
Type Inference and Implicit Scaling

Satish Thatte
Department of Mathematics and Computer Science
Clarkson University, Potsdam, NY 13676, USA

Abstract
We describe a novel application of subtyping in which a small orthogonal set of

structural subtyping rules are used to capture the notion of scaling--an unusual variety of
polymorphism found in APL-like languages which is attracting renewed interest due to its
applications in data parallel programming. The subtyping approach allows us to provide
a simple coercion-based semantics for a generalized interpretation of sealing that goes
well beyond what is available in APL dialects.

1 Introduction
Data parallelism [HS86,Bre88,Vis89] has gained increasing favor recently due to its conceptual
simplicity and the high speedup available whenever the technique can be used effectively.
Conceptually, data parallelism covers a broad range from traditional vector processing to
techniques for programming Transpnter networks [Vis89] and the Connection Machine [HS86].
In this paper, we are concerned with one of the main techniques used for data parallel
programming: the technique of scaling, which goes back all the way to APL [Ive62] where it
was introduced for its expressive power in array manipulation rather than as a way of expressing
parallelism. Our concern will be with the implications of scaling for smile typing--
specifically, we explore a novel subtyping approach to the static type analysis of a very general
interpretation of scaling.

Recall that in APL, many scalar operations also accept array arguments and "scale" their
meaning accordingly. In later dialects like APL2, the arguments may also be arbitrarily nested
arrays. For instance, the scaling and shifting of a vector is usually written as a+/rp where v is a
vector and a and b are real constants. Representing p by a I-D array V, one can simply write
this expression as a + b , V in APL. In Standard ML [Mi184], using a list V, the same
expression might be written as map (op +) (distl (a, map (op ,) (distl (b, V)))) where the distl
primitive is borrowed from FP [Bac78]. Besides the obvious implicit parallelism, the gain in
expressive power as a result of scaling is striking.

The price paid for implicit scaling is added complexity in the semantics of the language.
Existing explanations of scaling in APL [Ben85JM78] treat only the operations involved (such
as "+" and "*" above) as being polymorphic. The range of possible behaviors of such
operations, especially when nested structures are allowed as arguments, is hard to capture in a
single principle type expression, or even in a finite number of expressions. This is the main
difficulty in doing static type analysis of scaled expressions. Our innovation in this paper is to
show that an alternative approach based on coercive structural subtyping accounts very
effectively for scaling. In effect, our type system coerces the APL-like version of the expression
given above to the Standard ML version. We expect that a realistic compiler using our system
can derive enough information from the typing process to generate more efficient (sequential or
data parallel) code than the naive synthesized version implies.

407

The generality achieved by our solution goes well beyond what is available in APL dialects.
Scaling is no longer limited to syntactic operators--all functions including user-defined ones can
be scaled up in the same way. The extension of the subtype structure relative to type
constructors captures all the natural implications of scaling for components of slructures, higher-
order functions, and so forth (see examples in Section 3). The notion of scaling itself is more
general. As an example, suppose "++" denotes vector concatenation, and the vector consisting
of Xl,X2 xn is denoted by [Xl,X2 Xn]. The expressions [[1,2],[3,4]] ++ [[5,6],[7,8]] and
[[1,2],[3,4]] + [[5,6],[7,8]] both work correctly: the former yields [[1,2,5,61, [3,4,7,8]] and
the latter [[6,8], [10,12]]. Note that the grain of scaling is different in the two cases. We do
not know of any APL dialect which automatically adjusts the grain of scaling to the needs of the
applicationL in this way. Our technique is also quite robust under many kinds of enrichments of
the underlying language,--for instance with mutable variables. Compatibility with parametric
polymorphism poses some interesting problems, which are discussed in Section 8.

The basis of our solution is a small set of orthogonal subtyping rules (with corresponding
coercions) which capture most cases of scaling. As in the case of subtyping with labeled record
types [Car88] subtyping is based on the structure of type expressions. Although easy to
understand and motivate, the structural relationships turn out to be unusually complex. Even
the antisymmetry of the subtype relation needs a nontrivial proof. The proof of the coherence of
subsumptions (subtyping judgements), i.e., the property that each subsumpdon implies a
semanticallly unique abstract coercion, requires a normalization result for derivations of
subsumptions. The subtype structure is consistently complete, but this is not obvious, and the
algorithms for finding LUBs and GLBs (required in the typechecking algorithm) are quite
complex. In spite of this complexity, we believe that the subtype structure is intuitively natural
and will be, "user-friendly" in practice.

The subtyping rules define the rest of the problem, which is to verify that they can be
applied within a standard general framework of the kind given in [Rey85] to give unambiguous
meanings to scaled expressions. Standard typing rules allow derivation of types and coerced
(unscaled) versions for all meaningful scaled expressions and each coerced version can be given a
meaning using the standard semantics of the k-calculus. To show that each scaled expression
has a unique meaning, we need two further properties: the existence of a minimal typing
judgement for each well-typed expression, and semantic coherence---the property that the
meaning of an expression depends only on the typing judgement applied to it, not on the
derivation used to reach that judgement. Since each use of a subsumption in a typing derivation
implies the insertion of a coercion, the meaning of an expression seems to depend on the
particular derivation. Coherence asserts that this apparent ambiguity is semantically
inconsequential: all the different coerced versions for the same judgement have the same
meaning. The notion of coherence was first discussed explicitly in [BC+89]. Reynolds'
discussion of coercions and overloaded operators [Rey85] is based on the same intuition. As
Reynolds (implicitly) points out, coherence of typing is closely related to coherence of
subsumptions. The additional complication in our case comes from the fact that each function-
valued expression is "overloaded" with an infinite number of potential meanings. However, it
can be shown that at most one of these overloaded meanings is usable in any particular
application. This fact, together with coherence of subsumptions, turns out to be sufficient for
coherence of typing.

