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Abstract  
We describe a novel application of subtyping in which a small orthogonal set of 

structural subtyping rules are used to capture the notion of scaling--an unusual variety of 
polymorphism found in APL-like languages which is attracting renewed interest due to its 
applications in data parallel programming. The subtyping approach allows us to provide 
a simple coercion-based semantics for a generalized interpretation of sealing that goes 
well beyond what is available in APL dialects. 

1 Introduction 
Data parallelism [HS86,Bre88,Vis89] has gained increasing favor recently due to its conceptual 
simplicity and the high speedup available whenever the technique can be used effectively. 
Conceptually, data parallelism covers a broad range from traditional vector processing to 
techniques for programming Transpnter networks [Vis89] and the Connection Machine [HS86]. 
In this paper, we are concerned with one of the main techniques used for data parallel 
programming: the technique of scaling, which goes back all the way to APL [Ive62] where it 
was introduced for its expressive power in array manipulation rather than as a way of expressing 
parallelism. Our concern will be with the implications of scaling for smile typing-- 
specifically, we explore a novel subtyping approach to the static type analysis of a very general 
interpretation of scaling. 

Recall that in APL, many scalar operations also accept array arguments and "scale" their 
meaning accordingly. In later dialects like APL2, the arguments may also be arbitrarily nested 
arrays. For instance, the scaling and shifting of a vector is usually written as a+/rp where v is a 
vector and a and b are real constants. Representing p by a I-D array V, one can simply write 
this expression as a + b , V  in APL. In Standard ML [Mi184], using a list V, the same 
expression might be written as map (op +) (distl (a, map (op ,)  (distl (b, V)))) where the distl 
primitive is borrowed from FP [Bac78]. Besides the obvious implicit parallelism, the gain in 
expressive power as a result of scaling is striking. 

The price paid for implicit scaling is added complexity in the semantics of the language. 
Existing explanations of scaling in APL [Ben85JM78] treat only the operations involved (such 
as "+" and "*" above) as being polymorphic. The range of possible behaviors of such 
operations, especially when nested structures are allowed as arguments, is hard to capture in a 
single principle type expression, or even in a finite number of expressions. This is the main 
difficulty in doing static type analysis of scaled expressions. Our innovation in this paper is to 
show that an alternative approach based on coercive structural subtyping accounts very 
effectively for scaling. In effect, our type system coerces the APL-like version of the expression 
given above to the Standard ML version. We expect that a realistic compiler using our system 
can derive enough information from the typing process to generate more efficient (sequential or 
data parallel) code than the naive synthesized version implies. 
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The generality achieved by our solution goes well beyond what is available in APL dialects. 
Scaling is no longer limited to syntactic operators--all functions including user-defined ones can 
be scaled up in the same way. The extension of the subtype structure relative to type 
constructors captures all the natural implications of scaling for components of slructures, higher- 
order functions, and so forth (see examples in Section 3). The notion of scaling itself is more 
general. As an example, suppose "++" denotes vector concatenation, and the vector consisting 
of Xl,X2 ...... xn is denoted by [Xl,X2 ..... Xn]. The expressions [[1,2],[3,4]] ++ [[5,6],[7,8]] and 
[[1,2],[3,4]] + [[5,6],[7,8]] both work correctly: the former yields [[1,2,5,61, [3,4,7,8]] and 
the latter [[6,8], [10,12]]. Note that the grain of scaling is different in the two cases. We do 
not know of any APL dialect which automatically adjusts the grain of scaling to the needs of the 
applicationL in this way. Our technique is also quite robust under many kinds of enrichments of 
the underlying language,--for instance with mutable variables. Compatibility with parametric 
polymorphism poses some interesting problems, which are discussed in Section 8. 

The basis of our solution is a small set of orthogonal subtyping rules (with corresponding 
coercions) which capture most cases of scaling. As in the case of subtyping with labeled record 
types [Car88] subtyping is based on the structure of type expressions. Although easy to 
understand and motivate, the structural relationships turn out to be unusually complex. Even 
the antisymmetry of the subtype relation needs a nontrivial proof. The proof of the coherence of 
subsumptions (subtyping judgements), i.e., the property that each subsumpdon implies a 
semanticallly unique abstract coercion, requires a normalization result for derivations of 
subsumptions. The subtype structure is consistently complete, but this is not obvious, and the 
algorithms for finding LUBs and GLBs (required in the typechecking algorithm) are quite 
complex. In spite of this complexity, we believe that the subtype structure is intuitively natural 
and will be, "user-friendly" in practice. 

The subtyping rules define the rest of the problem, which is to verify that they can be 
applied within a standard general framework of the kind given in [Rey85] to give unambiguous 
meanings to scaled expressions. Standard typing rules allow derivation of types and coerced 
(unscaled) versions for all meaningful scaled expressions and each coerced version can be given a 
meaning using the standard semantics of the k-calculus. To show that each scaled expression 
has a unique meaning, we need two further properties: the existence of a minimal typing 
judgement for each well-typed expression, and semantic coherence---the property that the 
meaning of an expression depends only on the typing judgement applied to it, not on the 
derivation used to reach that judgement. Since each use of a subsumption in a typing derivation 
implies the insertion of a coercion, the meaning of an expression seems to depend on the 
particular derivation. Coherence asserts that this apparent ambiguity is semantically 
inconsequential: all the different coerced versions for the same judgement have the same 
meaning. The notion of coherence was first discussed explicitly in [BC+89]. Reynolds' 
discussion of coercions and overloaded operators [Rey85] is based on the same intuition. As 
Reynolds (implicitly) points out, coherence of typing is closely related to coherence of 
subsumptions. The additional complication in our case comes from the fact that each function- 
valued expression is "overloaded" with an infinite number of potential meanings. However, it 
can be shown that at most one of these overloaded meanings is usable in any particular 
application. This fact, together with coherence of subsumptions, turns out to be sufficient for 
coherence of typing. 

