
TOWARDS THE THEORY OF PROGRAHHING IN CONSTRUCTIVE LOGIC

A.A.Voronkov

Institute of Matheuatics

Universltetski Prospect 4

630090 Novosiblrsk 90

USSR

Abstract. We develop an approach to the theory of extracting programs from
proofs based on constructive semantics of the first order formulas
called consTrucTive TruLb. The underlying ideas are discussed. Using
this notion of truth we define an appropriate notion of constructive
calculus. Some results on relations between our theory and well known
no'~-ions of constructive logic and the theory of enumerated models are
proved.

1. Introduction. ~.xtractlng programs from proofs.

the main ideas and problems

The extraction of programs from proofs or programming in constructive

logic is based on the idea that under some restrictions proofs can be consi-

dered as programs. The general scheme of extracting programs from proofs is

the following, at the beginning one writes a specification of the problem in

some formal logical language (usually a variant of type theory). Then a for-

real proof of this specification is constructed and the program is extracted

from this proof according to one of the known methods. Sometimes the last

step can be absent because already the proof can serve as the program.

There are many distinctions between classical and constructive proofs.

The main difference which allows one to consider constructive proofs as pro-

grams is the explicit definability property or 3-property- if a proof n of

a closed formula 3xA is given then one can effectively construct a term T

422

such that A(t) holds (in some appropriate sense). If there are free varia-

bles x 1 x n in A then such a proof can be considered as an algorithm

meeting "specification" A (i.e. algorithm ~ such that A(Xl, Xn,

~(Xl,...,Xn)) holds for every x 1 ,x n-

From the classical point of view the information sufficient for an

adjustment of formula of the form V~(x,y) is the following~ given any

one can find (generally speaking unclear in what way) an y such that

~(x,y) hold. From the constructive viewpoint the adjustment of this formula

means much more: there should be some general method (or construction) that

allows to find such an y for given x. The constructive proofs have the

property that they implicitly contain an information sufficient for extrac-

ting such general method, which is in fact a program computing y by x.

There are essentially two groups of methods of extracting programs from

proofs. The first group uses syntactical methods like normalization of natu-

ral deduction proofs or cut elimination in sequential proofs. The second

group is based on constructive semantics of formulas developed from Kleene's

realizability. We briefly explain the basic ideas of these methods.

The normalization of proofs consist of syntactical transformations of

the natural deduction proofs [Prawitz 1965] called reductions. The reducti-

ons are repeatedly applied to a proof while it is possible. The proof in the

form where no application of reductions is possible is called normal proof

or proof in normal form. Any normal proof of closed formula 3~ (x) in e.g.

intuitlonistic predicate calculus or intuitionistic arithmetic takes the

form

n

3:~ (x)

Let a proof of a formula V-xB]9(x,y) is given:

n

V~(x,y)
Then one can use it as a program in the following way. Let t is a tuple of

"input values" for the variables x. To obtain an "output value" for y it

is sufficient to normalize the proof obtained from the above proof by adding

the V-elimination rule.

423

VT~jm (x, y)

3 }~p (-t , y)

I ts nonBal form takes the form

91

(~, s)

3~m (-t, y)

Thus s is the intended value for y.

There are many lacks of normalization listed below.

(i) The proof is too large object to deal with and it is extremely in-

efficient to implement normalizations on proofs. So systems essentially ba-

sed on normalization usually use not proofs but some structures coding only

computationally useful information from proofs.

(ii) In the proofs of some particular theories there can be many intro-

duction and elimination rules. In this case for each pair introduction rule

- elimination rule for the same connective or quantifier it is needed to in-

troduce new reduction rule and to prove normalization theorem for this exte-

nded calculus.

(iii) Reductions are not very expressible tool - as a matter of fact

they are too simple. For example normalization lacks for the Markov's prin-

ciple

Vx(9(x) V 79(x)) 773~(x)

3 ~ (x)

where x is variable ranging over natural numbers. The algorithm implicit

in this rule is the following: using Vx(9(x) V 79(x)) verify 9(0), 9(I),

9(2)...Lmtil a number n with 9(n) is found. There is no reduction rule

for the Markov's principle because to find such n one should normalize

proofs of 9(0) V ~ 9(0), 9(1) V ~(i)...