In the rest of the paper, following a brief discussion of related work and some preliminaries
in Sections 2 and 3, we begin by deriving the subtype structure in Section 4. Section 5 gives
an outline of the coercion-based semantics. The proofs of the major properties of the subtype

408

e ::= x (identifiers) I Lcx. e (typed abstractions) I el e2

I el, e2 (pairs) I e ,l,i (projections, i=l,2) I nil x
I e l ;e2 (cons) I hd e (list head) I tl e

I: ::= t (scalar types) I "¢1 ×'c2 (product types)
I Ix] (fist t ypes) I "c 1 - 9 "c 2 (function types)

(applications)

(empty list)
(list tail)

Figure 1: Syntax of Object and Type Expressions

structure are outlined in Section 6. Section 7 gives the typing algorithms, and Section 8
concludes with a discussion of the problems involved in adding parametric polymorphism.
Many technical details and all actual proofs are omitted in this version for lack of space.

2 Related Work
Type inference using subtypes structures has proved to be a fruitful idea in a variety of
applications. It was originally introduced by Reynolds [Rey80] to systematize the semantics of
automatic coercions between types. Such subtyping might be called coercive, to contrast it with
the inclusive variant used in theories of inheritance [Car88], quantified types [Mit88] and partial
types [Tha88], where subtypes are taken to be subsets. Most applications of the coercive variant
have been concerned with relationships between atomic types, such as "integer < real". An
underlying theme in this paper is that coercive structural subtyping--subtyping based on the
structure of type expressions--can be very useful as a tool to provide coercion based semantics
for many interesting language features that pose problems for other semantic approaches. A
similar approach is used in [BC+89] to give an alternative semantics for inheritance. We have
elsewhere [Tha90] explored an application to dynamic typing in static languages.

3 Type and Object Languages
The object language is a simply typed dialect of the ~.-calculus. For definiteness, the language
includes a linear list or sequence structure for the application of scaling. However, this fact is
nowhere used in an essential way, and substituting sequences with any other data structure
suitable for set representation (such as trees or arrays) would require no change in the treatment
except for the substitution of appropriate new conversion functions. The grammars for type and
object expressions are given in Figure 1, where the metavariable e ranges over expressions, x
over identifiers, t over scalar types and x over all type expressions. Scalar types in this context
need not include only atomic types. Any type which is not a product or function type and is not
a structure type involved with scaling can be thought of as a scalar type. The set of all type
expressions will be denoted by Typexprs.

Besides the constructors x and ---> for product and function types, we have an ouffix type
constructor []; [x] is list-of-x. We need to provide the list primitives as syntactic operators in
order to allow them to be generic. Note that the type intended for each use of nil must be given
(this can be avoided by introducing the "universal" type described by Reynolds ~ey85]). In a
simply typed dialect of the g-calculus such as ours, recursion must normally be provided by an
explicit construct which computes least fixed points of functions. The reason for omitting the
construct in the grammar above is that fixpoint constructs are incompatible with minimal
typing in our context--the counterexample is omitted here for lack of space. This does not

409

mean that the language cannot include fixpoint constructs. It does mean that the typing
constraints for such constructs cannot be described using nondeterministic typing rifles as in the
case of the other constructs. It is easy to infer the natural type of instances of the fix construct,
and the fix case in the minimal typing algorithm Type in Section 7 does exactly that.

4 The Subtype Structure
The essence of our approach is to capture the semantics of scaling in a small orthogonal set of
structural subtyping rules. The subtype structure must find a balance between two conflicting
principles---orthogonality and coherence. Orthogonality--the treatment of all (data and function)
types as f'u:st-class citizens in the subtyping scheme---is what gives the solution its simplicity,
generality and expressive power. Unrestricted orthogonality leads to loss of coherence, but the
coherent solution derived below retains sufficient orthogonality for most practical purposes.

It is helpful to start with some examples to outline the desired range of applicability of the
subtype structure. The primitive coercions we shall need are provided in FP [Bac78] as
primitives---"." (function composition), ot (a curried version of map), distl, distr and trans.
The function trans transforms any pair of lists of equal size into a list of pairs of corresponding
elements ha the obvious way; distl "distributes" its first argument by pairing it with elements
of its second (list/sequence) argument, and distr is exactly the same except it takes its arguments
in the reverse order. We treat these coercions as though they possess polymorphic types because
they are used only in places where their type is both correct and manifest. The use of FP
primitives as basic coercions is especially interesting because FP has been influenced by many
APL ideas and idioms but lacks a notion of scaling. The reason (presumably) is that the
semantics of implicit scaling in APL is rather complex and ad hoc. We restore scaling (for
homogeneous structures) in a semantically simple way by implicitly using the same coercions
FP progrmnmers must use explicitly.

We use [el, e2 en] as an abbreviation for el; (e2; (...; (en; nilz) ...)) (where x is the
component type) and the form e ~ e" to mean that the expression e is (expected to be) coerced
to e' by a minimal typing derivation. Thus,

square [1,2, 3] ~ ((z square) [1,2, 3] = [1,4, 9]
1 + [1,2, 3] - ~ (a +) (distl (1, [1 ,2, 3])) = [2, 3, 4]

[1,2, 3] + 1 --~ (a +) (distr ([1,2, 3], 1)) -- [2, 3, 4]
[1,2, 3] + [2, 3, 4] --~ (a +) (trans ([1, 2, 3], [2, 3, 4])) = [3, 5, 7]

Scaling is not limited to one "level" in a structure. Thus,

1 + [[1,21, [2, 31] ---* ((z ((~ +)) ((a distl) (distl (1, [[1, 2], [2, 31]))) = [[2, 3], [3, 41]