In the rest of the paper, following a brief discussion of related work and some preliminaries 
in Sections 2 and 3, we begin by deriving the subtype structure in Section 4. Section 5 gives 
an outline of the coercion-based semantics. The proofs of the major properties of the subtype 
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e ::= x (identifiers) I Lcx. e (typed abstractions) I el e2 

I el,  e2 (pairs) I e ,l,i (projections, i=l,2) I nil x 
I e l ;e2  (cons) I hd e (list head) I tl e 

I: ::= t (scalar types) I "¢1 ×'c2 (product types) 
I Ix] (fist  t ypes )  I "c 1 - 9  "c 2 (function types) 

(applications) 

(empty list) 
(list tail) 

Figure 1: Syntax of Object and Type Expressions 

structure are outlined in Section 6. Section 7 gives the typing algorithms, and Section 8 
concludes with a discussion of the problems involved in adding parametric polymorphism. 
Many technical details and all actual proofs are omitted in this version for lack of space. 

2 Related Work 
Type inference using subtypes structures has proved to be a fruitful idea in a variety of 
applications. It was originally introduced by Reynolds [Rey80] to systematize the semantics of 
automatic coercions between types. Such subtyping might be called coercive, to contrast it with 
the inclusive variant used in theories of inheritance [Car88], quantified types [Mit88] and partial 
types [Tha88], where subtypes are taken to be subsets. Most applications of the coercive variant 
have been concerned with relationships between atomic types, such as "integer < real". An 
underlying theme in this paper is that coercive structural subtyping--subtyping based on the 
structure of type expressions--can be very useful as a tool to provide coercion based semantics 
for many interesting language features that pose problems for other semantic approaches. A 
similar approach is used in [BC+89] to give an alternative semantics for inheritance. We have 
elsewhere [Tha90] explored an application to dynamic typing in static languages. 

3 Type and Object Languages 
The object language is a simply typed dialect of the ~.-calculus. For definiteness, the language 
includes a linear list or sequence structure for the application of scaling. However, this fact is 
nowhere used in an essential way, and substituting sequences with any other data structure 
suitable for set representation (such as trees or arrays) would require no change in the treatment 
except for the substitution of appropriate new conversion functions. The grammars for type and 
object expressions are given in Figure 1, where the metavariable e ranges over expressions, x 
over identifiers, t over scalar types and x over all type expressions. Scalar types in this context 
need not include only atomic types. Any type which is not a product or function type and is not 
a structure type involved with scaling can be thought of as a scalar type. The set of all type 
expressions will be denoted by Typexprs. 

Besides the constructors x and ---> for product and function types, we have an ouffix type 
constructor [ ]; [x] is list-of-x. We need to provide the list primitives as syntactic operators in 
order to allow them to be generic. Note that the type intended for each use of nil must be given 
(this can be avoided by introducing the "universal" type described by Reynolds ~ey85]). In a 
simply typed dialect of the g-calculus such as ours, recursion must normally be provided by an 
explicit construct which computes least fixed points of functions. The reason for omitting the 
construct in the grammar above is that fixpoint constructs are incompatible with minimal 
typing in our context--the counterexample is omitted here for lack of space. This does not 
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mean that the language cannot include fixpoint constructs. It does mean that the typing 
constraints for such constructs cannot be described using nondeterministic typing rifles as in the 
case of the other constructs. It is easy to infer the natural type of instances of the fix construct, 
and the fix case in the minimal typing algorithm Type in Section 7 does exactly that. 

4 The Subtype Structure 
The essence of our approach is to capture the semantics of scaling in a small orthogonal set of 
structural subtyping rules. The subtype structure must find a balance between two conflicting 
principles---orthogonality and coherence. Orthogonality--the treatment of all (data and function) 
types as f'u:st-class citizens in the subtyping scheme---is what gives the solution its simplicity, 
generality and expressive power. Unrestricted orthogonality leads to loss of coherence, but the 
coherent solution derived below retains sufficient orthogonality for most practical purposes. 

It is helpful to start with some examples to outline the desired range of applicability of the 
subtype structure. The primitive coercions we shall need are provided in FP [Bac78] as 
primitives---"." (function composition), ot (a curried version of map), distl, distr and trans. 
The function trans transforms any pair of lists of equal size into a list of pairs of corresponding 
elements ha the obvious way; distl "distributes" its first argument by pairing it with elements 
of its second (list/sequence) argument, and distr is exactly the same except it takes its arguments 
in the reverse order. We treat these coercions as though they possess polymorphic types because 
they are used only in places where their type is both correct and manifest. The use of FP 
primitives as basic coercions is especially interesting because FP has been influenced by many 
APL ideas and idioms but lacks a notion of scaling. The reason (presumably) is that the 
semantics of implicit scaling in APL is rather complex and ad hoc. We restore scaling (for 
homogeneous structures) in a semantically simple way by implicitly using the same coercions 
FP progrmnmers must use explicitly. 

