graph. Second, the effort 
to construct all edges of the Value Flow Graph that correspond to a single edge (n, m) in 
the original flow graph is linear in the number of Value Flow Graph nodes that annotate n, 
which can be estimated by ~u. 

2. Optimal placement of the computations: 

(i) Determination of the computation points: O(n*/~). The argument needed here is based on 
that of the first step, however, we do not have constant branching, and the algorithm here is 
bidirectional. This leads to the product n*# because all nodes of the Value Flow Graph can 
be updated once by executing only two elementary operations per edge of the Value Flow 
Graph, and the number of edges in a Value Flow Graph can be estimated by O(n*#). 

(it) Placing the computations: O(n*#). This is straightforward. 

Let us finally give an estimation of the worst case time complexity of the practically motivated 
RWZ-variant. Here, O(/~) can be approximated by O(n2). In fact, exploiting the specific nature of 
the RWZ-closure already during the first step, we arrive at an algorithm with an overall complexity 
of O(n4). Assuming our conjecture, this result is also true for the RWZ-vadant of our two stage 
algorithm presented above. 

? Conclusion 

We have shown, how to combine semantic algorithms with syntactic ones, in order to obtain 
maximal optimization results. This technique, which is based on the introduction of Value Flow 
Graphs, has been illustrated by developing a two stage algorithm for the optimal placement of 
computations within a program. 

In addition to their optimality, algorithms developed by means of this technique are easily to 
extend, because the separation of their semantic part from their (independently optimal) syntactic 
transformation part makes them modular. This modularity allows to independently enhance the 
semantic properties by modifying the first stage, and the transformation capacity by strenghtening 
the second stage. In our current implementation, the first stage is extended to deal with cor~tant 
propagation and constant folding (see [SK1,SK2]). An extension of the second stage to strength 
reduction ([ACK,CK,JD1,JD2 D is under development. 
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A A p p e n d i x :  T h e  A l g o r i t h m s  

Algori thm A.1 (The Semantic Analysis of Step 1.(i)) 

Input:  An arbitrary flow graph G = (N, E, s, e)with unique start node s and unique stop node 
e, which are assumed to possess no predecessors and no successors, respectively. 

Output :  A designation of G with pre-DA Gs (stored in pre) and post-DA Gs (stored in post), 
characterizing valid and complete equivalence information at the entrance and at the exit of every 
node n • N, respectively. 

Remark: _1. denotes the "empty" data flow information and T its complement, the "universal" 
data flow information, which is assumed to "contain" every data flow information. [ ] denotes 
the local analysis component and [q the meet operation. ([  ] and [1 operate on DAG-structures). 
pred(n)=d! {m I(m,n) e E} and succ(n)=df {m I(n,m) • E} denote the set of all predecessors 
and successors of a node n, respectively. The variable workset controls the iterative process, and 
the auxiliary variable meet stores the result of the most recent meet operation. 

(Initialization of the designation arrays pre and post and the variable workset) 
FOR all nodes n • N DO 

IF n = s  
THEN (pre[n], post In]):= (±, [ n 2(1)) 
ELSE (pre[n],post[n]):= (-1-, T) FI  

OD; 
workset := {s}; 

( Iterativc fixed point computation) 
WHILE workset ~ ~) DO 

LET n • workset 
BEGIN 

workset := workset\ {n } ; 
(Update the "environment" of node n ) 
FOR all nodes m • succ(n) DO 

meet := pre[m] n post[n]; 
IF  pre [m] -1 meet 

THEN 
pre[m] := meet; 
post [m]:= i m ](pre [m]); 
workset := worksetU {m} 

FI  
OD 

END 
OD. 

Algori thm A.2 (Solution of the Boolean Equation System (Step 2(i))) 

Input:  A Boolean equation system which is completely initialized wrt the local property ANTLOC. 

Output :  The greatest solution of the Boolean equation system. 

Remark: With every node of the Value Flow Graph the predicates ANTLOC, AVIN, AVOUT, 
PPINand P P O U T  are associated. However, only ihe later four are involved in the fixed point 
iteration, which therefore operates on the fourfold cartesian product of the complete semi-lattice 
{false, true} with false r- true. pred(u)=df {#] (#, u) fi gEE} and succ(v)=~ {# [ (u, I~) • gEE} 
denote the set of all predecessors and successors of a node u, respectively. The variable workset 
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controls the iterative process. For notational convenience we abbreviate (AVIN(u), AVOUT(v),  
PPIN(u),  P P O U T ( u ) )  by fu.  The auxiliary variable f store8 the result of the most reeen~ 
application of the local analysis component, and avin and ppout are further auxiliary variables. 