For an example with nonscalar operands, let f = Z.Xintx[int]. x$1; x,l,2,

f (0, [[1, 21, [2, 311) --~ ((z f) (distl (0, [[1, 21, [2, 31])) = [[0, 1, 2], [0, 2, 3]]

We wish to capture the implicit coercions implied by these examples in a few orthogonal
structural subtyping rules. Subtyping judgements will be presented in the "natural deduction"
style. Eaclh subtyping judgement has the form I- xl _< x2 ~ f wheref is the corresponding
coercion. The simple scaling of functions as in square [1, 2, 3] can be captured in its full
generality by the rule

SCL: I- xl ---> x2 < [xl] --> Ix2] ~ ot

410

which uses the (.polymorphic) operator a to convert any function of type x I ---> x2 to a function
of type [xl] ---> [x2], where xl and x2 are arbitrary types. For instance, consider the expression
square [[1,2], [2, 3]]. Here the type of square is coerced to [[int]] ~ [[int]] by two iterations
of SCL, and square itself is coerced to a (a square). An interesting consequence of SCL is
that one never needs to use the o~ (map) operator explicitly, even in order to scale up an
argument of a higher-order function (see inner product example at the end of the section).

Evaluation of expressions like [1, 2, 3] + [2, 3, 4] can be seen as a two step process in
which a zipping step collates the two operands to yield [(1,2), (2,3), (3,4)] and a scaling step
coerces "+" to "c~ +". The first step can be captured by the rule

ZIP: t-- [xl] x [x2] < [xl x x2] ~ trans

with the semantic proviso (enforced by trans) that the two lists must have the same length.
This generalizes pleasantly to examples like

[[1, 2], [3, 4]] + [[2, 31, [4, 511
--~ (o~ ((x +)) ((o~ trans) • trans ([[1,2], [3, 4]], [[2, 3], [4, 5]])) = [[3, 5], [7, 9]]

The argument type [[int]] x [[int]] is transformed to [[int x int]] by two iterations of ZIP, and
"'+" is then applicable by two iterations of SCL. The second iteration of ZIP uses a naturally
induced subtyping relationship between list types (incorporated into rule LIST in Figure 2). ZIP
implies that all explicit uses of our version of lrans can also be eliminated.

This leaves examples like 1 + [1, 2, 3]. The argument type here is int x [int] and it needs
to be subsumed to [int x int]. The coercion involves replication of the first argument to match
the second. Replication cannot be separated from zipping since the degree of replication is
determined by the context--1 is replicated three times in this example because the other
argument o f "+" is a list of length three. We might therefore propose the symmetric rules

I- xl x [x2] < [xl xx2] =~ distl and t-- [xl] x x2 < [xl xx2] ~ distr

Unfortunately, these rules are incompatible with coherence. The problem can be seen with a
simple example w two semantically distinct derivations for [int] x [int] _< [[int x int]]:

[int] x lint] ___ [int x [int]] <_ [lint x int]] [int] x [int] __. [[int]x int] _< [[int x int]]

The coercion for [int] x [int] <__ [[int x int]] is distl • distr in the first derivation, and distr • distl
in the second: ([1,2],[3,4]) would be converted to [[(1,3),(1,4)], [(2,3),(2,4)]] by the first
derivation and to [[(1,3),(2,3)], [(1,4),(2,4)]] by the second. We therefore impose the
restriction that replicated values must be scalars.

The basic cases of the subtype relation are defined by rules SCL, ZIP, REPL and REPR in
Figure 2. The other rules in Figure 2 are standard for all subtype relations (see, e.g., [Rey85]).
Of these, LIST, PROD, and FUN allow the basic rules to be applied to subexpressions of a type
expression in a natural way. In the coercion for PROD, we have used FP's selection functions
1 and 2 as projections from pairs, and Firs construction form in its dyadic version the
construction "{fl , f2}" denotes a function such that {fl,f2} x = (fl x, f2 x).

Clearly, the coercions in Figure 2 are naive. In a serious sequential implementation, one
would expect to optimize the implementation of standard combinations to avoid actual zipping
and replication whenever possible, to produce code that is comparable in efficiency to (say)
equivalent hand-coded C programs. In programming for the Connection Machine on the other
hand, actual replication appears to be the standard practice [HS86]. The detection and

411

SCL: I -xl ~ x 2 < [X l] - > [x 2] ~ a

REPL: I- t x [' c] < [t x x] =~ distl

ZIP: F [Xl] x ['c2] < [Xl xx2] ~ t rans

REPR: F [x] x t _< Ix x t] ~ distr

RFLX:

TRNS:

LIST:

PROD:

FUN"

I - x < _ x ~ id

I - x l < _ x 2 ~ f t- x2 < x3 =~ g

t- "el < '~3 ~ g . f

I- "el < '~2 ~ f

~ Ix 1] _< Ix2] = a f

I - x l < x 2 ~ f I x3 < "c4 =~ g

I- x l x x 3 < x 2 x x 4 =* { f . 1 , g - 2 }

I- x l < x2 ~ f I- x3 < x4 ==~

I-- x 2 - > x 3 < xl ->'c4 ~ Lb. g . h . f

Figure 2: Subtyping Rules and Coercions

transformation of optimizable combinations of coercions can be made a part of the typechecking
algorithm. The details are clearly nontriviat, and will have to await another paper.