We use [el, e2 . . . . .  en] as an abbreviation for el;  (e2; (...; (en; nilz) ...)) (where x is the 
component type) and the form e ~ e" to mean that the expression e is (expected to be) coerced 
to e' by a minimal typing derivation. Thus, 

square [1,2,  3] ~ ((z square) [1,2,  3] = [1,4,  9] 
1 + [1,2,  3] - ~  (a +) (distl (1, [1 ,2,  3])) = [2, 3, 4] 

[1,2,  3] + 1 --~ (a +) (distr ([1,2, 3], 1)) -- [2, 3, 4] 
[1,2,  3] + [2, 3, 4] --~ (a +) (trans ([1, 2, 3], [2, 3, 4])) = [3, 5, 7] 

Scaling is not limited to one "level" in a structure. Thus, 

1 + [[1,21, [2, 31] ---* ((z ((~ +)) ((a distl) (distl (1, [[1, 2], [2, 31]))) = [[2, 3], [3, 41] 

For an example with nonscalar operands, let f = Z.Xintx[int]. x$1; x,l,2, 

f (0, [[1, 21, [2, 311) --~ ((z f )  (distl (0, [[1, 21, [2, 31])) = [[0, 1, 2], [0, 2, 3]] 

We wish to capture the implicit coercions implied by these examples in a few orthogonal 
structural subtyping rules. Subtyping judgements will be presented in the "natural deduction" 
style. Eaclh subtyping judgement has the form I- xl _< x2 ~ f wheref is the corresponding 
coercion. The simple scaling of functions as in square [1, 2, 3] can be captured in its full 
generality by the rule 

SCL: I- xl ---> x2 < [xl] --> Ix2] ~ ot 
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which uses the (.polymorphic) operator a to convert any function of type x I ---> x2 to a function 
of type [xl] ---> [x2], where xl and x2 are arbitrary types. For instance, consider the expression 
square  [[1,2], [2, 3]]. Here the type of square is coerced to [[int]] ~ [[int]] by two iterations 
of SCL, and square  itself is coerced to a (a square). An interesting consequence of SCL is 
that one never needs to use the o~ (map) operator explicitly, even in order to scale up an 
argument of a higher-order function (see inner product example at the end of the section). 

Evaluation of expressions like [1, 2, 3] + [2, 3, 4] can be seen as a two step process in 
which a zipping step collates the two operands to yield [(1,2), (2,3), (3,4)] and a scaling step 
coerces "+" to "c~ +". The first step can be captured by the rule 

ZIP: t-- [xl] x [x2] < [xl x x2] ~ trans 

with the semantic proviso (enforced by trans)  that the two lists must have the same length. 
This generalizes pleasantly to examples like 

[[1, 2], [3, 4]] + [[2, 31, [4, 511 
--~ (o~ ((x +)) ((o~ trans) • trans ([[1,2], [3, 4]], [[2, 3], [4, 5]])) = [[3, 5], [7, 9]] 

The argument type [[int]] x [[int]] is transformed to [[int x int]] by two iterations of ZIP, and 
"'+" is then applicable by two iterations of SCL. The second iteration of ZIP uses a naturally 
induced subtyping relationship between list types (incorporated into rule LIST in Figure 2). ZIP 
implies that all explicit uses of our version of lrans can also be eliminated. 

This leaves examples like 1 + [1, 2, 3]. The argument type here is int x [int] and it needs 
to be subsumed to [int x int]. The coercion involves replication of the first argument to match 
the second. Replication cannot be separated from zipping since the degree of replication is 
determined by the context--1 is replicated three times in this example because the other 
argument o f "+"  is a list of length three. We might therefore propose the symmetric rules 

I- xl  x [x2] < [xl xx2] =~ distl and t-- [xl] x x2 < [xl xx2] ~ distr  

Unfortunately, these rules are incompatible with coherence. The problem can be seen with a 
simple example w two semantically distinct derivations for [int] x [int] _< [[int x int]]: 

[int] x lint] ___ [int x [int]] <_ [lint x int]] [int] x [int] __. [[int]x int] _< [[int x int]] 

The coercion for [int] x [int] <__ [[int x int]] is distl • distr in the first derivation, and distr • distl 
in the second: ([1,2],[3,4]) would be converted to [ [(1,3),(1,4)], [(2,3),(2,4)] ] by the first 
derivation and to [ [(1,3),(2,3)], [(1,4),(2,4)]] by the second. We therefore impose the 
restriction that replicated values must be scalars. 

The basic cases of the subtype relation are defined by rules SCL, ZIP, REPL and REPR in 
Figure 2. The other rules in Figure 2 are standard for all subtype relations (see, e.g., [Rey85]). 
Of these, LIST, PROD, and FUN allow the basic rules to be applied to subexpressions of a type 
expression in a natural way. In the coercion for PROD, we have used FP's selection functions 
1 and 2 as projections from pairs, and Firs construction form in its dyadic version the 
construction "{fl , f2}" denotes a function such that {fl,f2} x = (fl x, f2 x). 

Clearly, the coercions in Figure 2 are naive. In a serious sequential implementation, one 
would expect to optimize the implementation of standard combinations to avoid actual zipping 
and replication whenever possible, to produce code that is comparable in efficiency to (say) 
equivalent hand-coded C programs. In programming for the Connection Machine on the other 
hand, actual replication appears to be the standard practice [HS86]. The detection and 
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SCL: I -xl  ~ x 2 < [ X l ] - > [ x 2 ] ~  a 

REPL: I- t x [ ' c ]  < [ t x x ]  =~ distl 

ZIP: F [Xl] x ['c2] < [Xl xx2] ~ t rans  

REPR: F [x] x t _< Ix x t] ~ distr 

RFLX: 

TRNS: 

LIST: 

PROD: 

FUN" 

I -  x < _ x  ~ id 

I - x l  < _ x 2 ~  f t- x2 < x3 =~ g 

t- "el < '~3 ~ g . f  

I- "el < '~2 ~ f 

~ Ix 1] _< Ix2] = a f 

I - x l < x 2 ~ f  I x3 < "c4 =~ g 

I- x l x x 3  < x 2 x x 4  =* { f . 1 ,  g - 2 }  

I- x l < x2 ~ f I- x3 < x4 ==~ 

I-- x 2 - > x 3  < xl  ->'c4 ~ Lb. g . h . f  

Figure 2: Subtyping  Rules and Coercions  

transformation of optimizable combinations of coercions can be made a part of the typechecking 
algorithm. The details are clearly nontriviat, and will have to await another paper. 

