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AMOEBA is a research project to build a true distributed operating system 
using the object model. Under the COST11-ter MANDIS project this work 
was extended to cover wide-area networks. Besides describing the system, 
this paper discusses the successive versions in the implementation of its 
model, and why the changes were made. Its purpose is to prevent ourselves 
and others from making the same mistakes again, and to illustrate how a dis- 
tributed operating system grows in sophistication and size. 

I. Why This Paper "Those who learn nothing fi'om his- 
tory are doomed to repeat it" - -  
Santayana 

For about eight years now, we have been doing research on distributed operating sys- 
tems, not only behind our desks, but also behind our terminals. The distributed system we 
are developing is called AMOEBA[l], and it is constantly evolving. It is being developed at 
the Vrije Universiteit and the Centre for Mathematics and Computer Science (CWI), both in 
Amsterdam. AMOEBA currently runs on Motorola 68020, National Semiconductor 32032, 
and MicroVax II processors. Both Ethemet and the Pronet token ring are supported by 
AMOEBA, and can be connected by a bridge. 

COST11-ter MANDIS is an international project investigating the management require- 
ments for large international networks of computers. It has adopted the object-model as a 
framework within which to discuss the management of wide-area distributed systems. To 
experiment with this, the MANDIS project adopted the Amoeba distributed operating system, 
extended with a gateway for wide-area communication. Amoeba systems in Holland (Vrije 
Universiteit, CWI), the U.K. (Harwell Laboratories, Haffield Polytechnic), in Berlin 
(GMD/FOKUS) and in Norway (University of Troms0) have been connected into a single, 
transparent distributed system. 

This research was supported in part by the Netherlands Organization for Scientific Research ~.W.O.) 
under grant 125-30-10. 



In any system, mistakes can appear in the design: features that are missing, features that 
are obsolete, and features that are too hard to handle. Sometimes the solution needs a consid- 
erable redesign of the system, and a new version is born. One has to be prepared to redo sys- 
tems [2-4]. When designing a system, it is important not to make mistakes twice, be they 
your own, or anyone else's. Therefore it is necessary to read about other comparable pro- 
jects, and to document your own. 

2. The AMOEBA Architecture Bradley's Bromide: "If computers 
get too powerful, we can organize 
them into a committee--that will do 
them in" 

The AMOEBA architecture consists of four principal components, as shown in Fig. I. 
First are the workstations, one per user, which run window management software, and on 
which users can carry out editing and other tasks that require fast interactive response [5]. 
Second are the pool processors, a group of CPUs that can be dynamically allocated as 
needed, used, and then returned to the pool. For example, the "make" command might need 
to do six compilations, so six processors could be taken out of the pool for the time necessary 
to do the compilation and then returned. Alternatively, with a five-pass compiler, 5 × 6 = 30 
processors could be allocated for the six compilations, gaining even more speedup [6]. 

Third are the specialized servers, such as directory [7], fde servers [8], and various other 
servers with specialized functions. Fourth are the wide-area network gateways, which are 
used to link AMOEBA systems at different sites in possibly different countries into a single, 
uniform system, such as investigated in the MANDIS work [9-13]. 

Processor Pool Workstations 

Gateway 

..... . ~ W A N  

llKlllllll 
EII41]JJII 

rllIfllJfl 
Illlllllll ~ Specialized servers 

(file, data base, etc) 

Fig. 1. The AMOEBA architecture. 

All the AMOEBA machines run the same kernel, which primarily provides communica- 
tion services and little else. The basic idea behind the kernel was to keep it small, not only to 
enhance its reliability, but also to allow as much of the operating system as possible to run as 
user processes, providing for flexibility and experimentation. 



2.1. Transactions 
AMOEBA is an object-oriented distributed operating system. Objects are abstract data 

types such as flies, directories, processes, and are managed by server processes. A client pro- 
cess carries out operations on an object by sending a request message to the server process 
that manages the object. While the client blocks, the server performs the requested operation 
on the object. Afterwards the server sends a reply message back to the client, which 
unblocks the client. We have named this request/reply exchange a transaction (not to be 
confused with data base transactions) [14, 15]. AMOEBA guarantees at-most-once execution 
of transactions. Remote procedure calls [16, 17] are implemented by collecting a code identi- 
fying the procedure to be executed and the arguments in a request message, and performing a 
transaction with the appropriate server. The result of the procedure is retrieved from the 
reply message. 