In our opinion all this lacks of normalization lie in its syntactical

nature. There is another techniques allowing to extract programs from proofs

- realizability-like semantics of formulas. There are many such semantics

developed from original Kleene's realizability [Kleene 1945]. These seman-

tics reflect the constructive meaning of logical connectives first discove-

red by Kolmogorov [1932]. We consider the general scheme of realizability

and discuss some lacks of existing realizability-llke semantics.

424

Roughly speaking in this scheme we associate with any formula 9 a re-

lation r~ 9- If there is some element a with a ~) 9 then we say that a

"realizes" 9. The set of possible elements a depends on the used realiza-

bility. The idea is that such an a contains information which is suffici-

ent to adjust 9. The general scheme of realizability is the following:

I. For atomic ~ the relation r a9 9 is given and depends on the kind

of realizabillty. Usually the "realizations" of atomic formulas are very

simple elements (with no inner structure) and an atomic formula is realizab-

le iff it is true or provable.

2. "Realizations" of ~ A ~ are ordered pairs <a,b> such that a ~

and b~ ~.

3. "Realizations" of ~ V ~ are ordered pairs <O,a> such that a ~

or ordered pairs <l,b> with b ~) ~. (This is not particularly important

that we choose 0 and 1 to distinguish between the two cases. Instead of

0 and 1 can be taken any two different elements of the set R of possib-

le realizations.)

4. "Realizations" of ~ D ~ are "algorithms" u which given any a

with a ~) ~ give an output u(a) such that u(a) O %~.

5. "Realizations" of 3x~(x) are pairs <t,a> such that a ~) ~(t).

6. "Realizations" of V~(x) are "algorithms" u such that for every

t ~(t) © ~(t).

This general scheme can be refined in many ways. For example in origi-

nal Kleene's realizability for arithmetic instead of pairs and algorithms

the G~del numbers of these pairs and Kleene's number of the partial recursi-

ve function are taken. Realizability can be used for extracting programs

from proofs as follows. Using the constructive proof of the formula

V-xB}~(-x,y) one can construct an element realizing this formula. By the abo-

ve definition this element is an algorithm u such that for any tuple

of input values for x u(a) is a pair <b,c> with b ~9 9(c). So c is

the intended value for y.

Realizability seems more flexible than normalization in many aspects,

but there are some lacks in existing definitions of realizability. First of

all realizability-like semantics have one undesirable property, realizabili-

ty (even in the case of arithmetic) contradicts to classical logic. There

are classically false but realizable formulas. It means that the definition

of calculus in which the proofs are constructed can not rely only upon rea-

lizability - if we do not want to obtain from the proof of 3~(x) an a

425

such that ~(a) is false (but realizable).

The second undesirable property of realizability is that the usual de-

finitions of realizability were designed for some special theories but there

was not a definition suitable for large classes of theories. But if we are

going to extract from proofs programs then the proofs must handle various

data types: lists, numbers, functions etc. To treat such data types properly

the notion of realizability is needed which can cover many various data

types and many constructive theories describing properties of these data

types.

Realizability and normalization have many common features. For example

Mints [1!974] proved that the two methods give equivalent programs in the ca-

se of intuitionistic predicate calculus. Similarly all we said about data

types can as well be related to normalization.

One of the most important problems common for all existing approaches

is the following: how to define constructive systems in which the proofs are

constructed and how to construct algorithms for extracting programs from

proofs? To solve this problem one needs a general theory for programming in

constructive logic - a theory which explains what is a constructive calculus

and how such constructive calculi are related to programs to be extracted.

The existing approaches are either too particular or too general. Too parti-

cular means that it covers one particular calculus, such as arithmetic. To

obtain generality all other theories are usually interpreted in this core

theory. But to interpret e.g. lists in arithmetic is about the same as imp-

lementing list processing programs in machine codes. Too general means that

one choose some very expressive type theory which allows to interpret every-

thing and is (as any too general concepts) quite inefficient and unnatural.