To illustrate the use of  a number of rules working together, consider a slightly more 
complex example involving higher-order functions. In FP, the inner product function is defined 
by the expression (/+) • (cx,) • trans, where "/" is APL's reduce operator, which has type (real x 
real ~ roa l )~[ rea l ] - - ) rea l  in this context. Given that explicit uses of 0t and t rans  are 
unnecessary, we should be able to express inner product as (/+) • , .  The expression should have 
the type x = [real] x [real] --) real. "/+" clearly has type [real]--)real. The type of "*" is 
coerced from real x real --) real to [real x real] ~ [real] using SCL to fit the composition, 
giving the (minimal) type o = [real x real] --) real for the overall expression. It is easy to see 
that the required type x is a supertype of o--[real] x [real] < [real x real] by ZIP and hence x _> 

by FUN. The standard behavior is therefore inherited by our version, which is more general 
than the usual inner product. In addition to a pair of real sequences, it could also be applied to a 
real constant and real sequence, or to a sequence of real pairs. 

The subtype structure defined here appears to have few unexpected consequences of the kind 
that made coercions in PL/I notorious. A possible exception is that some nonhomogeneous list 
expressions, instead of producing type errors, are automatically homogeneized: 

[(3, [1,2]), ([4,5], 6)1 ~ [distl (3, [1,2]), distr ([4,5], 6)1 = [[(3,1),(3,2)1, [(4,6),(5,6)]] 

It should be noted that in all of the examples in this section, whenever automatic coercion 
is required, the resulting converted expression is not unique. Given an apparently mismatched 
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A t- x ~ x :  A(x) 

A ~ - e l ~ e l ' : X  
A t-- e2 ~ e2' : Ix] 

A I- e l ; e 2 ~ e l ' ; e 2 ' :  [x] 

A I-- e ~ e ' :  [x] 

A ~ - h d e ~ h d e ' : x  

A + x : ' c  t- e ~ e ' :  x" 

A F- Lxx.e =*kJcx.e': x--->'¢' 

A F- e l s e 1 ' :  Xl 
A I- e 2 = * e 2 ' :  x2 

A F- e l ,  e 2 ~ e l " , e 2 " : X l X X 2  

A t--nil x ~ n i l x :  ['c] 

A 1-- e ~ e ' : x l X X 2  

A ~- e$ i :=>e '$ i :  xi 

i = 1 , 2  

A F- e ~ e ' :  Ix] 

A 1- tl e ~ t l  e': [x] 

A I- e l ~ e l ' :  Xl--->x2 
A t- e 2 ~ e 2 " :  Xl 

A ~ e l e 2  ~ el 'e2":'c2 

A F- e = * e ' :  x l  F x l < x 2  ~ f 

A F- e ~ f e ' : x 2  

Figure 3: Typing Rules 

application, one can either coerce the function part to adapt to the argument or vice versa. The 
individual coercions themselves can be carried out in many ways. The important point is that, 
as a result of the coherence property, this flexibility does not cause any semantic ambiguity. 

5 The Semantics in Outline 
The semantics of the object language is based on transforming scaled expressions---all 
expressions are assumed to be scaled--to unscaled ones based on the subtype structure of the last 
section. The "engine" for the transformation is type inference, specified by a set of typing rules. 
We use typing rules in which the insertion of coercions is made explicit, departing from 
previous usage [CW85, Rey85] for systems based on subtypes. One reason is that the 
statements and proofs of several theorems are made clearer and simpler by the change. We also 
use the new form to emphasize that our subtype scheme is coercive rather than inclusive. Many 
recent papers on type inference with subtypes [Car84, Mit88, Tha88] use inclusive subtyping. 
Coercive subtyping allows relationships that are semantically more ad hoc, and need more 
justification through properties such as coherence. The general form of a typing rule is A t- e 

e" • "c, which can be read as: "Given a set A of typing assumptions for free variables, the 
expression e is coerced to e' which has the type x." The expression e' is the unscaled version of 
e. The typing rules are given in Figure 3. The most notable rule is the last rule in the right 
column, which uses a coercion function to account for the use of a subsumption. 

The semantics of the coerced expressions derived by type inference is meant to be 
transparent. This is equivalent to saying that given A 1- e ~ e' : x, the assertion "e' has the 



413 

type x" is prima facie sound. Suppose there are function-s E and T which map syntactic 
expressions in the object and type languages to their respective denotations (the details of the 
definitions of E and T are standard: see, e.g., [Car88]). The function E uses an additional 
environment argument 11 as is usual in denotational semantics. We use ~ ~ A to mean that the 
environment 11 satisfies the type assumptions in A. Note that E only assigns transparent 
meanings (without any attempt to resolve scaling) and is only meant to be applied to unscaled 
expressions. 

S e m a n t i c  S o u n d n e s s  T h e o r e m .  A i- e ~ e'  : x implies Vr I ~ A. El[e']r  I E T [ x ] .  

