Edinburgh Research Explorer

Extensions to the Rippling-Out Tactic for Guiding Inductive
Proofs

Citation for published version:

Bundy, A, van Harmelen, F, Smaill, A & Ireland, A 1990, Extensions to the Rippling-Out Tactic for Guiding
Inductive Proofs. in 10th International Conference on Automated Deduction: Kaiserslautern, FRG, July
24-27, 1990 Proceedings. vol. Lecture Notes in Artificial Intelligence No. 449, Lecture Notes in Computer
Science, vol. 449, Springer-Verlag GmbH, pp. 132-146. https://doi.org/10.1007/3-540-52885-7_84

Digital Object Identifier (DOI):
10.1007/3-540-52885-7_84

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
10th International Conference on Automated Deduction

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 17. Apr. 2024

https://doi.org/10.1007/3-540-52885-7_84
https://doi.org/10.1007/3-540-52885-7_84
https://www.research.ed.ac.uk/en/publications/48877653-39f8-4f4c-8bf2-80d2af6d0be7

Extensions to the Rippling-Out Tactic for Guiding

Inductive Proofs *

Alan Bundy, Frank van Harmelen, Alan Smaill and Andrew Ireland

Department of Artificial Intelligence,
University of Edinburgh,
Edinburgh, EH1 1HN, Scotland.
Email: bundy@edinburgh.ac.uk, Tel: 44-31-225-7774.

Abstract

In earlier papers we described a technique for automatically constructing inductive proofs,
using a heuristic search control tactic called rippling-out. Further testing on harder ex-
amples has shown that the rippling-out tactic significantly reduces the search for a proof
of a wide variety of theorems, with relatively few cases in which all proofs were pruned.
However, it also proved necessary to generalise and extend rippling-out in various ways.
Each of the various extensions are described with examples to illustrate why they are
needed, but it is shown that the spirit of the original rippling-out tactic has been re-
tained.

1 Introduction

In [Bundy 88] we introduced the concept of proof plans and gave a simple example proof
plan for guiding inductive proofs. The central idea of this inductive proof plan was a
tactic for manipulating the induction conclusion to enable the induction hypothesis to
be used in its proof. Following Aubin, [Aubin 75], we called this tactic rippling-out. In
[Bundy et al 88] we described an implementation of this inductive proof plan within the
OYSTER-CIAM system for a higher-order, intuitionist, typed logic, and we reported its per-
formance on various standard example inductive theorems. OYSIER is a reimplementation
in Prolog of the Nuprl interactive proof editor, [Constable et al 86]. Tactics are Prolog
programs which drive OYSTER by applying its rules of inference. A proof plan is a tactic

*The research reported in this paper was supported by SERC grant GR/E/44598, and an SERC
Senior Fellowship to the first author. We wish to thank our colleagues in the Edinburgh Mathematical
Reasoning Group and three anonymous referees for feedback on this paper.

together with its meta-level specification. CIAM is a plan formation program which builds
a special-purpose proof plan for each theorem from a set of general-purpose proof plans.

We have tested our implementation extensively on a large number of inductive the-
orems, most of which are drawn from the Boyer-Moore corpus ([Boyer & Moore 79|, ap-
pendix A), adapting the original proof plan as necessary. This paper reports the result
of that study. The main finding is that the spirit of the proof plan has survived the test.
In particular, the rippling-out tactic remains the central idea of the proof plan. Our tests
have suggested principled extensions to rippling-out, which preserve the essential intuition
behind it while increasing its range of application. Since these extensions include rippling
in other directions than ‘out’, we have named the extended tactic, rippling.

Below we report these extensions to rippling-out!. They are rippling with multi-wave
rules, rippling with conditional wave rules, rippling-sideways and rippling on hypotheses.
We illustrate each extension with simple examples of proofs which require them. We argue
that the extensions are natural improvements of the original idea. We end with examples
of harder inductive theorems whose proof is now within the range of the proof plan.

Before we can do this, however, we briefly recap the main idea of rippling-out and the
role it plays within our inductive proof plan.