After starting a transaction, a client process blocks to await the reply. A server process 
blocks when it is awaiting a request. To handle multiple transactions going on at the same 
time a process can be subdivided into lightweight subprocesses called threads. By having a 
thread for each request, a server process can handle multiple requests simultaneously. A 
client process can perform several transactions at the same time by having a thread per trans- 
action. To avoid race conditions and simplify programming the threads are only rescheduled 
when the currently running thread blocks, that is, threads are not pre-empted. 

2.2. Capabilities 
All objects in AMOEBA are named and protected by capabilities[18, 19]. Capabilities, 

combined with transactions, provide a uniform interface to all objects in the AMOEBA system. 
A capability has 128 bits, and is composed of four fields: 

1) The server port: a 48 bit sparse address identifying the server process that manages the 
object. A server can choose its own port. 

2) The object number: an internal 24-bit identifier that the server uses to tell which of its 
objects this is. The server port and the object number together uniquely identify an 
object. 

3) The rights field: 8 bits telling which operations on the object are permitted by the holder 
of this capability. 

4) The check field: a 48-bit number that protects the capability against forging and tamper- 
ing. 

When a server is asked to create an object, it picks an available slot in its internal tables, 
puts the information about the object in there as well as a 48-bit random number. The index 
into the table is used as the object number in the capability. The rights in the capability are 
protected by encrypting them together with the random number, and storing the result in the 
check field. A capability can be checked by performing the encryption operation again, and 
comparing the result with the check field in the capability. 

Capabilities can be stored in directories that are managed by the directory service. A 
directory is effectively a set of <ASCII string, capability> pairs, and is itself just another 
object in the AMOEBA system. Directory entries may, of course, contain capabilities for other 
directories, and thus an arbitrary naming graph can be built. The most common directory 
operation is to present an ASCII string and ask for the corresponding capability. Other 
operations are entering and deleting directory entries, and listing a directory [7]. 



3. AMOEBA Incarnations "Experience is that marvelous thing 
that enables you to recognize a mis- 
take when you make it again" 
F.P. Jones 

To get experience with distributed operating systems, and with the object model in par- 
ticular, we have built an implementation of the AMOEBA system. This implementation con- 
sists of a small, highly portable, and efficient kernel, capable of providing local and remote 
communication, driving peripherals, and running processes; all other services are provided by 
user processes. In the following we only discuss the kernel. 

Working with the first version of AMOEBA, we became aware of some of the deficien- 
cies in its design. After a while we threw it away and built a new version. As this version 
did not solve all the problems, we designed and implemented the third, and current, version. 
We are currently designing the fourth version. Each of these versions are discussed more or 
less independently in the next sections. In section 4 we will compare them and describe why 
the changes were made. 

3.1. AMOEBA 1.0 

The AMOEBA 1.0 kernel [20] is a simple multiprogramming kernel, with intra-machine 
communication based on software interrupts. It has three layers. The bottom layer catches 
all hardware interrupts. Each interrupt causes a message to be put into a task queue. Mes- 
sages may contain parameters, such as the value of a character just received on a communica- 
tion line. Mostly these are the values of some of the devices that generated the interrupt. 
Furthermore, the layer schedules the kernel tasks, that constitute the middle layer of the ker- 
nel, and the user processes in the highest layer. 

A task takes care of a particular device, for example, a disk or a dock. It is called 
whenever there is a message for it on the task queue. A user process is scheduled when there 
are no tasks left to run, or if the current running process has eaten up its time slice. Both 
tasks and processes are able to put something in the task queue, thus scheduling a task. 

Tasks run to completion. When an interrupt occurs, a message is put on the task queue, 
and the task is resumed. This means that there are no race conditions in interrupt handling, 
and only one run-time stack is needed for all tasks. Tasks can be programmed entirely in a 
high-level language. 

The two most important tasks are the clock task and the network task. The clock task 
simulates multiple timers: it has functions to set and cancel timers. The network task pro- 
vides a network interface that does not guarantee delivery. A user process needs both ser- 
vices to implement a reliable network interface. 

A user process can suspend itself, enable or disable certain messages from specific 
sources, and send or cancel messages. It invokes a task by sending a message to it by placing 
an entry in the task queue. The message contains four parameters, such as the specific func- 
tion that must be executed by the task. As in the kernel, these messages are queued when 
arriving inconveniently. When a process is properly enabled, it is informed that a message is 
pending by an interrupt. 