In other words the following questions arise:

(I) what is the program? and

(2) what is the extraction of program? and

(3) what is the semantic relations between the proof and the extracted

program?

The most general answer to the question (1) is that the program is an

"algorithm". There is no problem with this answer because there are many

well kno~m approaches to the formal notion of algorithm and they are essen-

tially (or more exactly extensionally) the same. The extraction of program

is some algorithmic process transforming the proof to a description of algo-

rithm. Proofs are conducted in formal systems. But the roots of formal sys-

426

tems are some domains of objects and proofs usually describe properties of

these objects. For example proofs in formal arithmetic describe properties

of natural numbers. If we agree with such treatment of proofs then we come

to the following conclusion: the program extracted from a constructive proof

of existence of an element with the desired property have to show a way to

construct the element of the underlying model (or if we deal with a class of

models then a way to construct the appropriate element for any model of this

class). Since programs are algorithms then this way should be algorithmic.

There is a generally adopted way to reason about the elements of these mo-

dels - to encode or enumerate them.Thus we naturally come to the theory of

enumerated models [Ershov 1980].

The notion of provability is secondary for models, the primary is the

notion of truth. Thus the algorithm for extracting programs from proofs

should be based on this notion. To implement such an approach the following

things are to be done:

(i) It is necessary to express the truth of formulas algorithmically

(the constructive encoding of formulas, or the constructive adjustment of

truth).

(2) Proofs in formal systems should not give formulas that have no this

constructive decoding;

(3) It is necessary to have an algorithm which constructs by the proof

of a formula this constructive adjustment of truth of this formula.

In the rest of this paper we develop a formal theory intended to give

the theoretical foundations for extracting programs from proofs based on

above ideas. The more formal papers on this subject are [Voronkov 1988b,

1989b]. But a long list theorems as in [Voronkov 1989b] can try the most pa-

tient reader so here we will explain only the most essential results in this

direction. The origins of such semantics can be traced to modified realiza-

bility [Kreisel 1959]. Very close to our classical realizability is the se-

mantics studied by I~uchly [1970]. The first semantics suitable for several

models was introduced in [Prank 1981]. Then Nepeivoda and Sviridenko [1982]

proposed a semantics based on enumerable sets [Ershov 1977] but this paper

contained some errors making definition of realizability incorrect. The cor-

rect presentation was given in [Voronkov 1985]. The similar semantics was

independently discovered by Plisko [1987] but his semantics is closer to n-

realizability from [Voronkov 1985] than to the semantics presented here.

427

2. The main auxiliary definitions

This section contains auxiliary definitions concerning the theory of

enumerated models and higher type functionals. All definitions are given for

one-sorted case but they can easily be generalized for many-sorted models.

Definition I. Let S be a set. An enumeration of S is any mapping of

the set of all natural numbers R onto S. An enumerated set is any pair

(S,u) where S is a set and u is an enumeration of S.

Let • = <M, PO" PI" fo" fl > is a model of signature a.

Definition 2. An enumeration of the model R is any enumeration ~: N

H of ~he domain M of R such that there exists a binary total recursi-

ve function F such that for any n, Yl "Ym e
n

..... -- Ym
n n

where <Yi" Ym > is the GSdel number of the tuple YI" Ym " The pair
n n

~,u) where R is a model of signature a, and u is its enumeration is

called an enumerated model of the signature a.

Let ~,v) be an enumerated model of the signature a and the (exte-

nded) signature ~. is the enrichment of a with elements uO, ul,... Using

u we can effectively construct some G~del numbering p of formulas of the

signature ~.

Definition 3. An enumerated model ~,~) is called recursive iff the

set of all p-numbers of quantifier-free formulas of the signature 7. is re-

cursively enumerable. ~,u) is called decidable model iff the set of all

p-numbers of quantifier-free formulas of the signature 7. is decidable.

For correct definition of our semantics we need some formalization of

functionals of higher types. As a suitable formalization we use elements of

Scott's information systems [Scott 1982]. (Some another formalizations can

be used as well, e.g. A-spaces [Ershov 1973] or f-spaces [Ershov 1977].)