Given that E[f]rl  E Tl[xl-->x2] for the coercion f in the subtyping rule, the proof of this 
theorem is easy by induction on the stucture of e, and is left as an exercise. Although typing is 
sound, it is highly nondeterministic. Suppose we define: 

Typo(A,e) = {x I A I-- e ~ e" : "c for some e'} Expr(A,e,x) = {e' I A t- e ~ e' : x} 

Typo(A,e) iis not a singleton for most well-typed e, and Expr(A,e,x) is not a singleton for most 
types x in "l'ype(A,e). However, as we describe in Sections 6 and 7, (Typexprs, <) is a poset 
and each nonempty Typo(A,e) contains a minimal element, which we denote by MinTypo(A,e). 
Moreover, although Expr(A,e,x) may contain many expressions, the semantic coherence 
theorem in Section 7 asserts that this is semantically inconsequential since all members of 
Expr(A,e,'c) always have the same (transparent) meaning. To be more precise, the semantic 
coherence theorem asserts that for all distinct el and e2 in any Expr(A,e,x), Vrl ~ A, El[ellrl = 
E[e2lrl, and therefore E can be applied to Expr(A,e,x). We can now define the new semantic 
function S[" which gives meaning to scaled expressions directly. Assuming rl ~ A: 

SEl[e]rl = if Type(A,e)= O then wrong else ElrExpr(A,e,MinType(A,e))]rl 

where wrong is a special semantic value that denotes type error. 

6 Properties of the Subtype Structure 
In this section we discuss the two major properties of our subtype structure which are needed to 
validate the semantics outlined in the last section, namely, partial ordering and semantic 
coherence. The former is needed for the existence of minimal types and the latter for the 
coherence of typing judgements. A subtype relation is naturally reflexive and transitive (a 
preorder), as reflected in rules RFLX and TRNS in Figure 2. We begin by showing that 
(Typexprs, <_) is antisymmetric as well. We then outline a proof of the coherence of subtyping 
judgements, i.e., the property that I- xl < x2 ~ f and t- xl _< x2 ~ g implies f = g 
(extensionally). The property is needed because each subsumption Xl < x2 can usually be 
derived in a number of different ways, leading to superficially different coercion functions. For 
instance: 

I- [ int x int] ~ int _< [ [ int]  x [ int]]  ---> l int]  ~ (kg .  g • ( a  t r a n s ) )  • t~ 

I- l int  × int]  --> int <_ [[ int]  x [ int] ]  ---> [ int] ~ ¢x • (Zg.  g • t r a n s )  

via two derivations for the same subsumption. The details are left as an exercise. 
The key to the entire analysis in this section is an analogy between derivations of subtyping 

judgements and term rewriting sequences. There is room here only to sketch the development. 
The new technical notion underlying the analogy is that of a unit subsumption, corresponding to 
a single rewriting step. The derivation of a unit subsumption involves exactly one use of one of 
the basic rules (SCL, ZIP, REPL, REPR), along with possible uses of other (nonbasic) rules. 
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We use the notation I- x < c ~ f for unit subsumptions, or just x < c for short, whenever 
we can ignore the coercion f. It is not hard to see that the coercion for a unit subsumption is 
unique. Moreover, any derivation of a subtyping judgement (Xl<X2) can be presented in the 
form of a sequence Xl = xt 1 ,o...<~ Xln = "C2, n > 0 ,  where the overall coercion is the 
composition of the unit coercions. The proof of this observation requires a rearrangement of the 
derivation along the lines of the (quite different) rewriting system described in [CG89]. This 
constitutes a partial normalization of the derivation of the subtyping judgement: there are in 
general many such sequences for a given judgement. The main result we wish to prove is that 
all sequences of unit subsumptions for a given subtyping judgement are semantically equivalent, 
i.e., there is a unique representative sequence which represents the subsumption semantically (in 
terms of the implied coercion). This amounts to a full normalization result for derivations of 
subtyping judgements. 

Note that each step xi < "ci+t involves replacement of a single subexpression within "ci by 
the corresponding expression according to the basic rule involved. This is very similar to a term 
rewriting step and would be just ordinary rewriting based on a set of first-order rewrite rules if 
not for the antimonotonicity of "--->" in its first argument. To make the analogy more precise, 
we need to partition occurrences of subexpressions in type expressions into positive and 
negative ones in order to indicate whether they are monotonically or antimonotonically related to 
the overall expression. An occurrence is a binary string specifying apath to the subexpression 
concerned. The subexpression reached by (occurring at) p in x is denoted by x/p. The idea is the 
same as in rewriting, with type constructors and constants playing the role of function symbols. 
The concatenation of occurrences p and q is denoted by p.q. The set of all occurrences in an 
expression x will be denoted by O(x). The root occurrence A is positive. There are four 
inductive cases for extensions of each p E O('c). 

1. x/p = t: there are no occurrences extending p. 
2. x[p = [x']: p.0 has the same sign as p. 
3. x/p = Xl × x2:p-0  and p.1 have the same sign as p. 
4. x/p = Xl ---) x2 :p .0  has the opposite andp.1 has the same sign as p, 

We wish to think of the basic rules SCL, ZIP, REPL, and REPR as rewrite rules, except 
that they may be used in either direction depending on the sign of the occurrence being replaced. 
A "redex" will be either a positive occurrence of an instance of a LHS or a negative occurrence of 
an instance of a RHS of a basic rule. The corresponding reducts will be the corresponding 
instances of the RHS and LHS respectively. It is easy to show that Xl can be "rewritten" to x2 
in one step according to this description i f f~ l  < x2. Whenever we wish to emphasize the 
occurrencep involved in a step Xl < x2, we shall write it as Xl <p x2. 