This way a process can call the three functions performed by the network task: 
get(header, buffer), put(header, buffer), and unget(header). The header (see Fig. 2) is a 40 
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Fig. 2. Header format. 

byte structure containing the total length of header and buffer, the destination port, the reply 
port, the signature port, and 20 byte out of band data. A port is a network independent 
address, chosen from a sparse 48 bit address space, and protected by a cryptographic one-way 
function. The signature port can be used for sender authentication. 

Get enables receiving, while put sends a packet. Neither are 100% reliable in that 
packets may get lost. An interrupt is generated on completion. Unget disables receiving. 
The data buffer has a maximum size of 2 Kbytes, enough to contain about two thirds of the 
files in an average file system. 

A user library of procedures uses these primitives, together with timers, to implement 
the transaction interface. A client invokes a service by calling trans(hdrl, bufl, hdr2, buf2). 
The request is put into hdrl and bufl; the reply will be put into hdr2 and buj'2. The server 
calls getreq(header, buffer) to enable receiving of a request, and putrep(header, buffer) to 
send a reply back. In each of the three calls, an interrupt is generated on completion. 

The protocol used is simple, yet makes efficient use of the network bandwidth. Nor- 
mally the reply acknowledges the request, and the reply is acknowledged by the next request. 
Separate acknowledgements are generated only when the reply or the next request is taking 
too long. It is possible to have multiple outstanding getreq's, to handle more than one client, 
or to have multiple trans's going on, thus enabling parallel programming. 

3.2. AMOEBA 2.0 

lntra-machine communication in AMOEBA 2.0 is through 26-byte typed messages, called 
mini-messages. When a hardware interrupts occurs, the real-time information is put into a 
mini-message and sent to the appropriate task. The user interface to the tasks is also through 
these messages. This kernel has formed the base for the MINIX operating system [21]. 

The calls to send and receive messages are: 

send(destination, message); 
recv(source, message); 
sendrec(destination, message). 

Send sends the message to the specified destination: tasks are identified by negative numbers, 
processes by positive numbers. When the destination is not ready to receive, the message is 
queued. Recv is called when a task or process wants to await a message from the specified 
source, which may be ANY. Sendrec is provided for efficiency: it sends the message to the 
destination and awaits a reply message. 



A process may be interrupted by a task or another process with a special interrupt mes- 
sage. Interrupts go at most one level deep, to simplify interrupt handling. Other messages 
that arrive during interrupt handling are queued as usual. 

The services provided by the kernel are the same as in AMOEBA 1.0., including the clock 
task and the network task. The transaction mechanism interface to the user processes is 
almost identical, so existing user services for AMOEBA 1.0 are easily ported. Later the trans- 
action interface of AMOEBA 3.0, the currently used incarnation of AMOEBA, has been imple- 
mented for MINIX. 

3.3. AMOEBA 3.0 

In AMOEBA 3.0, all communication, both intra-machine and inter-machine, is through 
transactions. The interface is slightly modified and extended: 

getreq(header, buffer, length); 
putrep(header, buffer, length); 
trans(hdrl, bufl, lenl, hdr2, bur2, len2); 
new_thread(procedure); 
thread_exit(); 
sleep(event); 
wakeup(event). 

The server, either a kernel task or a user process, calls getreq to await a request message, and 
putrep to send a reply back. A client process calls trans to send the request in hdrl and buff, 
and to await the reply, which will be put into hdr2 and bur2. The header contains the capabil- 
ity identifying the service and object, and 20 bytes of out of band data containing the com- 
mand to the server and its parameters. The buffer, with a specified length of maximally 30 
Kbytes, contains the data associated with the request or the reply. 

Note that these calls are blocking, and prevent parallel computing. To allow concurrent 
programming, we introduce threads, a light-weight sub-process. Within a process, only one 
thread can run at a time; another one may be scheduled when the current running thread does 
a blocking call. While some threads are awaiting a request or a reply, another thread may 
run. A server that wants to be able to service multiple clients will have several identical 
threads, created with new_thread, capable of executing requests. 

The kernel is just another process, having threads (tasks) to drive the peripherals. The 
bottom layer in the kernel schedules the threads of all processes, executes the transactions, 
copies local messages, and runs the network protocol. Device interrupts are still queued, but 
not transformed into messages. Instead, interrupt routines are invoked at "save" times, that 
is, in between thread switches. The network protocol sends separate acknowledgements for 
request and reply fragments, and network DMA is done simultaneously with the other side as 
much as possible. No separate timers are maintained, but a simple, once in a while "sweep" 
procedure restarts stopped protocols. All this results in simple and efficient message passing 
[14, 15]. 