To illustrate the use of a number of rules working together, consider a slightly more
complex example involving higher-order functions. In FP, the inner product function is defined
by the expression (/+) • (cx,) • trans, where "/" is APL's reduce operator, which has type (real x
real ~ roa l)~[rea l] - -) rea l in this context. Given that explicit uses of 0t and t rans are
unnecessary, we should be able to express inner product as (/+) • , . The expression should have
the type x = [real] x [real] --) real. "/+" clearly has type [real]--)real. The type of "*" is
coerced from real x real --) real to [real x real] ~ [real] using SCL to fit the composition,
giving the (minimal) type o = [real x real] --) real for the overall expression. It is easy to see
that the required type x is a supertype of o--[real] x [real] < [real x real] by ZIP and hence x _>

by FUN. The standard behavior is therefore inherited by our version, which is more general
than the usual inner product. In addition to a pair of real sequences, it could also be applied to a
real constant and real sequence, or to a sequence of real pairs.

The subtype structure defined here appears to have few unexpected consequences of the kind
that made coercions in PL/I notorious. A possible exception is that some nonhomogeneous list
expressions, instead of producing type errors, are automatically homogeneized:

[(3, [1,2]), ([4,5], 6)1 ~ [distl (3, [1,2]), distr ([4,5], 6)1 = [[(3,1),(3,2)1, [(4,6),(5,6)]]

It should be noted that in all of the examples in this section, whenever automatic coercion
is required, the resulting converted expression is not unique. Given an apparently mismatched

412

A t- x ~ x : A(x)

A ~ - e l ~ e l ' : X
A t-- e2 ~ e2' : Ix]

A I- e l ; e 2 ~ e l ' ; e 2 ' : [x]

A I-- e ~ e ' : [x]

A ~ - h d e ~ h d e ' : x

A + x : ' c t- e ~ e ' : x"

A F- Lxx.e =*kJcx.e': x--->'¢'

A F- e l s e 1 ' : Xl
A I- e 2 = * e 2 ' : x2

A F- e l , e 2 ~ e l " , e 2 " : X l X X 2

A t--nil x ~ n i l x : ['c]

A 1-- e ~ e ' : x l X X 2

A ~- e$ i :=>e '$ i : xi

i = 1 , 2

A F- e ~ e ' : Ix]

A 1- tl e ~ t l e': [x]

A I- e l ~ e l ' : Xl--->x2
A t- e 2 ~ e 2 " : Xl

A ~ e l e 2 ~ el 'e2":'c2

A F- e = * e ' : x l F x l < x 2 ~ f

A F- e ~ f e ' : x 2

Figure 3: Typing Rules

application, one can either coerce the function part to adapt to the argument or vice versa. The
individual coercions themselves can be carried out in many ways. The important point is that,
as a result of the coherence property, this flexibility does not cause any semantic ambiguity.

5 The Semantics in Outline
The semantics of the object language is based on transforming scaled expressions---all
expressions are assumed to be scaled--to unscaled ones based on the subtype structure of the last
section. The "engine" for the transformation is type inference, specified by a set of typing rules.
We use typing rules in which the insertion of coercions is made explicit, departing from
previous usage [CW85, Rey85] for systems based on subtypes. One reason is that the
statements and proofs of several theorems are made clearer and simpler by the change. We also
use the new form to emphasize that our subtype scheme is coercive rather than inclusive. Many
recent papers on type inference with subtypes [Car84, Mit88, Tha88] use inclusive subtyping.
Coercive subtyping allows relationships that are semantically more ad hoc, and need more
justification through properties such as coherence. The general form of a typing rule is A t- e

e" • "c, which can be read as: "Given a set A of typing assumptions for free variables, the
expression e is coerced to e' which has the type x." The expression e' is the unscaled version of
e. The typing rules are given in Figure 3. The most notable rule is the last rule in the right
column, which uses a coercion function to account for the use of a subsumption.

The semantics of the coerced expressions derived by type inference is meant to be
transparent. This is equivalent to saying that given A 1- e ~ e' : x, the assertion "e' has the

413

type x" is prima facie sound. Suppose there are function-s E and T which map syntactic
expressions in the object and type languages to their respective denotations (the details of the
definitions of E and T are standard: see, e.g., [Car88]). The function E uses an additional
environment argument 11 as is usual in denotational semantics. We use ~ ~ A to mean that the
environment 11 satisfies the type assumptions in A. Note that E only assigns transparent
meanings (without any attempt to resolve scaling) and is only meant to be applied to unscaled
expressions.

S e m a n t i c S o u n d n e s s T h e o r e m . A i- e ~ e' : x implies Vr I ~ A. El[e']r I E T [x] .

Given that E[f]rl E Tl[xl-->x2] for the coercion f in the subtyping rule, the proof of this
theorem is easy by induction on the stucture of e, and is left as an exercise. Although typing is
sound, it is highly nondeterministic. Suppose we define:

Typo(A,e) = {x I A I-- e ~ e" : "c for some e'} Expr(A,e,x) = {e' I A t- e ~ e' : x}

Typo(A,e) iis not a singleton for most well-typed e, and Expr(A,e,x) is not a singleton for most
types x in "l'ype(A,e). However, as we describe in Sections 6 and 7, (Typexprs, <) is a poset
and each nonempty Typo(A,e) contains a minimal element, which we denote by MinTypo(A,e).
Moreover, although Expr(A,e,x) may contain many expressions, the semantic coherence
theorem in Section 7 asserts that this is semantically inconsequential since all members of
Expr(A,e,'c) always have the same (transparent) meaning. To be more precise, the semantic
coherence theorem asserts that for all distinct el and e2 in any Expr(A,e,x), Vrl ~ A, El[ellrl =
E[e2lrl, and therefore E can be applied to Expr(A,e,x). We can now define the new semantic
function S[" which gives meaning to scaled expressions directly. Assuming rl ~ A:

SEl[e]rl = if Type(A,e)= O then wrong else ElrExpr(A,e,MinType(A,e))]rl

where wrong is a special semantic value that denotes type error.