6.1 Antisymmetry 
To prove that < is antisymmetric, we define a linearly ordered "measure" for types which strictly 
grows with <. The measure uses the auxiliary functions D, F and S. Of these, D will play a 
central role throughout this and the next section. D(x) can be thought of as the depth of (list) 
structure in x. We define the measure here and leave the proof to the reader for lack of space. 

D(x) = Case 't of 
t :  0 I Xl --> x2 : 0 
[':'] : 1 + D(X') I Xl x ~2 : max(D(Xl), D(':2)) 
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One of the useful properties of D is that Xl < x2 implies D(Xl) = D(x2). Suppose <k 1 ..... 
kn> denotes the (lexicographically ordered) sequence of integers ki, l<i<n, Pi(x) is the number 
of positive occurrences and Ni(x) is the number of negative occurrences of length i and form [x'] 
in x, and Depth(x) is the length of the longest occurrence in O(x). Let Zx(P) denote -1 ifp is a 

negative occurrence in O(~) and 1 otherwise. 

F(x) = <k0 . . . . .  kmt,~(~0> where ki = ei(x) - Ni(x), 0 < i < Depth(x) 

S(x) --= ~ Xx(p)*sx(p) ~ D(xl)+D(x2), x/p = xl-->x2 

I ~  O(x) sx(P) = [ 0, otherwise 

The required measure is the lexicographically ordered pair (F(x), S(x)). 

6.2 Coherence of Subsumptions 
The key idea in proving coherence of subsumptions is that of permutations of sequences of unit 
subsumpfions. The idea is again taken from work on term rewriting [HL79]. A permutation of 
a sequence is a reordering of the steps in it, preserving the end points. All permutations of a 
given sequence constitute a permutation class. The first step in the proof of coherence of 
subsumptions is to show that all sequences in the same permutation class are semantically 
equivalent, given that the basic coercions obey a set of algebraic laws. The second step shows 
that all sequences for a given subtyping judgement belong to a single permutation class; in other 
words, there is a unique sequence for each subsumption modulo permutations. 

Suppose we identify sequences of unit subsumptions by names. Let B, C . . . .  range over 
sequences. We shall writeB : Xl<_X2 to indicate thatB is a sequence for Xl<X2. Clearly, there 
is a unique coercion from Xl to x2 associated with a given sequence B : Xl_<X2. This coercion 
will be denoted by CB. Coherence of subsumptions can now be paraphrased as the 

Unique Coercion Theorem. B : Xl -< x2 and C : Xl -< x2 implies Cs = Cc. 

Permutations can be defined by using an idea analogous to the classical notion of residuals 
in rewriting [HL79]. It is not hard to show that each redex occurrence except p in Xl leaves 
exactly one residual occurrence in x2 when x 1 <p x2. Moreover, the residual of a redex is a 
redex. If q ~ p is such a redex occurrence in Xl, then let q\p denote its residual in x2. Similarly, 
letp\q denote the residual ofp after the alternative step Xl <q x3 which is obviously possible as 
well. The; basic fact we are interested in is that in this situation there is always a x4 such that 
both B: Xl <p x2 <q\p x4 and C: Xl <q x3 <p\q x4 are possible. Note that this does not imply 
that the rewrite relation (<) is strongly locally confluent since it assumes that p and q are 
distinct. We shall say that B and C are direct permutations of each other, denoted by B ~- C. 
Also, if/? '  : x0 < Xl and C' : x4 < x5 are any other sequences, then B' • B • C' --- B ' .  C • C' 
where B • C denotes the concatenation of sequences B and C. 

The general permutation relation, which is the reflexive, transitive and symmetric closure of 
=, will be denoted by "---". A permutation class is j~st an equivalence class of "=". The 
justification for using the equivalence notation is that permutations are semantically equivalent, 
i.e., B - C implies Ca = Cc. To show this we need only prove that the sequences B and C 
used in defining "=" correspond to the same coercion. When neither of the two occurrences p 
and q is a prefix of the other, the two coercions are obviously independent. Suppose one is a 
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prefix of the other. There are four cases depending on which of the four basic rules (SCL, ZIP, 
REPL, REPR) is applicable to the larger of the two subexpressions (reached by the prefix 
occurrence). Suppose SCL is applicable, and the smaller subexpression occurs in the argument 
part of the type. For instance, suppose f :  xl ---> x2, and there is a type x3 < xl,  with the 
corresponding direct coercion g. We have the two sequences 

1. xl ---> x2 < [xl] --~ Ix2] < Ix3] ---> IV2] 2. xl ---> "c2 < x3 ---> x'2 < Ix3] ---> Ix2] 

We must show that the equation 

(SCL) ( a / 3 . ( a  g) = a ( f - g )  

for the corresponding coercion functions holds irrespective of the values o f f  and g. This is easy 
to verify--the equation is given in [Bac78] as equation III.4. It is also easy to see that this 
equation implies the equality of the two coercions derived in the example at the beginning of 
Section 6. The same equation suffices (withfand g reversing roles) if the smaller subexpression 
occurs in the result part (x2). The other cases require verification of similar simple equations. 
We list the equations corresponding to ZIP, REPL and REPR below, and leave their derivation 
and verification to the reader. 

(ZIP) (a { f , l , g . 2 } ) . t r a n s  = t r a n s .  { (a f) , l ,  (a g ) . 2 }  
(REPL) distlo { 1 , a f .  2 } = (a { 1 , f .  2 }) • distl 
(REPR) dist r .  { a f . l , 2  } = (a { f . 1 , 2  }) • distr 

These equations imply the semantic equivalence of permutations: 

Lemma 1: B --- C implies CB =Cc.  