There is no place to write all formal definitions concerning information

systems, so below we give only some informal explanations. Information sys-

tems allow one to define domains of functionals of higher types. For any in-

formation systems A,B there exist the information systems A + B, A X B

and A ~ B. We refer reader to [Scott 1982] for complete definitions. The

set of all elements of an information system A, or simply the domain of A

is denoted by A . In any information system A there always exists the

428

least element i A. The domain A + B is essentially the disjoint union of

the domains A and B plus the element IA+ B. The domain A X B

consists of pairs <a,b> with a e A , b e B . The elements of A ~ B

are continuous mappings from A to B.

The elements of information systems are by definition sets of data ob-

jects. Suppose that we have a set of elementary information systems with na-

tural numbers as data objects. Then set of data objects of the complex do-

mains oonstructed from elementary ones according to definitions of +, X,

is the subset of the set of hereditarily finite sets over ~. If we take so-

me G~del numbering of this set then we can speak about computable elements.

An element (represented by some set A) is computable iff the set of Godel

numbers of members of A is recursively enumerable.

The information system I [Voronkov 1988b] is such that elements of

/~ are either I or natural numbers 0, I, ... The information system 1

is defined in such a way that it has the only bottom element 11 = {0}.

3. Constructive truth

In this section we define a constructive semantics of first order for-

mulas in such a way that the set of constructively true formulas is the sub-

set of classically true ones.

Let ~,u) be an enumerated model of the signature a. We assign to

each formula 9 of an extended signature Z an information system Ae and

the relation a c~ 9 (a classically realizes 9) where a 6 %1' If 9

is a formula with free variables Xo,...,x n then ¥9 will denote the for-

mula VXO...VXng. If there are no free variables in ~ then V~ w 9.

Definition 4. (The relation c~). In (i)-(vi) all formulas are closed.

(i) A e W 1 for atomic 9 and I 1 c~ ~ iff 9 is true in R.

(Generally speaking the definition of c~ depend of the model ~,u),

so we ought to write o~(~,u) instead of c~, but we will omit indices whe-

re it will not cause ambiguities).

(ii) A~AV) w % X A~ and <a,b> c~ 9 A ~) iff a c~ 9 and b c~ V).

(iii) %V~ w A~ + % and, for re A~V~) , rc/~ ~ V ~ iff either for

some a e A 9 r = inl(a) and a c~ ~, or for some b e % r = inr(b) and

429

b c~ ~, ~ere inl and

A~V~"
(iv) A ~ A ~

ao6~ f(a) o~.

(V) ~(X) W I~R,U)

inr are natural embeddings of A~ and A~ into

and, for fe % ~ A%~ , fc~ ~ ~ ~ iff for every

X A@(t), where t is an arbitrary closed term and

<n,a> c~ 3~(x) iff a o~ $(un).

(vi) AV~(x) - Zm,~) ~ A~(t), and,
iff for every n e ~ f(n) c~ ~(un).

(vii) If there are free variables in

iff a c~ V~.

for f e ~m@(x) " f o~ V~p(x)

then A~ w A~, and a cl

The following theorem explains why this semantics is called "classical

realizability":

Theorem 5. There exist an a such that a o~(R,u)~ iff R ~ ~. m 1

You may ask: so what is the need to introduce the new notion equivalent

to the classical notion of truth? We made it because now we can easily defi-

ne a constructive notion of truth such that the set of constructively true

formulas are the subset of classically true ones:

Definition 6. Let a e A~ . Then a co~% ~ iff a c~ and a is co-

mputable. If a cc~% ~ then we will say that a constructively realizes ~.

A formula ~ is said to be constructively true in the enumerated model

(R,u) (~enoted by (R,u) ~con ~) iff there is an a with a co~,u) ~.

Thus we define the constructive notion of truth which does not diverse

with the classical one, so the first part of our aim is satisfied. The se-

cond important property of our definition is that it is correct for any de-

numerable model and hence for any data type represented by such a model. In-

deed, in [Voronkov 1986c] we investigated the properties of constructive

truth for such an important data type as the type of lists with atoms from

some model. It is also possible to generalize our definitions and technique

for parametric data types, for example lists(T), where T is any data type,

but in this case all needed definitions will take some space. (The papers on

these developments are in preparation).