(Initialization) 
F O R  all nodes u E VFN DO flu := (true, true, true, true) OD; 
F O R  all nodes u e VFNs DO (AVIN(u), P P I N ( v ) ) : =  (falze, fulse) OD; 
F O R  all nodes u E VFNe DO P P O U T ( u )  := false OD; 
workset := VFNsU VFNe; 

( Iterative fixed point computation) 
W H I L E  workset ¢ 0 DO 

L E T  v E workset 
B E G I N  

workset := workset \ {u}; 
(Update the Uenvironment" of node u ) 
F O R  all nodes # e pred(v)Usucc(u) DO 

IF  # e pred(v) 
T H E N  

ppout := P P O U T ( # )  A E{PPIN(A) I A e succ(#) A Af(~) = Af(u)}; 
/~:= (AVIN(#),  AVIN(#) Y ppout, AVIN(#) A (ANTLOC(#)  Y ppout), ppout ) 

ELSE 
avin := AVIN(#) ^ AVOUT(u);  
f : =  (avin, av/nVPPOUT(#),  avinA(ANTLOC(p)VPPOUT(,u)) ,  PPOUT(#) )  

OD. 

FI ;  
IF  ~ - T f  

T H E N  
f . :=~ 
workset := workset U {#} FI  

OD 
E ~  

Algorithm A.3 (The Optimizing Program Transformation (Step 2(ii))) 

I N P U T :  A flow graph G and an accoeiated Value Flow Graph V F G  with attached predicate 
designation characterizing the greatest solution of the Boolean Equation System 5.~. 

O U T P U T :  The transformed flow graph GT. In GT auxiliary variables are initialized at the 
optimal computation points by their minimal computation form, wrt to the equivalence information 
expressed by VFG.  Original computations are replaced by auxiliary variables. 

R E M A R K :  The algorithm consists of three phases, namely 

• Marking of the definition.use chains in VFG. 

• Allocating of the auxiliary variable numbers. 

• Transforming of the flow graph, namely 

- Initializing auxiliary variables at their computation points by their computation forms. 

- Introducing spill code for the generated auxiliary variables. 

- Substituting original computations by a reference to their covering auxiliary variable. 
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The marking of a node u G VFN is indicated by the predicate mark(u), the number of an 
associated auxiliary variable is denoted by nr(u) and the variable count indicates the number of 
the last generated auxiliary variable. 

(Phase 1: Marking of the definition-use chains in V F G  ) 
F O R  all nodes u G VFN D O  mark(v) := false OD;  
zoorkset := { u e VFN IANTLOC(u)} ;  
W H I L E  workset ¢ ~ D O  

L E T  u G workset 
B E G I N  

workset := workset \ { u } ;  
mark(u) := true; 
I F  - , INSERT(y)  T H E N  wor~et := work~ct U {u' G pred(u) 1-~ mark(u') } F I  

E N D  
OD;  

( Phase 2: Allocating auxiliary variable numbers) 
count := O; 
F O R  all nodes u G VFN DO nr(u) := 0 0 D ;  
workset := {u e VFN I INSERT(u)};  
W H I L E  workset ~ 0 DO 

L E T  u G workset 
B E G I N  

~oor/~et : =  ~,orkset \{u}; 
mark(v) := f~l~e; 
I F  I N S E R T ( v )  V I pred(u) I > 2 

T H E N  
count := count + 1; 
nr(u) := count 

ELSE (assume pred(u) = {u'})  
nr(u) := ~r(u') 

FI ;  
~,or~,et := ~,or~et u {u' e sure(u) I mark(u) } 

E N D  
OD;  

( Phase 3: Transformation of the flow graph) 
( Initializing auxiliary variables at their computation poin~ by their computation forrn~) 
F O R  all nodes n G N D O  

wor~et := {u e VFN I I N S E R T ( u )  ^ N(v)  = n }; 
W H I L E  wor~et ~ O D O  

LET uE {u' E worluet [VP 6 worl~et . ~ ~ succ*(u'~2)} 
BEGIN 

~or~et := wor~et \{u}; 
IF npost(n)(Ui2)n (VU C) # 0 

THEN 
L E T  z E Lpost(n)(U$2)n (VU C) 

B E G I N  
Attach the assignment hnr(u) := x] at the end of node n 

E N D  
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ELSE 
LET op E Lpost(n)(V~2),. . 

v' e VFN. v'~2=l(vl2), 
P E VFN. V~2=r(VI2) 

BEGIN 
a**ach ~he a.ignment [ h . . , ) : =  h..,,)o~,h..(~,) ] at ~he end of node n 

END 
FI 

END 
OD 

OD; 

( Introduc~ing spill code for the generated auxiliary variables) 
FOR all nodes v, u' e {~ e YFglnr(P) # 0} DO 

IF ~ e pred(~') ^ nr(~) # ~r(~') 
THEN 

a~a~h a eo~ponen~ of spill ~ode [(.., h , , , , ) ,  ..) := (.., h,~C~,),..)] a~ ~he en,~ of,~ode .~'(~,) 
FI 

OD; 

( Substituting original computationz by a reference to their covering auxiliary variable) 
FOR all nodes n G N DO 

workaet := {v e V FNIANTLOC(v )  AAf(v) =n}; 
W H I L E  worh~et • $ DO 

LET ve {v 'e  workset IVp e worI~et. P+I ~ pred*(v'~a)} 
BEGIN 

workaet := workaet \{V}; 
Replace all original computation, t • T(n)N Tpre(n)(V.~,) by h.,w) 

END 
OD 

OD. 