To prove that all sequences for a given subsumption xl < x2 belong to the same 
permutation class is not hard but is technically rather complicated. The main idea is that any 
sequence can be permuted to a standard form. This is possible because any sequence consists 
conceptually of a number of subsequences, each corresponding to a single step of scaling. For 
instance, the algorithm • defined in the next section gathers subsequences for zipping and 
replication together whenever possible. That is, if the set S = { [x'] J x l×x2  <_ [x'] } is 
nonempty, then ~(xl×x2)is  its least member, otherwise ¢b(xlx'c2) fails. Similar properties 
apply to subsequences for scaling. This leads to: 

Lemma 2: B : X l < X 2  and C: 'c  l < x 2  implies B- -C .  

The Unique Coercion Theorem is a direct consequence of Lemmas 1 and 2. 

7 Typing Algorithms 
The main result in this section is a minimal typing algorithm for the typing system of Sections 
4 and 5. More precisely, we give an algorithm Type which, given a set of type assumptions 
and an expression, will return a coerced expression and its type, and will satisfy the following 
three properties. 

Correctness. If Type(A,e) succeeds and returns e', x then A I-- e ~ e' : x. 

Minimality of typing. If T y p o ( A , e ) ¢  ~ then Type(A,e )  succeeds and returns 
(e', MinTypo(A,e)) (for some e'). 

Suppose we define the relation (-A) of "semantic equivalence modulo a set A of typing 
assumptions" by: el ---A e2 ¢~ Vrl ~ A. E[[el]rl = E[[e2]~l. 
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Minimal i ty  of coercion. If× ~ Type(A,e) ,  e'  ~ Expr(A,e,x), Type(A,e)  = eo, xO, and 

I- I: 0 <_ 1:.=~ f,  then e' ~A (f e0). 

Minimality of coercion asserts that Type not only finds a minimal type but also a minimal 
coerced version in a precise sense. It is easy to see that this implies coherence of typing, i.e., 
the property thatA 1--e ~ el : x andA t-e  ~ e2 : x implies el  --A e2. 

Not surprisingly, the interesting part of type inference in our system is the inference of 
subsumpfions. The subtyping rules of Section 4 are complex enough to make this nontrivial. 
Reynolds [Rey85] points out that minimal typing for sufficiently rich languages--those with 
"cons" operators or conditional expressions for instance---actually requires inference of least 
upper bounds (LUBs) and greatest lower bounds (GLBs) for pairs of types which have upper and 
lower bounds respectively. Subsumption is a special case where the LUB of two types is equal 
to one of them. We therefore begin with the (mutually recursive) algorithms LUB and GLB, 
and then give the minimal typing/coercion algorithm Type. 

The basic idea in finding the LUB of types xl and x2 is to coerce them both to the same 
outward form with as little change as possible, and then apply the idea recursively to their parts. 
When one is a product and the other a list type, the product type must be coerced to a list type to 
achieve compatibility. This is done by the algorithm @ given below. 

A('c) = if x = x' × x" then return @(x) 
else if x = [x'] then return "c else fail 

• (Xl ×x2) = i fx l  = x 2 = t  then fail 
else i fx l  :# t then let [Xl'] = A(Xl) else let x 1' = x 1 

if x2 :# t then let [1:2'] = A(x2) else let x2' = x2 
return [~1' × x2'] 

Example: @(lint ---> int] × ([int] × int)) = [(int --> int) × (int × int)] 

It is easy to see that x < @('c) whenever ~(x) succeeds. If the set S = { [z'] [ x lxx2  < [x'] } is 
nonempty, then ~(x lxx2)  is its least member, otherwise ~(xlxx2)  fails. Likewise, if S = 
{ [x'] ] x < [x'] } is nonempty, then A(x) is its least member, otherwise A('c) fails. 

The GLB algorithm needs a similar function F with properties which are the reverse of @ 
- -  it requires a list type to be "uncoerced" to a product type by a reverse subsequer~e. This is a 
little tricky since given a list type x2, the "closest" product type xl for the required minimal 
subsumption x 1 < x2 is not unique. It is therefore necessary to provide F with both the 
(product and list) types for which a GLB is required, so that it can find a starling point for the 
sequence which is compatible with the given product type. Let [x] k denote the k-fold 
application of  the list constructor to x. The product and list types are the first and second 
arguments of F: 

F(Xll × x12, x2) = if×2 :# [x21 x "c22] k then fail 
else let kl = D(Xl 1)-D(x21) and k2 = D(x12)-D(x22) 

if (kl < k and x21 $ t) or (k2 < k and "c22 :# t) then fail 
else if (kl ~ k and k2 ~ k) or kl > k or k2 > k then fail 
else return [x21]kl × [x22]k2 

E x a m p l e :  Suppose  x : [int x ([int] ---> [int])]. 

F(int×([[int]]--->[[int]]), x) = intx[[int]--->[int]] F([int]x[[int]-->[int]], x) = [int]x[[int]-->[int]] 
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LUB (Xl, x2) = Case Xl of 

t: if x2 = t then return t else fail 

Xll ---> x12: if x2 ~ x21~x22 then fail 

else if not (k = D(Xl 1) - D(x21) ffi D(xl2 - D(x22)) for some k then fail 

elseif  k = 0 :  return GLB('Cll, X21)--->LUB(x12,'~22) 
k > 0 : return LUB(xl ,  [x21] k ---> [x22] k) 

k < 0 : return LUB(['Cl 1] k ---> ['c12] k, "f2) 

~11 × x12: if x2 = [x2'] then return LUB(~(Xl),X2) 

else if x2 ~ x21 x x22 then fail 

else if D(Xll) ~ D(x21) or D('Cl2) ~ D(x22) then return LUB(~(Xl), ~(x2)) 

else return LUB(Xll,  x21) × LUB(xl2, x22) 

[Xl']: if x2 = [x2'] then return [ LUB(xl ' ,  x2') ] 

else if "c2 ~ "c21 x x22 then fail 

else return LUB(xl,~('c2)) 

t." 