In ~e theory of enumerated models the most simple models are the deci-

dable ones. The following theorem shows that if a model is "good" from the

viewpoint of the theory of enumerated models then the constructive truth is

identical to the classical truth for this model.

1
We omit all proofs because of lack of space.

430

Theorem 7. Let (R,p) be decidable enumerated model, and ~ be a for-

mula. Then ~,p) P ~ iff (R,p) Pcon ~"

The proof of this theorem is very simple but it shows that we are on

the right way: for decidable models there is no difference between classical

and constructive notion of truth. Some other results on relations between

classical and constructive truth can be found in [Starchenko, Voronkov 1988]

and [Voronkov 1988b, 1989b].

The next interesting question is the following~ for what class of for-

mulas the two notions of truth are equivalent independently of interpretati-

on? This problem is closely related to the problem of eliminating computati-

onally irrelevant parts from mechanically extracted proofs (see. e.g. [Goad

1980a,b, Henson 1989]). The following theorem partially gives an answer to

this question:

Theorem ii. Let ~ be a Harrop formula [Harrop 1960]. Then for every

enumerated model (R,p) ~ ~ 9 iff ~R,p) ~ ~. con
There are several another classes of formulas having this property but

Harrop formulas are the most famous ones (see [Harrop 1960] and [Goad

1980b]).

4. Constructive theories

In this section we introduce the definition of constructive theory (co-

nstructive logic, constructive calculus) based on the above definition of

constructive truth. We shown that the known first order theories are const-

ructive in the precise sense of our definitions. It is proved that the intu-

itionistic predicate calculus is not complete for constructive truth. The

very interesting result is given in Theorem 21: the intuitionistic arithme-

tic has only one (constructive) model (categoricityof intuitionistic arith-

metic).

In what follows we will sometimes use informal notions (e.g. saying

that the set of formulas is decidable). But all formal notions can of course

be given.

Definition 9. The inference figure of signature a is a finite sequen-

ce of formulas ~l,...,~n,@, where n~O. The calculus Z is any effectively

431

Theorem 12. Let

of a closed formula

cursive function g

enumerable set of inference figures.

The provability of a formula in a calculus Z is defined as usual: 9

is prov~)le iff there is an inference figure of the form 91,...,9n, 9 in Z

such that for all i e {I ,n} 9 i are provable in Z.

The following definition is given in informal terms:

Definition I0. The calculus Z is constructive for an enumerated model

~R,u) iff there exists an algorithm u which by any inference figure

91,...,9n,9 of Z and any al,...,a n such that a I c~ 91 , a n c/~ 9n

gives an a such that a c~ 9.

The following theorem shows soundness of the notion of constructive

calculus w.r.t, constructive truth:

Theorem 11. Let Z be constructive for (~,p) and PZ 9. Then (R,p)

~con 9. Horeover, an element a with a cx~% 9 can be found effectively by

a proof of 9 in Z.

The application of Theorem 11 in program synthesis is immediate:

Z be constructive for ~R,p). Then given any proof n

V~(x,y) one can effectively construct a general re-

such that for any tuple n of natural numbers R

To show that our definitions are generally applicable we have to show

at least that the known constructive calculi are constructive in the sense

of our ~finitions. The following theorems show the constructiveness of the

intuitionistic first order predicate calculus, intuitionistic arithmetic

(the analog of Nelson's theorem [Nelson 1947]) and constructiveness of the

Markov's principle.

Theorem 13. Intuitionistic predicate calculus is constructive for every

enumerated model (R,~).

Theorem 14. Intuitionistic arithmetic is constructive for the standard

model of arithmetic (~,i~).

Theorem 15. The calculus Z consisting of all instances of Markov's

principle is constructive for every enumerated model ~,~)2.