The physical location of ports, and thus of servers and objects, is maintained in a cache 
per site. When the location of a port is unknown or out-of-date, it is located with a special 
broadcast locate message, and the cache is updated. 

Threads within a process can synchronize using sleep and wakeup. A thread that wants 
to await an event invokes sleep; a thread that wants to resume other threads waiting for a 



certain event calls wakeup. Since threads run to the next blocking system call, there is no 
danger of race conditions. 

Under the COST11-ter project AMOEBA 3.0 was extended to wide-area networks using a 
special gateway [11,12]. The gateway manages the wide-area communication without 
affecting the local networks. This management includes naming and protection of objects, 
accounting, and fault management of communication. The gateway is high-level: it inter- 
cepts complete messages, and if access is granted, establishes a virtual circuit to the intended 
destination to forward the message across. The gateway at the destination site repeats the 
transaction, and forwards the reply over the same virtual circuit back to the source The gate- 
way registers all remote servers and their locations to know which messages to forward and 
which not. site. 

3.4. AMOEBA 4.0 

Ill AMOEBA 4.0 [22] processes are subdivided into light-weight threads, but now we no 
longer guarantee that threads run unpreempted to the next blocking system call. Moreover, 
we allow threads to await requests for multiple ports, and to specify message buffers of up to 
one Gigabyte. This has affected the user interface as follows: 

getreq(port-list, header, buffer, length); 
putrep(header, buffer, length); 
trans(hdrl, bufl, lenl, hdr2, buf2, len2 ); 
newJhread(procedure); 
thread_exitO ; 
mu_lock(mutex) ; 
mu_trylock(mutex, timeout); 
mu..unlock(mutex). 

Note that sleep and wakeup cannot be used as synchronization primitives anymore, since they 
would be fraught with race conditions because of the preemptive scheduling of tasks. 
mu..lock and mu_unloCk respectively acquire and release a mutex variable, mu_trylock tries 
to acquire the lock within timeout milliseconds, and returns an error if this fails. 

An important change in this new incarnation of AMOEBA is the format of the capability, 
which, as we will see, also influences the semantics of trans. The new format is shown in 
Fig. 3. The sizes of the different fields have been increased. Moreover, there is an extra field 
designating the creation site. In AMOEBA 4.0 it is assumed that objects hardly ever migrate 
away from the site of their creation. This obsoletes the necessity to register all remote ser- 
vices at the gateways, thus decreasing the amount of management necessary considerably. 

64 64 32 32 64 # bits 

[Service Port I Creation Site I Object I Rights I Check I 

Fig. 3. An AMOEBA 4.0 capability. 



4. Comparison " I  have made mistakes but  I have 

never made the mistake of  claiming 

that I never  made one"  - -  James 

Gordon Bennett  

Having discussed each of the implementations of the object model more or less indepen- 
dently, it is now time to look what changed and why. The differences concern efficiency and 
programmability; these goals are often conflicting. Both metamorphoses are discussed in the 
following sections. 

4.1. AMOEBA 1.0 --> AMOEBA 2.0 

Our first objection against A M O E B A  1.0 was the difficulty in programming with it. All 
communication with the outside world was through asynchronous messages. Although flexi- 
ble, it puts us back some decades when programmers had to work at a very low level. The 
processes were pelted with interrupts. Each process had to do its own job scheduling. 

Furthermore, the interrupts carded too little information--often additional information 
had to be transported by a special copying task. In addition to the complexity involved, it 
was inefficient, and it had protection problems. When data had to be copied between two 
processes, one had to do this, and thus had full access to the address space of the other pro- 
cess. 

Furthermore, debugging was difficult, because it was hard to trace a process that can be 
interrupted at any moment, and each time somewhere else. Moreover, interrupts might arrive 
in another order when the process was executed again, and debug statements in the code 
changed the behaviour. Thus AMOEBA 1.0 processes were nondeterministic, and a failure 
might occur only once in a month, making it hard to fred the error. 

We abolished these problems in AMOEBA 2.0 by abolishing needless interrupts. All 
ordinary communication was through typed mini-messages, and although small, they were 
large enough for an average command with parameters or a reply. Messages only arrived 
when called for, which made both programming and debugging considerably easier, because 
a program could be written in the usual structured way. 

4.2. AMOEBA 2.0 ---> AMOEBA 3.0 

Although happier, we were not completely satisfied with our basis for a distributed 
operating system. To begin with, too little concurrency was left in with the new intra- 
machine communication mechanism. The receive call was blocking, and it was not possible 
to check if there was something in the message queue. Moreover, it was not possible to give 
a set of sources from which to receive a message, so the messages had to be handled in the 
order they arrived. 