6 Properties of the Subtype Structure
In this section we discuss the two major properties of our subtype structure which are needed to
validate the semantics outlined in the last section, namely, partial ordering and semantic
coherence. The former is needed for the existence of minimal types and the latter for the
coherence of typing judgements. A subtype relation is naturally reflexive and transitive (a
preorder), as reflected in rules RFLX and TRNS in Figure 2. We begin by showing that
(Typexprs, <_) is antisymmetric as well. We then outline a proof of the coherence of subtyping
judgements, i.e., the property that I- xl < x2 ~ f and t- xl _< x2 ~ g implies f = g
(extensionally). The property is needed because each subsumption Xl < x2 can usually be
derived in a number of different ways, leading to superficially different coercion functions. For
instance:

I- [int x int] ~ int _< [[int] x [int]] ---> l int] ~ (kg . g • (a t r a n s)) • t~

I- l int × int] --> int <_ [[int] x [int]] ---> [int] ~ ¢x • (Zg. g • t r a n s)

via two derivations for the same subsumption. The details are left as an exercise.
The key to the entire analysis in this section is an analogy between derivations of subtyping

judgements and term rewriting sequences. There is room here only to sketch the development.
The new technical notion underlying the analogy is that of a unit subsumption, corresponding to
a single rewriting step. The derivation of a unit subsumption involves exactly one use of one of
the basic rules (SCL, ZIP, REPL, REPR), along with possible uses of other (nonbasic) rules.

414

We use the notation I- x < c ~ f for unit subsumptions, or just x < c for short, whenever
we can ignore the coercion f. It is not hard to see that the coercion for a unit subsumption is
unique. Moreover, any derivation of a subtyping judgement (Xl<X2) can be presented in the
form of a sequence Xl = xt 1 ,o...<~ Xln = "C2, n > 0 , where the overall coercion is the
composition of the unit coercions. The proof of this observation requires a rearrangement of the
derivation along the lines of the (quite different) rewriting system described in [CG89]. This
constitutes a partial normalization of the derivation of the subtyping judgement: there are in
general many such sequences for a given judgement. The main result we wish to prove is that
all sequences of unit subsumptions for a given subtyping judgement are semantically equivalent,
i.e., there is a unique representative sequence which represents the subsumption semantically (in
terms of the implied coercion). This amounts to a full normalization result for derivations of
subtyping judgements.

Note that each step xi < "ci+t involves replacement of a single subexpression within "ci by
the corresponding expression according to the basic rule involved. This is very similar to a term
rewriting step and would be just ordinary rewriting based on a set of first-order rewrite rules if
not for the antimonotonicity of "--->" in its first argument. To make the analogy more precise,
we need to partition occurrences of subexpressions in type expressions into positive and
negative ones in order to indicate whether they are monotonically or antimonotonically related to
the overall expression. An occurrence is a binary string specifying apath to the subexpression
concerned. The subexpression reached by (occurring at) p in x is denoted by x/p. The idea is the
same as in rewriting, with type constructors and constants playing the role of function symbols.
The concatenation of occurrences p and q is denoted by p.q. The set of all occurrences in an
expression x will be denoted by O(x). The root occurrence A is positive. There are four
inductive cases for extensions of each p E O('c).

1. x/p = t: there are no occurrences extending p.
2. x[p = [x']: p.0 has the same sign as p.
3. x/p = Xl × x2:p-0 and p.1 have the same sign as p.
4. x/p = Xl ---) x2 :p .0 has the opposite andp.1 has the same sign as p,

We wish to think of the basic rules SCL, ZIP, REPL, and REPR as rewrite rules, except
that they may be used in either direction depending on the sign of the occurrence being replaced.
A "redex" will be either a positive occurrence of an instance of a LHS or a negative occurrence of
an instance of a RHS of a basic rule. The corresponding reducts will be the corresponding
instances of the RHS and LHS respectively. It is easy to show that Xl can be "rewritten" to x2
in one step according to this description i f f~ l < x2. Whenever we wish to emphasize the
occurrencep involved in a step Xl < x2, we shall write it as Xl <p x2.

6.1 Antisymmetry
To prove that < is antisymmetric, we define a linearly ordered "measure" for types which strictly
grows with <. The measure uses the auxiliary functions D, F and S. Of these, D will play a
central role throughout this and the next section. D(x) can be thought of as the depth of (list)
structure in x. We define the measure here and leave the proof to the reader for lack of space.

D(x) = Case 't of
t : 0 I Xl --> x2 : 0
[':'] : 1 + D(X') I Xl x ~2 : max(D(Xl), D(':2))

415

One of the useful properties of D is that Xl < x2 implies D(Xl) = D(x2). Suppose <k 1
kn> denotes the (lexicographically ordered) sequence of integers ki, l<i<n, Pi(x) is the number
of positive occurrences and Ni(x) is the number of negative occurrences of length i and form [x']
in x, and Depth(x) is the length of the longest occurrence in O(x). Let Zx(P) denote -1 ifp is a

negative occurrence in O(~) and 1 otherwise.

F(x) = <k0 kmt,~(~0> where ki = ei(x) - Ni(x), 0 < i < Depth(x)

S(x) --= ~ Xx(p)*sx(p) ~ D(xl)+D(x2), x/p = xl-->x2

I ~ O(x) sx(P) = [0, otherwise

The required measure is the lexicographically ordered pair (F(x), S(x)).

6.2 Coherence of Subsumptions
The key idea in proving coherence of subsumptions is that of permutations of sequences of unit
subsumpfions. The idea is again taken from work on term rewriting [HL79]. A permutation of
a sequence is a reordering of the steps in it, preserving the end points. All permutations of a
given sequence constitute a permutation class. The first step in the proof of coherence of
subsumptions is to show that all sequences in the same permutation class are semantically
equivalent, given that the basic coercions obey a set of algebraic laws. The second step shows
that all sequences for a given subtyping judgement belong to a single permutation class; in other
words, there is a unique sequence for each subsumption modulo permutations.