Now we make some remarks about Markov's principle. In many papers on

constructive logic and especially on program synthesis it is suggested that

the constructive proof can have classical parts. (Many considerations but no

formal definition on this subject are in [Goad 1980a,b].) There is one obs-

2
Let us notes not only for natural numbers!

432

tacle to give semantics for such mixed proofs using traditional approaches

because in the known realizability semantics there are formulas that are re-

alizable but classically false. But in our semantics it is not so! Thus

slightly changing our definitions we can prove the constructiveness of the
3

following mixed inference figure :

~con ~ V ~ ~cl3X~

Pco3~
The definition of constructive calculi depends of an enumerated model.

It is interesting to describe the class of formulas which are constructively

true in any enumerated model. This suggests the following definition.

Definition 16. The formula 9 is called constructively valid iff for

any enumerated model (~,u) (~l,u) ~ ~. con
Pllsko [1988] showed that for a similar semantics the class of valid

1
formulas is nl-complete and is hence even more complicated than the class

of classically true formulas of arithmetic. However his proof can not be

adapted to our semantics. All we are able to say now about the class of con-

structively valid formulas is the following theorem..

Theorem 17. There exist a constructively valid formula ~ which is not

provable in the intuitionistic predicate calculus.

There is one syntactical criterion of constructiveness which is (expli-

citly or implicitly) used in many papers..

Definition 18. A calculus Z is called syntactically constructive iff

the following two conditions hold:

1. If ~Z ~ V %~, where ~,%v are closed, then either ~Z 9 or ~Z ~"

2. If ~Z 3~(x), where 3~(x) is closed, then for some term t we

have ~Z ~(t)"

This definition is not very natural but one can hardly find the right

definition based on syntactical considerations. We introduce a semantic cri-

terion of constructivity-

Definition 19. A calculus Z is called semantically constructive iff

there is an enumerated model ~,u) such that Z is constructive for

m,~).

There is one curious corollary of the last definition., the classical

3
I do not who first proposed using this mixed principle. I learned it from

N. N. Nepeivoda.

433

first order predicate calculus is semantically constructive! But why one can

not use classical logical when studying e.g. finite models? This example

shows that there are semantically constructive calculi which are not syntac-

tically constructive. The following theorem shows that the converse is also

true.

that

Theorem 20. There exists a calculus Z of a finite signature G such

1. there exists a model of Z;

2. Z is syntactically constructive;

3. Z is not semantically constructive.

It is well known that the first order language is not very expressive

from the model-theoretlcal point of view. For example any sufficiently rich

theory have many non-isomorphic (countable) models. The following theorem

shows t~at the constructive semantics can make the language more expressive=

Theorem 21. Any two constructive models of the Heyting arithmetic are

recursi~ely isomorphic.

Another results on expressibility of the language with constructive

semantics are published in [Starchenko, Voronkov 1988, Voronkov 1988b].

References

Basin D.A. [1989]. Building theories in Nuprl. - In: Logic at Boric'89, LNCS
363, 1989, 12-25.
Bates J.L., Constable R.L. [1985] Proofs as programs. - ACM Trans. on Prog-
ramming languages and systems, 1985, v.7, no.l, p.I13-136.
Beeson M. J. [1978a] Some relations between classical and constructive mat-
hematics~ - J. Symb. Logic, 1978, v.43, no.2, p.228-246.
Beeson M.J. [1986] Proving programs and programming proofs. - In- VII Int.
Congress on Logic, Methodology and Philosophy of Science, Elsevier Sci. Pub-
lishers, 1986, p.51-82.
Bertoni A., Mauri G., Miglioli P., Ornaghi M. [1984] Abstract data types and
their extension within a constructive logic. - Semantics of Data Types, LNCS
173, 1984, 177-195.
Bishop E. [1970] Mathematics as a numerical language. In: Intuitionism and
Proof Theory, North Holland, 1970, p.53-71.
Bresclani P., Miglioli P., Moscato U., Ornaghi M. [1986] PAP - proofs as
programs (Abstract). - JSL 51(3), 1986, 852-853.
Chisholm P. [1987] Derivation of a parsing algorithm in Martin-Lof's theory
of types. -Science of Computer Programming, 1987, v.8, no.l, p.I-42.
Constable: R.L. [1972] Constructive mathematics and automatic program
writers. - In. IFIP'71, North Holland, 1972, p.229-233.