Also annoying were the different intra-machine and inter-machine communication 
mechanisms. This problem also existed in AMOEBA 1.0, but in AMOEBA 2.0 the mechanisms 
are much more alike. Furthermore, to start a transaction, a mini-message had to be sent to 
the network task, another to enable receipt of the acknowledgement, and a third to the clock 
task to set a timer. When the acknowledgement arrived, the timer had to be canceled, which 
cost another mini-message. All this made inter-machine communication inefficient. 

These problems were solved in AMOEBA 3.0 by making the transaction the only com- 
munication primitive. Moreover, the messages are much larger, so a special task to copy data 



became obsolete. At the same time, the protection problem with copying disappeared. Com- 
munication became transparent, having obvious advantages. 

Like the mini-message calls, transaction calls were blocking now. Concurrent program- 
ming was made possible through threads: each thread can handle one client and one server. 
This way we have the profit of concurrent programming combined with the ease of simple, 
every-day programming. 

4.3. AMOEBA 3.0 ---> AMOEBA 4.0 

AMOEBA 3.0 is the in'st incarnation that is heavily used for distributed applications [23- 
25], and has led to several suggestions for improvements. Also, the hardware technology has 
improved considerably, making multi-processors more and more interesting. In the first 
three incarnations we envisioned only loosely-coupled hardware, but now we also have to 
deal with processors sharing memory over a shared bus. Yet another factor that makes a new 
implementation necessary is the advance of wide-area networks, making large distributed 
operating systems interesting. 

There are two reasons for preemptive scheduling of threads. The first reason is one of 
software engineering. Due to the high level of transparency, the programmer cannot be 
expected to know if the standard library routine for printing makes calls to a remote printer or 
not. It was bad programming practice to rely on procedures being local, and thus trusting that 
no scheduling would occur. Therefore the advantages of non-preemptive scheduling largely 
disappeared. The other reason for preemptive scheduling of threads is that the performance 
of a multi-threaded process can be increased by running the different threads on different 
processors in a multi-processor. 

The other important change in AMOEBA 4.0 is the Creation Site field in capabilities. 
This has to do with scaling. It was found unfeasible to have a purely fiat name space that 
would cover the world [26,27]. Using the old capability, it was impossible to transparently 
locate the server for the object in a world-wide AMOEBA system. Now, with the new capabil- 
ity lay-out, requests for operations on an object can be sent to the site that created the object 
immediately, where the server can then be located using the old broadcast-oriented mechan- 
isms. In the rare event that an object migrates between AMOEBA sites, a forwarding server 
has to be left behind at the site that created the object to forward the request to the site where 
the object actually lives. 

5. What We Have Learned "The only thing we learn from his- 
tory is that we learn nothing from 
history" - -  Hegel 

The versions we have implemented, and the reasons for making them, have now been 
discussed. It is time to look why we went wrong in the design and to learn our lessons, to 
prove Hegel was wrong. 

In the design of AMOEBA 1.0 we aimed at a simple and efficient kernel, and forgot the 
user interface. We did not appreciate the importance of the simplicity and the functionality 
of the user interface enough, which is an error in any system. Furthermore, in implementing 
the inter-machine interface, we forgot that its efficiency was likewise important. 

In the design of AMOEBA 2.0 we were determined not to make the same mistakes again, 
so we concentrated too much on have a clean user interface, and did not worry about effi- 
ciency. The interface was not flexible enough, and too much intra-machine communication 
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was necessary to send a simple message, because the decomposition into layers and modules 
was too finely grained. 

In AMOEBA 3.0 the networking primitives were made an integral part of the operating 
system instead of a separate attached task. This made all communication transparent and 
resulted in a high performance [14, 15]. Under the COSTll-ter MANDIS work a gateway 
was added that made international communication transparent. 

The last incarnation, AMOEBA 4.0, was developed mainly to deal with new technologies 
of multi-processors and wide-area networks. Using the experience gained with AMOEBA 3.0, 
several small changes where made to the system. 

We feel that we are converging to a good distributed operating system. This paper 
shows the importance of implementing prototype systems for the development of a large dis- 
tributed operating system. Prototype systems produce the flaws in the design of the system 
and give the necessary experience for developing the next version. It is necessary to docu- 
ment the mistakes to avoid making them again. 
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