Suppose we identify sequences of unit subsumptions by names. Let B, C range over
sequences. We shall writeB : Xl<_X2 to indicate thatB is a sequence for Xl<X2. Clearly, there
is a unique coercion from Xl to x2 associated with a given sequence B : Xl_<X2. This coercion
will be denoted by CB. Coherence of subsumptions can now be paraphrased as the

Unique Coercion Theorem. B : Xl -< x2 and C : Xl -< x2 implies Cs = Cc.

Permutations can be defined by using an idea analogous to the classical notion of residuals
in rewriting [HL79]. It is not hard to show that each redex occurrence except p in Xl leaves
exactly one residual occurrence in x2 when x 1 <p x2. Moreover, the residual of a redex is a
redex. If q ~ p is such a redex occurrence in Xl, then let q\p denote its residual in x2. Similarly,
letp\q denote the residual ofp after the alternative step Xl <q x3 which is obviously possible as
well. The; basic fact we are interested in is that in this situation there is always a x4 such that
both B: Xl <p x2 <q\p x4 and C: Xl <q x3 <p\q x4 are possible. Note that this does not imply
that the rewrite relation (<) is strongly locally confluent since it assumes that p and q are
distinct. We shall say that B and C are direct permutations of each other, denoted by B ~- C.
Also, if/? ' : x0 < Xl and C' : x4 < x5 are any other sequences, then B' • B • C' --- B ' . C • C'
where B • C denotes the concatenation of sequences B and C.

The general permutation relation, which is the reflexive, transitive and symmetric closure of
=, will be denoted by "---". A permutation class is j~st an equivalence class of "=". The
justification for using the equivalence notation is that permutations are semantically equivalent,
i.e., B - C implies Ca = Cc. To show this we need only prove that the sequences B and C
used in defining "=" correspond to the same coercion. When neither of the two occurrences p
and q is a prefix of the other, the two coercions are obviously independent. Suppose one is a

416

prefix of the other. There are four cases depending on which of the four basic rules (SCL, ZIP,
REPL, REPR) is applicable to the larger of the two subexpressions (reached by the prefix
occurrence). Suppose SCL is applicable, and the smaller subexpression occurs in the argument
part of the type. For instance, suppose f : xl ---> x2, and there is a type x3 < xl, with the
corresponding direct coercion g. We have the two sequences

1. xl ---> x2 < [xl] --~ Ix2] < Ix3] ---> IV2] 2. xl ---> "c2 < x3 ---> x'2 < Ix3] ---> Ix2]

We must show that the equation

(SCL) (a / 3 . (a g) = a (f - g)

for the corresponding coercion functions holds irrespective of the values o f f and g. This is easy
to verify--the equation is given in [Bac78] as equation III.4. It is also easy to see that this
equation implies the equality of the two coercions derived in the example at the beginning of
Section 6. The same equation suffices (withfand g reversing roles) if the smaller subexpression
occurs in the result part (x2). The other cases require verification of similar simple equations.
We list the equations corresponding to ZIP, REPL and REPR below, and leave their derivation
and verification to the reader.

(ZIP) (a { f , l , g . 2 }) . t r a n s = t r a n s . { (a f) , l , (a g) . 2 }
(REPL) distlo { 1 , a f . 2 } = (a { 1 , f . 2 }) • distl
(REPR) dist r . { a f . l , 2 } = (a { f . 1 , 2 }) • distr

These equations imply the semantic equivalence of permutations:

Lemma 1: B --- C implies CB =Cc.

To prove that all sequences for a given subsumption xl < x2 belong to the same
permutation class is not hard but is technically rather complicated. The main idea is that any
sequence can be permuted to a standard form. This is possible because any sequence consists
conceptually of a number of subsequences, each corresponding to a single step of scaling. For
instance, the algorithm • defined in the next section gathers subsequences for zipping and
replication together whenever possible. That is, if the set S = { [x'] J x l×x2 <_ [x'] } is
nonempty, then ~(xl×x2)is its least member, otherwise ¢b(xlx'c2) fails. Similar properties
apply to subsequences for scaling. This leads to:

Lemma 2: B : X l < X 2 and C: 'c l < x 2 implies B- -C .

The Unique Coercion Theorem is a direct consequence of Lemmas 1 and 2.

7 Typing Algorithms
The main result in this section is a minimal typing algorithm for the typing system of Sections
4 and 5. More precisely, we give an algorithm Type which, given a set of type assumptions
and an expression, will return a coerced expression and its type, and will satisfy the following
three properties.

Correctness. If Type(A,e) succeeds and returns e', x then A I-- e ~ e' : x.

Minimality of typing. If T y p o (A , e) ¢ ~ then Type(A,e) succeeds and returns
(e', MinTypo(A,e)) (for some e').

Suppose we define the relation (-A) of "semantic equivalence modulo a set A of typing
assumptions" by: el ---A e2 ¢~ Vrl ~ A. E[[el]rl = E[[e2]~l.

417

Minimal i ty of coercion. If× ~ Type(A,e) , e' ~ Expr(A,e,x), Type(A,e) = eo, xO, and

I- I: 0 <_ 1:.=~ f, then e' ~A (f e0).

Minimality of coercion asserts that Type not only finds a minimal type but also a minimal
coerced version in a precise sense. It is easy to see that this implies coherence of typing, i.e.,
the property thatA 1--e ~ el : x andA t-e ~ e2 : x implies el --A e2.