2 Rippling-Out in Inductive Proofs

To understand rippling-out imagine a loch? in which the induction conclusion appears as
a reflection of the hypothesis. The reflection is not a perfect image of the original because
wherever the induction variable appears in the induction hypothesis, the induction term
appears in the induction conclusion. The expressions which appear in the induction
conclusion, but not in the induction hypothesis, we call wave fronts. They are like ripples
on the surface of the loch, which spoil the reflection. Consider, for instance, a simple proof
of the associativity of +, VX,Y,Z. X + (Y + Z) = (X +Y) + Z by successor induction
on X. The induction hypothesis is

T+ (y+z2) = (x+y)+=z (1)

where x, y and z represent skolem constants®. The induction conclusion is

:r+(y+z) = (:L’+y)—|—z (2)

The induction term is s(x) and the s(...) constructor function is the wave front.

More generally, a wave front is a term from which a proper subterm is deleted. Al-
ternatively, a wave front can be thought of as a collection of nested functions with the
innermost argument removed. When this argument is replaced by a term the wave front

!To improve readability we have translated the Martin Lof style language used by OYSTER-CIAM into
a more conventional notation.

2The scottish word for ‘lake’.

3We adopt the Prolog convention that identifiers starting with upper case letters indicate variables
and those starting with lower case letters indicate constants.

is said to dominate the term. We adopt the convention that wave fronts are indicated by
boxes, as in the example above. Wave fronts are illustrated graphically in figure 1.

Initially, the wave fronts are functions which immediately dominate the induction
variable. The role of rippling-out is to move them outwards — just like the ripples on a loch
— leaving behind them an unspoilt reflection of the induction hypothesis. Rippling-out
works by backwards reasoning from the induction conclusion to the induction hypothesis
using wave rules. A wave rule is a rewrite rule of the form:

Fls(uD) = [r(r))]

where F', S and T are terms with one distinguished argument. 7" may be empty, but S
and F' must not be. S and T are called the old and new wave fronts, respectively. Note
that the effect of applying such a rule is to move the old wave front S, in the induction
conclusion, outwards past the F' and to turn it into a new wave front 7.

This general form includes many rewrite rules formed from the step cases of recursive
definitions. Restricted to such recursive rules, rippling-out is a constrained version of
unfolding or symbolic evaluation. But, as we will see, many wave rules are not formed
from recursive definitions, so rippling-out extends unfolding.

A wave rule can be formed from the step case of the recursive definition of 4, namely:

u—l—v = u—l—y

where U is u, S and T are s and F(U) is u + v. Repeated application of this rule to (2)
ripples the two wave fronts to the outside of the left and right hand terms of the induction

conclusion.
a:+ (y+2) = (x+y) +z
s+ @+2)] = [s(+y)]+2
I+(y+2) = (z+y)+z (3)

A diagrammatic representation of rippling-out is given in figure 1.

Our initial version of rippling-out applied only to induction conclusions that were
equations or equivalences. As in this example, wave fronts were rippled-out until they
dominated the left- and right-hand sides of these induction conclusions.

The movement of wave fronts can terminate in three ways.
e [f a wave front is moved to dominate the left- or right-hand term of the induction

conclusion then we say it is beached. No further rippling-out of this wave front is
then possible or necessary. Two examples can be found in equation (3), above.

e [f a wave rule is applied in which 7" is empty then there is no new wave front. We
say it peters out. Two examples can be found in equation (4), below.

e If a wave front is not beached, but no wave rule applies to it, then we say the wave
front is stuck.

Before During After

The three trees show the term before, during and after rippling-out. Fach
tree represents the term as an expression tree. The nodes of each tree are
labelled by a function or predicate symbol or a constant or variable. A function
or predicate of arity n hasn descendent subtrees: one for each of its arqguments.
Wave fronts are indicated by square nodes and all other nodes by dots. Note
that the three trees differ from each other only in the position of the square
nodes. These square nodes are higher in each successive tree; the ‘After’ one
being beached at the top. The {'s in the square nodes indicate the direction of
rippling-out.

Figure 1: Rippling-Out (s(z) +y) + 2

If all wave fronts in a term are beached or peter out then then we say it is fully rippled.
Otherwise, we say the rippling-out is stuck.

