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Introduction 
The General Clause Theorem Prover (GCTP) was designed as a test bed for semantic search 
control strategies in theorem proving. It is the unique combination of the Graph Construction 
(GC) procedure of [Shostak 1976] (which is known to out-perform many (all?) linear format 
systems), embedding the axioms of equality by the use of the Resolution by Unification and 
Equality (RUE) and Negative Reflexive Function (NRF) inference rules [Digricoli 1979]. To 
use RUE and NRF in the GC procedure, three modifications have been made. (i) Extension is 
is redefined to use RUE unification; (ii) NRF is added, and applied to negative equality B-
literals as an alternative to extension; (iii) Reduction is redefined to use RUE unification. In 
all three cases, negative equality literals generated from the use of RUE unification are 
classified as B-literals and added to the right hand end of the result chain. The completeness 
of the combination of the GC procedure and the RUE and NRF inference rules, is to be 
obtained by combining their respective completeness results. 
 
The GCTP implementation 
The GCTP has been implemented in Prolog. An input clause is represented by a Prolog fact 
whose single argument is a list of (non-classified) literals that constitute the represented 
clause. Each centre chain of a derivation is represented by a list of function structures and 
variables. The functor of each function structure is one of a, b or c, indicating the class of the 
literal argument. The second argument of an A-literal function structure is a variable identical 
to one of the variables in the centre chain list, indicating the C-point of the A-literal. The 
insertion of a C-literal, predicated the truncation of an A-literal, is efficiently implemented by 
the instantiation of the associated C-point variable. Extension and NRF always use the 
rightmost B-literal of the centre chain. Although possibly not optimal, this is convenient 
given the list representation of chains. 
 
The GCTP is partially self configuring. If the input clauses are all Horn clauses, an input 
derivation system is complete and the reduction inference rule is suppressed. If no equality 
literals are present in the input clauses, there is no need to embed the axioms of equality. In 
this case standard unification is used rather than RUE unification, and NRF is suppressed. 
 
The selection of disagreement set, selection of substitution, and equality restrictions for RUE 
and NRF, have been embedded into the GCTP RUE unification and search strategy. The 
GCTP RUE unification unifies a pair of terms only if they are identical or one of the pair is a 
variable. In all other cases a disagreement pair is returned. The equality restriction for RUE 
has been strengthened to prevent this relaxed selection of disagreement pairs from creating 
an ongoing sequence of negative equality literals. 
 
The GCTP search strategy 
A modified consecutively bounded depth first search is used by the GCTP. The modified 
version improves on the standard version by truncating only those long inference sequences 



 

that are not making progress towards a refutation. Compatiblity with the Set-of-Support 
strategy allows the GCTP to form its top chains from negative input clauses. This selection of 
top clauses leads to 'natural' proofs, and simplifies semantic checking in the Horn clause 
configuration. The GCTP has relaxed the GC procedure's specification that reduction must be 
done if possible, to allow extension as an alternative to reduction against a C-literal. This 
corrects a completeness problem of the original procedure. The GCTP uses a unit preference 
strategy in extensions. 
 
C-literals at the left end of centre chains, which are proved, are removed from the centre 
chain and added to the set of input clauses as unit clauses. This is done so as to retain the 
most general unit clauses. The addition of unit clauses to the input set is particularly effective 
in conjunction with the unit preference strategy. In the environment of a consecutively 
bounded search there is an added advantage that proofs of B-literals discovered within one 
bound, are 'transferred' to the next bound as unit clauses. 
 
Search pruning 
In unit extensions, if the negation of the centre clause B-literal is subsumed by the input 
clause literal, no alternative extensions are permitted. 
 
The GC procedure's restriction that no two non-B-literals in the centre chain may have 
identical atoms has been extended to check that no A- or B-literal in the centre chain is 
identical to any A-literal to its left. This second restriction is an extension of restriction 2 of 
the Model Elimination procedure. All syntactic checking is repeated in order to detect 
violations due to substitutions. 
 
In the Horn clause configuration the GCTP can perform the semantic check that ensures the 
falsity of all past and current centre clause literals. In the GCTP the A- and B-literals in the 
centre chain are the literals that must be checked. A domain based approach to semantic 
checking [Sutcliffe 1988] is used. The semantic checking of negative equality B-literals 
generated from RUE unification may be interpreted in terms of term level semantic checking 
of input paramodulation. 
 
Conclusion 
The GCTP has been successfully tested with many of the problems given in [Pelletier 1986]. 
It is currently being extended to include a type checking mechanism, which will move the 
GCTP into the field of typed first order logic. A full description of the GCTP may be found 
in [Sutcliffe 1989] 
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