Not surprisingly, the interesting part of type inference in our system is the inference of
subsumpfions. The subtyping rules of Section 4 are complex enough to make this nontrivial.
Reynolds [Rey85] points out that minimal typing for sufficiently rich languages--those with
"cons" operators or conditional expressions for instance---actually requires inference of least
upper bounds (LUBs) and greatest lower bounds (GLBs) for pairs of types which have upper and
lower bounds respectively. Subsumption is a special case where the LUB of two types is equal
to one of them. We therefore begin with the (mutually recursive) algorithms LUB and GLB,
and then give the minimal typing/coercion algorithm Type.

The basic idea in finding the LUB of types xl and x2 is to coerce them both to the same
outward form with as little change as possible, and then apply the idea recursively to their parts.
When one is a product and the other a list type, the product type must be coerced to a list type to
achieve compatibility. This is done by the algorithm @ given below.

A('c) = if x = x' × x" then return @(x)
else if x = [x'] then return "c else fail

• (Xl ×x2) = i fx l = x 2 = t then fail
else i fx l :# t then let [Xl'] = A(Xl) else let x 1' = x 1

if x2 :# t then let [1:2'] = A(x2) else let x2' = x2
return [~1' × x2']

Example: @(lint ---> int] × ([int] × int)) = [(int --> int) × (int × int)]

It is easy to see that x < @('c) whenever ~(x) succeeds. If the set S = { [z'] [x lxx2 < [x'] } is
nonempty, then ~(x lxx2) is its least member, otherwise ~(xlxx2) fails. Likewise, if S =
{ [x']] x < [x'] } is nonempty, then A(x) is its least member, otherwise A('c) fails.

The GLB algorithm needs a similar function F with properties which are the reverse of @
- - it requires a list type to be "uncoerced" to a product type by a reverse subsequer~e. This is a
little tricky since given a list type x2, the "closest" product type xl for the required minimal
subsumption x 1 < x2 is not unique. It is therefore necessary to provide F with both the
(product and list) types for which a GLB is required, so that it can find a starling point for the
sequence which is compatible with the given product type. Let [x] k denote the k-fold
application of the list constructor to x. The product and list types are the first and second
arguments of F:

F(Xll × x12, x2) = if×2 :# [x21 x "c22] k then fail
else let kl = D(Xl 1)-D(x21) and k2 = D(x12)-D(x22)

if (kl < k and x21 $ t) or (k2 < k and "c22 :# t) then fail
else if (kl ~ k and k2 ~ k) or kl > k or k2 > k then fail
else return [x21]kl × [x22]k2

E x a m p l e : Suppose x : [int x ([int] ---> [int])].

F(int×([[int]]--->[[int]]), x) = intx[[int]--->[int]] F([int]x[[int]-->[int]], x) = [int]x[[int]-->[int]]

418

LUB (Xl, x2) = Case Xl of

t: if x2 = t then return t else fail

Xll ---> x12: if x2 ~ x21~x22 then fail

else if not (k = D(Xl 1) - D(x21) ffi D(xl2 - D(x22)) for some k then fail

elseif k = 0 : return GLB('Cll, X21)--->LUB(x12,'~22)
k > 0 : return LUB(xl , [x21] k ---> [x22] k)

k < 0 : return LUB(['Cl 1] k ---> ['c12] k, "f2)

~11 × x12: if x2 = [x2'] then return LUB(~(Xl),X2)

else if x2 ~ x21 x x22 then fail

else if D(Xll) ~ D(x21) or D('Cl2) ~ D(x22) then return LUB(~(Xl), ~(x2))

else return LUB(Xll, x21) × LUB(xl2, x22)

[Xl']: if x2 = [x2'] then return [LUB(xl ' , x2')]

else if "c2 ~ "c21 x x22 then fail

else return LUB(xl,~('c2))

t."

XlI --~ x12:

GLB (Xl, x2) = Case Xl of

if x2 = t then return t else fail

i f z 2 ~ x21--->'c22 then fail

else if not (k = D(Xl 1) - D('c21) = D(xl2 - D('c22)) for some k then fail

elseif k = 0 : return LUB(Xll,X21) ~ GLB(x12,x22)

k > 0 : return GLB([Xll] -k ~ [x12] -k, x2)

k < 0 : return GLB('c 1, Ix21] k ~ [x22] k)

[Xl']: if x2 = [x2'] then return [GLB(xl ' ,X2')]

else ff "c 2 # "c21 x x22 then fail

else return GLB(F(x2, Xl), x2)

Xll XXl2: if x2=x21 xx22 then return GLB('Cll, 'C21)x GLB(x12,x22)

else ff x2 = [x2'] then return GLB(xl, F(Xl, x2))

else fail

Figure 5: LUB and GLB Algorithms

Note the extensive use of the "depth of list structure" function D in both 1" and in the
LUB/GLB algorithm. There is no room here for a complete explanation of its role, but the
function is used to measure the mismatch in degree of scaling and/or zipping/replication between
type expressions. The LUB, GLB algorithms are given in Figure 5. Given A, LUB and
GLB, the algorithm Type for inference of minimal types and coercions----given in Figure 6 - -
is straightforward except for the application case, which needs to resolve the overloading of the