When no further rippling-out is possible then the induction hypothesis can often be
used as a rewrite rule to produce an equation between two identical terms. Following
Boyer and Moore, we call this tactic fertilization. The induction hypothesis may be used
either way round. In our example we can use it left to right on the left hand side of the
induction conclusion, (3), to produce the equation:

s(@+y) +4)| = [s(@+y)+4)]

which is readily proved, so completing the step case of the inductive proof.

Both rippling-out and fertilization are subject to careful control by our overall induct-
ive proof plan.

e Rippling-out is applied to the induction conclusion immediately after the application
of induction. The precondition of applying a wave rule to rewrite a sub-expression
of the induction conclusion is that any wave front in that sub-expression must match

the old wave front in the rule. This greatly restricts the search space of rippling-out,
usually to zero or one wave rule for each wave front in the induction conclusion. It
also permits equations which can be interpreted as wave rules in both directions to
be used either way round without the risk of looping, since wave fronts must always
move outwards and never inwards.

e Fertilization is applied to the induction conclusion when no further rippling-out is
possible. It uses the induction hypothesis as a rewrite rule either left to right to
the left-hand side of the induction conclusion or right to left to its right-hand side.
If the wave fronts on both sides of the induction conclusion are fully rippled then
either one of these is sufficient. If only one side is fully rippled then this side is
rewritten. If neither side is fully rippled then fertilization is not possible.

3 Multi-Wave Rules and Strong Fertilization

Our first extension is to allow wave rules which ripple out more than one wave front at
once. We call these multi-wave rules. They are highly desirable if one side of the induction
conclusion contains more than one wave front. They allow rippling to merge several wave
fronts into one and, hence, continue rippling beyond the point at which the old version of
rippling-out would have become stuck. They also allow us to strengthen rippling-out and
fertilization and, thereby, apply them to induction conclusions that are not equations or
equivalences.

While we are making this extension we will also extend wave rules to cope with wave
fronts containing more than one induction variable, and to multiple induction hypotheses.
Thus, the new general form of wave rules is:

1 n
Ur,-o o U))

Flsi(pt,....omD] - S,
= |T(F@,.... U, PO, U]

where 1 < ¢;,7; < m; for 1 < ¢ < n. As before, F, the S;s and T are terms with
distinguished arguments. 7" may be empty, but the S;s and F' must not be. The S;s are
the old wave fronts and T is the new wave front. Note that the concept of wave front

has now been generalised to a term from which one or more proper subterms have been
deleted.

—~

The advantages of multi-wave rules are as follows.

e The replacement of S with the S;s enables the simultaneous rippling-out of multiple
wave fronts.

e The replacement of U with the U;s enables the rippling-out of wave fronts containing
more than one induction variable.

e The replacement of the single F' argument of 7" by several F' arguments allows the
simultaneous fertilization of the induction conclusion with more than one induction
hypothesis.

These last two extensions go together; multiple Us tend to create multiple F's, each one
making a different selection of Us for its arguments.

A multi-wave rule can be formed from the substitutivity axiom for s, namely:

SO =[] = w=-

Recall that rippling-out reasons backwards. To apply the implication p — ¢ it uses the
rewrite rule ¢ = p*. Thus the direction of implication in the rule above is right to left.
Note that this rule is an example of a wave rule which is not formed from the step case
of a recursive definition.

Instead of applying fertilization to the induction conclusion (3), we can use this more
general form of wave rule to continue the rippling-out and infer:

r+(y+z2) = (x+y)+=z (4)

which is identical to the induction hypothesis, (1), i.e. the wave fronts have petered
out. The proof thus terminates by direct appeal to the induction hypothesis. This direct
use of the induction hypothesis constitutes a new form of fertilization which we will call
strong fertilization. The form of fertilization described above in §2 we will rename weak
fertilization. Since strong fertilization applies to induction conclusions of any form it is
more generally applicable, and its application will normally be the purpose of rippling-out.
However, weak fertilization must still be retained to cope with equational or equivalential
induction conclusions that get stuck on one side.