434

Constable R.L. [1983] Programs as proofs, a synopsis. - Information Proces-
sing Letters, 1983, v.16, no.3, p. i05-i12.
Constable R.L. e.a. [1986] Implementing mathematics with the Nuprl proof
development system. - Prentice Hall, 1986.
Coquand T., Huet G. [1988] The calculus of constructions. - Information and
computation, 1988, v.74, no.213, p.95-120.
Dragalln A.G. [1967] To the basing of Markov's principle. - Soviet Mathemati-
cal Doklady, 1967, v.177.
Dragalin A.G. [1978] Mathematical intuitionlsm. Introduction to the proof
theory (Russian). - Moscow, Nauka, 1978.
de Bruin N.G. [1980] A survey of the project AUTOMATH. - In. To H.B.Curry;
Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press,
1980, p. 579-606.
Diller J. [1980] Modified realization and the formulae-as-types notion. In:
Festschrlft on the occasion of H.B.Curry's 80th Birthday, Academic Press,
N.Y., 1980, p.491-502.
Ershov Yu.L. [1973] The theory of A-spaces.- Algebra i Logica, 12(4), 1973.
Ershov YuoL. [1977] The theory of enumerations (in Russian). - Moscow,
Nauka, 1977.
Ershov Yu.L. [1980] Decidability problems and constructive models (in Russi-
an). - Moscow, Nauka, 1980.
Feferman S. [1979] Constructive theories of functions and classes. - In.
Logic Colloquium'78, North Holland, 1979, p. 159-224.
Feferman S. [1984] Between constructive and classical mathematics. - In. Co-
mputation and proof theory, Lecture Notes in Math 1104, 1984, p.143-162.
Goad C.A. [1980a] Proofs as descriptions of computation. - 5th CADE, LNCS
87, 1980, p.39-52.
Goad C.A. [1980b] Computational uses of the manipulation of formal proofs. -
Stanford Univ. Department of CS, TR no. STAN-CS-80-819, 1980, 122p.
G6del K. [1958] Uber eine noch nicht benutzte Erweiterung des finiten Stand-
pt~Iktes. -Dialectica, 1958, v. 12, no. 3/4, p.280-287.
Goto S. [1979b] Program synthesis from natural deduction proofs. - 6th
IJCAI, 1979, v.l, p.339-341.
Harrop R. [1960] Concerning formulas of the types A ~ B V C, A ~ (Ex)B(x)
in intuitionistic formal system. -J. Symb. Logic, v.17, 1960, pp.27-32.
Hayashi S., Nakano H. [1988] PX: a computational logic. -MIT Press, 1988.
Henson M.C. [1989a] Information loss in the programming logic TK. - Draft,
Univ. of Essex, Department of Computer Sci., October, 1989.
Henson M.C. [1989b] Realizability models for program construction. - In~
J.L.A. van de Snepsheut (Ed.), Mathematics of Program Construction, LNCS
375, 1989, 256-272.
Huet D. [1986] Computation and deduction. - Carnegie Mellon Univ., 1986.
Kleene S.C. [1952] Introduction to metamathematics. - Van Nostrand P.C., Am-
sterdam, 1952.
Kleene S.C. [1973] Realizability~ a retrospective survey. - LNM 337, 1973.
Kolmogorov A.N. [1932] Zur Deutung der Intuitionistischen Logik. -
Mathematische Zeitschrift, v. 35, 1932, p.58-65.
Kreisel G. [1958] Interpretation of analysis by means of constructive func-
tionals of finite types. - In: Constructivity in Mathematics, North Holland,
1958, p.101-128.
Lauchly H. [1970] An abstract notion of realizability for which intuitionis-
tic predicate calculus is complete. - In: Intuitionism and Proof Theory,
North Holland, 1970, p.227-234.
Manna Z., Waldinger R. [1979] Synthesis: dreams -> programs. - IEEE Trans.
Software Engineering, 1979, v.5.,no.4, p. 294-328.