419

,, , , , , , , , , . , , , , , , = . , ,

Type(A, e) = Case e of

x: return x, Ax ; ~ x : return nil,;:, [I:]

e l , e2: let e3, x3 = Type(A,el) and e4, "¢4 = Type(A,e2) in return (e3, e4), x3 × x4

e $i: i fType(A,e):be' , Xl ×x2 then fail else returne'$i, xi (i= 1 or2)

el; e2 : let e3, x3 = Type(A,el) and e4, x4 = Type(A,e2) in

let x5 = LUB(x3, x4) in return (Cx3 <_ x5 e3, Cx4 < x5 e4), [x5]

hd e: let e', x = Type(A, e) in if A(x) returns ['c'] then return hd (Cx<[x'] e'), x" else fail

tl e: let e', x = Type(A, e) in if A(x) returns [x'] then return tl (Cx<[x'] e'), [x'] else fail

kxx.e :: let e', x' = Type(A+x:x, e) in return Zxx.e', x ---> x"

fixe: if Type(A, e) ~ e', Xl ---> x2 for somee', Xl, X 2 then fail

else i fLUB(xl , X2) ~ Xl thenfail else return e ' . Cx2 < Xl, x 2

el e2: if Type(A, el) ~ el ' , Xl ---> x2 for some el', Xl, x2 then fail

else let e2', x3 = Type(A, e2) and k = D(x3)- D(xl) in

if k < 0 or LUB([xl]k,x3) ~ [Xl] k

then fail else return (o k el') (Cx3 <_ [xl]k e2'), [x2] k

Figure 6: A lgor i thm Type

function part--the constant k derived in the analysis of this case (using D again) captures the
only meaning of the function part that could possibly be appropriate in that application.

8 Concluding Remarks
We have described a coercion based semantics for implicit scaling which rests on just four
structural subtyping rules. The rest of the system simply works out the consequences of
applying these rules within a standard general framework of the kind described in [Rey85]. We
regard this as a nice illustration of the way coercive structural subtyping can be usedmat little
cost in semantic complexity--to raise the expressive power of a language by eliminating a class
of programming chores. For other applications of the idea, see [BC+89, Tha90].

The compatibility of the subtype structure described here with parametric polymorphism is
an interesting topic for further investigation. Combining our system with the implicit
parametric polymorphism of the Hindley-Milner system [DM82] may result in the loss of
semantic coherence. Consider for instance our operator hd. Under parametric polymorphism, hd
is usually a polymorphic function which possesses all types of the form Ix] ---> x. Assuming
loosely that the set A of type assumptions can supply any of the types possessed by such a
function hd, we would have

A I- hd ~ hd : [[int]] ---> lint], since A(_~.) = [[int]] ~ [int]
A I -hd ==~ ~ hd : [lint]] ~ lint], since Ah(.~ = [int] ~ int _< [[int]] -~ [inl]

420

where the two converted expressions obviously have different meanings in most applications.
One way to overcome this difficulty is to avoid treating the operations on the "structure of

interest" as functions. This may be more natural in some cases (e.g., arrays) than in others
(e.g., lists). It might be possible to avoid this dilemma in a combination with explicit bounded
abstraction over types [CW85]. Besides generalizing our system, a successful combination with
the latter would provide some insight into general techniques for combining coercive subtyping
with parametric polymorphism. A similar combination has been studied in [BC+89] for a
coercive interpretation of structural subtyping for labeled records.

References
~ac78] Backus, J. Can Programming be Liberated from the yon Neumann Style? A

Functional Style and Its Algebra of Programs. CACM 21, 613-641 (1978)
[Ben85] Benkard, J.P. Control of Structure and Evaluation. In: Proc. APL'85 Conference.

[BC+89] Breazu-Tannen, V., Coquand, T., Gunter, C. and Scedrov, A. Inheritance and explicit
coercion. In: Proceedings of Fourth LICS Symposium. IEEE 1989

[Bre88] Breuel, T.M. Data Level Parallel Programming in C++. In: Proc. of 1988 USENIX
C++ Conf., pp. 153-167.

[Car88] Cardelli, L. A Semantics of Multiple Inheritance. Info. and Comp. 76,138-164 (1988)
[CG89] Curien, P-L. and Ghelli, G. Coherence of Subsumption. Manuscript. 1989
[CW85] Cardelli, L. and Wegner, P. On Understanding Types, Data Abstraction and

Polymorphism. Computing Surveys 17 (4) (1985)

[DM82] Damas, L. and Milner, R. Principle Type-schemes for Functional Programs. In: Proc.
9th POPL Symposium, Albuquerque, NM. ACM 1982

[HL79] Huet, G. and Levy, J-J. Computations in Nonambiguous Linear Term Rewriting
Systems. Tech. Rep. 359, INRIA-Le Chesney, France, 1979

[HS86] Hillis, W.D. and Steele, G.L., Jr. Data Parallel Algorithms. CACM 29 (12) (1986)
[Ive62] Iverson, K,E. A Programming Language. Wiley, New York, 1962
[JM78] Jenkins, M.A. and Michel, J. Operators in an APL Containing Nested Arrays. CIS

Dept., Queen's University, Kingston, Ontario. Tech. Rep. 78-60. 1978
[Mi184] Milner, R. A Proposal for Standard ML. In: Proc. 1984 ACM Symp. on LISP and

Functional Programming, Austin, TX., pp. 184-197. ACM 1984
[Mit88] Mitchell, J.C. Polymorphic Type Inference and Containment. Information and

Computation 76, 211-249 (1988)
[Rey80] Reynolds, J.C. Using Category Theory to Design Implicit Conversions and Generic

Operators. In: Semantics Directed Compiler Generation (N.D.Jones, Ed.), pp. 211-
258, Lecture Notes in Computer Science, Vol. 94. Springer-Verlag 1980

~ey85] Reynolds, J.C. Three Approaches to Type Structure. In: Proc. TAPSOFT 1985,
lecture Notes in Computer Science, Vol. 186. Springer-Verlag 1985

[Tha88] Thatte, S.R. Type Inference with Partial Types. In: Proc. 15th ICALP. Lecture
Notes in Computer Science, Vol. 317, pp. 615-629. Springer-Verlag 1988

[Tha90] Thatte, S.R. Quasi-static Typing. In: Proc. of the 17th POPL Symposium, San
Francisco, CA. ACM 1990

[Vis89] Vishnubhotla, P. Data Parallel Programming on Transputer Networks. In: Proc. of
2 nd Conf. of North American Transputer Users Group, G.S. Stiles (Ed.). April 1989