To illustrate the use of multi-wave rules to prove non-equational theorems with the aid
of multiple induction variables and multiple induction hypotheses, consider the following
example.

Vt:tree. max_ht(t) > min_ht(t)

where max_ht(t) is the length of the longest path in a binary tree, ¢, and min_ht(t) is
the length of the shortest. Note that this is an inequality. Trees will be built from the
constructor functions leaf(t) and tree(t;,t3). For the induction step we will assume the
two induction hypotheses:

mazx_ht(l) > min_ht(l) max_ht(r) > min_ht(r)
and prove the induction conclusion:

max_ht (| tree(|l, 7") > min_ht(|tree(|, T) (5)

in which both [and r are induction variables.

We will need the following multi-wave rules:
maz_ht(tree(|uj, u?) = | s(max(max_ht(u;), max_ht(u?)
min_ht(|tree(fu}, u?) = | s(min(min_ht(u;), min_ht(uf)
u} > Eu% = u% > u%
maz(Jul, u? > | min(fus, ug = uy > ug Al > uj

4We adopt the convention that — stands for implication and = stands for rewriting.

Note that all four of these rules have multiple Us, the first two and last have multiple F's,
and that the last one also has multiple Ss. Recall that the direction of implication in the
last two rules is right to left.

Rippling-out (5) then produces:

—~

s(mazx max_ht(l),max_ht(r) > | s(min(min_ht(l),min_ht(r)

max_ht(l),max_ht(r) > |min(min_ht(l),min_ht(r)
max_ht(l) > min_ht(l) max_ht(r) > min_ht(r)

—~

max

to which strong fertilization applies, finishing the proof of the step case. Note that the
first two wave fronts are compound and must be rippled-out in two stages. Note also that
the last wave front is a logical connective. Rippling-out can proceed through predicates
and connectives as well as functions.

4 Conditional Wave Rules

Our second extension is to allow conditional wave rules, i.e. wave rules that are only true
under some condition. They have the form:

< condition > — LHS = RHS

where LHS = RHS is a wave rule.

If the condition of a rule is provable from the current hypotheses then, clearly, we can
use the rule. But even if it is not currently provable we can still use the rule provided
we divide the proof into two cases using the condition and its negation. The condition
is then trivially provable in the first case. So a major problem to be solved in the use
of conditional rules is when to try to prove the condition within the current case (either
immediately or later) and when to use the condition to split the current case into sub-
cases.

As a partial solution to this problem, related conditional rules are stored, in CIAM | in
complementary sets of the form:

o= F(Si(ol,.omD)e S o) = RHS,

Pk — F(s{c(U},...,U{”l,...,sg(U;,...,U;nnj = }%ﬁsk

where RH S; is either of the form:

1< qﬁ-,r; <mjforl <j<mnand 1l <7<k, orisan expression not containing F' and
where

PVv...VPF

and .
V1 <i<n,3S;,V1 <j < k. subsumes(S;, S?)

and the S;s are the wave fronts to be rippled-out in the induction conclusion.

e Note that it is not always possible to form a complementary set from conditional
wave rules alone. Some conditional rules in a complementary set will be conditional
wave rules and some will be conditional definitions of F'.

e A wave front, S, subsumes a wave front S" if S consists of nested copies of S’. For
instance, the wave front s(s(...)) subsumes the wave front s(...). Note that two
consecutive ripples of s(...) will ripple s(s(...)) once.

When applying conditional wave rules CIAM proceeds as follows.

e [f the condition is one of the existing hypotheses of the current case then the rule
can be applied with no further work.

e Else if the rule is a member of a complementary set then the current case is split
into sub-cases using the conditions of that set.

e Otherwise, the condition is set up as an additional sub-goal.

In this way we avoid dividing into sub-cases unless each of the sub-cases is likely to
succeed. Since, for each sub-cases, there is a conditional rule whose condition is satisfied,
then one of the following two situations will obtain.

e [f the rule for a sub-case is a conditional wave rule, then rippling-out can continue.

e If the rule for a sub-case does not contain F' then the rule provides an explicit
definition of F in this case and the proof proceeds by symbolic evaluation (see
[Bundy et al 88]) rather than induction.