435

M~rkov A.A., Nagorny N.M. [1986] Theory of algorithms. - Moscow, Nauka,
1986.
Miglioli P., Moscato U., Ornaghl M. [1989] Semi-constructive formal systems
and axiomatization of abstract data types. - TAPSOFT'89, LNCS 351, 337-351.
Mints G.E. [1974] E-theorems (in Russian). - Zapiski Nauchnyh seminarov
LOMI, 1974, v.40, p.110-118.
Nelson D. [1947] Recursive functionals and intuitionistic number theory. -
Trans. ~mer. Math. Soc., v.61, 1947, p.307-368.
Nepeivo4~ N.N. [1979a] An application of proof theory to the problem of con
structing correct programs. - Kibernetika, 1979, no. 2.
Nepeivoda N.N. [1979b] A method of constructing correct programs from cor-
rect subprograms. - Programmirovanie, 1979, no. 1.
Nepelvo4La N.N., Sviridenko D.I. [1982] Towards the theory of program synthe-
sis (in Russian). - In- Trudy Instituta Matematlki, v.2, Novosibirsk, Nauka,
1982, p. 159-175.
Nordstrom B., Peterson K. [1983] Types and specifications. - IFIP'83, NH,
1983, 915-920.
Nordstrom B., Smith J.M. [1984] Propositions, types and specifications of
programs in Martin-Lof's type theory. - BIT, 24(3), 1984, 288-301.
Plisko V.E. [1987] On languages with constructive logical connectives. - So-
viet Mathematical Doklady, v.296, no.1., 1987.
Prank R.K. [1981] Expressibility in elementary theory or recursively enume-
table sets with realizability logic. - Algebra i Logica, 20(4), 1981.
Prawitz D. Natural deduction. - Stockholm, Almquist and Wicksell, 1965.
Petersson K. [1982] A programming system for type theory. - LPM Memo 21, Dpt
of CS, Chalmers Univ. of Technology, Goteborg, 1982.
Scott D.S. [1982] Domains for denotational semantics. In- Lecture Notes in
Computer Science 140, 1982, pp.577-612.
Starchen~o S.S., Voronkov A.A. [1988] On connections between classical and
constructive semantics. - In: COLOG-88 (papers presented at the Int. Conf.
on Computer Logic), Part 1, Talllnn, 1988, p.101-112.
Voronkov A.A. [1985] A generalization of the notion of realizability. - Un-
published Manuscript, 25pp. (Abstract was published in Siberian Mathematical
Journal, 1986).
Voronkov A.A. [1986a] Logic programs and their synthesis (Russian). Preprint
no. 23, Institute of Mathematics, Novosibirsk, 1986.
Voronkov A.A. [1986b] Synthesis of logic programs (Russian). Preprint no.
24, Institute of Mathematics, Novosibirsk, 1986.
Voronkov A.A. [1986c] Intuitionlstic llst theory (Russian). - In- Abstracts
of the 8th All-union Conf. on Mathematical Logic, Moscow, 1986.
Voronkov A.A. [1987a] Constructive logic: a semantic approach. - In: Abst-
racts of the 8th Int. Congress on Logic, Methodology and Philosophy of Sci.,
v.5, part i, Moscow, Nauka, 1987, p.79-82.
Voronkov A.A. [1987b] Deductive program synthesis and Markov's principle. -
In- Fundamentals of computation theory, LNCS v.278, 1987, p.479-482.
Voronkov A.A. [1988a] Constructive calculi and constructive models. - Soviet
Mathematical Doklady, 299 (1), 1988.
Voronkov A.A. [1988b] Model theory based on the constructive notion of
truth. - In~ Model Theory and Applications, Trudy Instituta Matematlki, v.8,
Novosibirsk, 1988.
Voronkov A.A. [1989a] Program synthesis using proofs in first order logic.
(Russian). - To be published in Vychislitelnye sistemy, 1989, 50pp.
Voronkov A.A. [1989b] A theory for programming in constructive logic. -pre-
sented to the 3rd Int. Conf. on Computer Scl. Logic, Kaiserslautern, Octo-
ber, 1989.