XlI --~ x12: 

GLB (Xl, x2) = Case Xl of 

if x2 = t then return t else fail 

i f z  2 ~ x21--->'c22 then fail 

else if not (k = D(Xl 1) - D('c21) = D(xl2 - D('c22)) for some k then fail 

elseif k = 0 :  return LUB(Xll,X21) ~ GLB(x12,x22) 

k > 0 : return GLB([Xll] -k ~ [x12] -k, x2) 

k < 0 : return GLB('c 1, Ix21] k ~ [x22] k) 

[Xl']: if x2 = [x2'] then return [GLB(xl ' ,X2')]  

else ff "c 2 # "c21 x x22 then fail 

else return GLB(F(x2, Xl), x2) 

Xll XXl2: if x2=x21 xx22 then return GLB('Cll, 'C21)x GLB(x12,x22) 

else ff x2 = [x2'] then return GLB(xl,  F(Xl, x2)) 

else fail 

Figure 5: LUB and GLB Algorithms 

Note the extensive use of the "depth of list structure" function D in both 1" and in the 
LUB/GLB algorithm. There is no room here for a complete explanation of its role, but the 
function is used to measure the mismatch in degree of scaling and/or zipping/replication between 
type expressions. The LUB,  GLB algorithms are given in Figure 5. Given A, LUB and 
GLB, the algorithm Type for inference of minimal types and coercions----given in Figure 6 - -  
is straightforward except for the application case, which needs to resolve the overloading of the 
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,, , , , , ,  , ,  , . , , , , , , = . , ,  

Type(A, e) = Case e of 

x: return x, Ax ; ~ x :  return nil,;:, [I:] 

e l ,  e2: let e3, x3 = Type(A,el) and e4, "¢4 = Type(A,e2) in return (e3, e4), x3 × x4 

e $i:  i fType(A,e):be' ,  Xl ×x2 then fail else returne'$i,  xi (i= 1 or2) 

el;  e2 : let e3, x3 = Type(A,el) and e4, x4 = Type(A,e2) in 

let x5 = LUB(x3, x4) in return (Cx3 <_ x5 e3, Cx4 < x5 e4), [x5] 

hd e: let e', x = Type(A, e) in if A(x) returns ['c'] then return hd (Cx<[x'] e'), x" else fail 

tl e: let e', x = Type(A, e) in if A(x) returns [x'] then return tl (Cx<[x'] e'), [x'] else fail 

kxx.e :: let e', x' = Type(A+x:x, e) in return Zxx.e', x ---> x" 

fixe: if Type(A, e) ~ e', Xl ---> x2 for somee', Xl, X 2 then fail 

else i fLUB(xl ,  X2) ~ Xl thenfail else return e ' .  Cx2 < Xl, x 2 

el e2: if Type(A, el) ~ el ' ,  Xl ---> x2 for some el', Xl, x2 then fail 

else let e2', x3 = Type(A, e2) and k = D(x3)- D(xl) in 

if k < 0 or LUB([xl]k,x3) ~ [Xl] k 

then fail else return (o k el') (Cx3 <_ [xl]k e2'), [x2] k 

Figure 6: A lgor i thm Type  

function part--the constant k derived in the analysis of this case (using D again) captures the 
only meaning of the function part that could possibly be appropriate in that application. 

8 Concluding Remarks 
We have described a coercion based semantics for implicit scaling which rests on just four 
structural subtyping rules. The rest of the system simply works out the consequences of 
applying these rules within a standard general framework of the kind described in [Rey85]. We 
regard this as a nice illustration of the way coercive structural subtyping can be usedmat little 
cost in semantic complexity--to raise the expressive power of a language by eliminating a class 
of programming chores. For other applications of the idea, see [BC+89, Tha90]. 

The compatibility of the subtype structure described here with parametric polymorphism is 
an interesting topic for further investigation. Combining our system with the implicit 
parametric polymorphism of the Hindley-Milner system [DM82] may result in the loss of 
semantic coherence. Consider for instance our operator hd. Under parametric polymorphism, hd 
is usually a polymorphic function which possesses all types of the form Ix] ---> x. Assuming 
loosely that the set A of type assumptions can supply any of the types possessed by such a 
function hd, we would have 

A I- hd ~ hd : [[int]] ---> lint],  since A(_~.) = [[int]] ~ [int] 
A I -hd  ==~ ~ hd : [lint]] ~ lint], since Ah( .~  = [int] ~ int _< [[int]] -~  [inl] 
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where the two converted expressions obviously have different meanings in most applications. 
One way to overcome this difficulty is to avoid treating the operations on the "structure of 

interest" as functions. This may be more natural in some cases (e.g., arrays) than in others 
(e.g., lists). It might be possible to avoid this dilemma in a combination with explicit bounded 
abstraction over types [CW85]. Besides generalizing our system, a successful combination with 
the latter would provide some insight into general techniques for combining coercive subtyping 
with parametric polymorphism. A similar combination has been studied in [BC+89] for a 
coercive interpretation of structural subtyping for labeled records. 
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