This gives some assurance of success in each sub-case.

This is only a partial solution to the problems of using conditional rules because we
might not invest enough effort into proving the condition in the current case before giving
up and dividing into cases. Thus we will create an unnecessary case split.

An example of a complementary set of conditional rules can be taken from the defini-
tion of the intersection of two sets (represented as lists).

hes — (hal)ns = [h:ftns)

-hes — (huf)nNs = tNs

where h :: t is the set formed by adding element h to the set t. Note that both rules are
conditional wave rules, and that 7" is empty in the second rule.

Consider the theorem:
VA, B,C.Ae BNAe(C — AeBnC

The induction conclusion of this theorem is:

aclezprhacc = a€(ep)Nec

Consider the second wave front. The only matching wave rules are the two conditional
rules above. Since these form a complementary set we can use them to suggest a division
into two cases, each of which has some assurance of success. After dividing into these two
cases and applying the conditional wave rules we get:

ecc F aclezprhacc = acle:]bNe)
—ecc F aclezpha€c = a€bnec

The remaining wave fronts can be rippled-out once each with the wave rule:

:EEt = xet

This gives:

ecc F (a=evVlebhace = [a=eVjaebne

—ec€c F (a=eVjaebANac€c — acbNe

and the wave fronts introduced by this rule can be beached with propositional wave rules.
The second case, for example, becomes:

—e€c bk ‘azeAaEc%aEbﬂc‘ AN a€Ebhac€c—aebNe

After strong fertilization this leaves the residue:
—e€c F a=eANac€c—acbnNec

which can be readily proved. The first case is similar.

5 Rippling-Sideways and Accumulators

Our third extension is to consider a third way in which rippling can successfully terminate.
In our examples so far we have transformed universally quantified variables into skolem
constants in both induction hypothesis and induction conclusion. However, universally
quantified non-induction variables can be transformed into free variables. Doing this
significantly increases the options open to the theorem prover. Wave fronts can be rippled-
sideways so that they are absorbed by these free variables during strong fertilization.
In principle, this rippling-sideways can always be done using ordinary wave rules: first

applied forwards then applied backwards. In practice, not all the required wave rules are
likely to be available, and the central part of the rippling must be done by a new kind
of wave rule. We will call these new kinds of wave rule transverse wave rule, and we will
rename the original wave rules as longitudinal wave rules.

A simple transverse wave rule is a rewrite rule of the form:

F(s(Dlv) = F@[T(V))

i.e. it moves a wave front from one argument of the function F' to another one. F', S and
T are each a non-empty term with a distinguished argument. If T" were empty then the
rule would be a longitudinal wave rule.

Just as for longitudinal rules, the simple transverse wave form can be generalised, to

give the multi-wave form:
F(s, Ul,..., Sm(Um,Vl,...,V
= F(U,....Un| (VD] [TV

although, we cannot generalise this to multiple Us, Vs and F's. Of course, we can also have
complementary sets of conditional transverse wave rules, hybrid longitudinal /transverse
wave rules, etc.

—~

To illustrate rippling-sideways, consider the following example. Let unary rev be the
naive list reversal function and binary grev be the tail recursive list reversal function, so
that the following rewrite rules are available.

rev(nil) = nil
rev((hd :Jtl) = rev(tl) <> (hd :: nil) (6)
qrev(ml) = 1
grev((hd =t 1) = qrev(tl,|hd :]) (7)

where <> is infix list append and the second argument of ¢rev is an accumulator. Note
that 6 is a longitudinal wave rule and 7 is a transverse wave rule.

Consider the following theorem connecting these two list reversal functions.
VL,M.rev(L) <> M = qrev(L,M)

To prove this theorem let L be the induction variable then, by the discussion above, the
induction hypothesis is:

rev(l) <> M = qrev(l, M) (8)

where M is a free variable, and the induction conclusion is:

rev((h) <>m = grev(h]l m)

To make the induction conclusion match the induction hypothesis we will ripple the two
wave fronts sideways so that each is adjacent to an m. Applying rule (7) to the right
hand side does this in one step.

Tev(l) <>m = qrev(l,m)

Rippling the left hand wave front is more difficult. First, (6) is applied to ripple the wave
front out.

(rev(l)) <> (h=nil))) <>m = qrev(l,m)

Second, the associativity of <> is used as a transverse wave rule to ripple the wave front
sideways to the left hand m.

rev(l) <> ([(h == nil) <>m) = qrev(l,[h:Jm)

Third, symbolic evaluation is applied to tidy up the wave fronts surrounding the sinks.
This rewrite (h :: nil) <> m to h :: m on the left hand side. Finally, strong fertilization
applies, instantiating M to h :: m, and proving the step case.

Universally quantified variables in the conjecture which are not chosen as induction
variables (like M in rev/qrev proof above) become skolem constants in the induction
conclusion (m in the example above). We will call these constants accumulators® An
occurrence of an accumulator is called a sink. Rippling-sideways enables us to get rid of
a wave front by moving it to directly dominate a sink. This is done in such a way that
every sink of each accumulator is dominated either by the same wave front or by none.

Rippling-sideways is controlled as follows. Sets of wave fronts and sets of sinks are
paired up so that for each accumulator either none of its sinks are paired or all are. For
each pair of wave fronts and sinks the wave fronts are first rippled-out using longitudinal
rules, then across with a transverse rule, then down to the sinks using longitudinal rules
backwards. A diagrammatic representation of a simple case of this process is given in
figure 2.

Note that not all wave rules can be legally used both forwards and backwards, e.g. if
they are formed from implications then they can only be used forwards on sub-formulae
of positive polarity and backwards on sub-formulae of negative polarity. The polarity of a
sub-expression is the parity of the number of implicit or explicit negations it is contained
within, e.g. in =p A ¢ — r, p and r are of positive polarity and ¢ is of negative polarity.
Especial attention must be paid to this during the last stage of rippling-sideways (and
rippling on hypotheses, see §6).

The strong direction imposed on rippling-sideways by this procedure prevents looping.
A wave front must always move towards a sink, and cannot move backwards just because
there is a rule available to so move it. This explains why the associativity of <> does not
cause a loop in the rev/qrev example above.

®We adopt this terminology because of the analogy with accumulators in computer programs. In fact,
there is a direct relationship between them, which space does not permit us to explore.

C}

Before Stage-1 Stage-2 After

The four expression trees show the expression before, during and after
rippling-sideways. Sinks are indicated by circle nodes and wave fronts by square
nodes, as in figure 1. F is the least upper bound of the wave front and sink.
U and V are the immediate daughters of F in the direction of the wave front
and sink, respectively. In Stage-1 the wave front has been rippled up between
the U and F nodes. In Stage-2 it has been rippled sideways to between the V
and F nodes. In After it has been rippled down to the sink.

Figure 2: Stages of Transverse Rippling
6 Rippling on Hypotheses

Our fourth extension is to adapt rippling to proofs by destructor induction. In all the
proofs considered so far the induction rules have been in the constructor style, that is
the induction hypotheses have been of the form P(x) and the induction conclusions of
the form P(c(X)), for some constructor function, ¢. This neglects proofs in which the
induction hypothesis has the form P(d(x)) and the induction conclusion has the form
P(z), for some destructor function, d.

Rippling is readily adapted to destructor induction. Instead of rippling backwards
on the induction conclusion we ripple forwards on the induction hypothesis. Both the
forwards direction of the rewriting and the use of wave rules about destructor functions
means that we must make much more use of conditional rules than in the constructor
case. This tends to make the proofs more messy. On the plus side many inductions are
more naturally expressed in destructor form.

To illustrate the technique, here is a destructor version of the associativity of +. The
induction hypothesis is:

r#0 A [p(p)]+w+2) = (p(p)]+9)+2

where p denotes the predecessor function on natural numbers. The induction conclusion
is:

r+y+z) = (x+y +z2

To ripple-out the wave fronts in the induction hypothesis we will need the two wave rules:

ut0 — u +v = .u+vl
uFEOAv#0 — u) = l = u=v

This permits rippling similar to that for the constructor proof (see §2), but with additional
work to prove the conditions.

7 A More Interesting Example

The extensions to rippling-out described above were all illustrated on examples chosen for
their simplicity. However, each of these extensions has significantly increased the power
of our OYSTER-CIAM system. As an illustration of this increased power we discuss here a
more interesting theorem that our system is now able to prove.

Let binary count measure the number of occurrences of an element in a list and unary
sort be a function for sorting lists. OYSTER-CIAM can prove that the number of occurrences
of each element of the list is invariant under sorting, ¢.e.

VA, L. count(A, sort(L)) = count(A,L)

where sort is defined as a naive, insert sort algorithm from which we can extract the
rewrite rules:
sort(nil) = nil
sort(h ::t) = insert(h, sort(t))
This theorem is from the Boyer-Moore corpus (theorem 118, p342 of [Boyer & Moore 79]).

The proof divides into 7 cases. These case splits are determined by using comple-
mentary sets of wave rules. For instance, one split is determined by the following com-
plementary set of conditional wave rules, which is derived from the recursive definition of
count.

r=h = count(z,|h:]t) = count(x, t)

r#h = count(z,|h:lt) = count(x,t)

It also requires some rippling with multi-wave rules.

The proof plan of this theorem is one of the biggest generated by CIAM . It consists of
58 nodes with 3 inductions and 7 case splits and takes 41.5 cpu secs to find, but requires
no search. The two nested inductions correspond to proving ‘in-line’ two complementary
conditional wave rules which are required in the proof. OYSIER takes 1,535 cpu secs to
unpack this plan into 4,204 object-level inference steps®.

An ‘in-line’ proof of a wave rule happens as follows. During the main induction rippling
becomes stuck on one side of an equation or equivalence. Weak fertilization is used on one
side, but this leaves a subgoal to be proved, usually by a nested induction. This subgoal
is an instance of a wave rule that would have unstuck the ripple had it been available in
the first place.

8 Conclusion

In this paper we have described four extensions to the rippling-out tactic: multi-wave rip-
pling, conditional rippling, rippling-sideways and rippling on hypotheses. Our extensions
have improved the power of rippling while preserving its spirit.

Rippling plays the central role in our proof plan for inductive proofs. This proof plan
and the rippling tactic have proved surprisingly successful. It has been tested on 68 of
the examples from the Boyer-Moore corpus and proved all but 37 of them. No search
is required. Our proof plan is much less sensitive than the Boyer-Moore theorem prover
to the order in which theorems are presented; if an essential lemma is not available for
rippling when required, an appropriate instance of it is proved ‘in-line’. It does, however,
sometimes rely on a previously proved lemma to suggest the appropriate induction rule.

However, our proof plan does not constitute a decision procedure for induction proofs,
which is in any case an undecidable area. Nor does rippling always succeed in bridging
the gap between induction hypothesis and induction conclusion. Rippling will stick if
the right wave rule is not available. If it sticks on both sides of an equation, even weak
fertilization will not apply. One way to proceed in such situations is shake the current
goal into a form in which a wave rule will apply. For instance, a wave front might be
moved sideways to a non-sink with a commutative law or transverse wave rule. We are
currently investigating such possibilities.

The OYSTER-CIAM system is written in Quintus Prolog. Multi-wave, conditional and
sideways rippling and rippling on hypotheses have all been implemented in the system.
Timings quoted above are for the system running on a Sun 3/60 computer.

63631 of these steps are concerned with proving the well-formedness of logical expressions, i.e. that
expressions belong to types. The presence of large numbers of such steps is a property of the Martin L6f
logic. They are mostly trivial. Thus only the remaining 673 steps are significant.

"These recalcitrant 3 fail because of essentially trivial difficulties with the typing, and not because of
limitations of the proof plan.

References

[Aubin 75

[Boyer & Moore 79]

[Bundy 88]

[Bundy et al 88]

[Constable et al 86]

R. Aubin. Some generalization heuristics in proofs by induction.
In G. Huet and G. Kahn, editors, Actes du Collogue Construction:
Amelioration et verification de Programmes, Institut de recherche
d’informatique et d’automatique, 1975.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press,
1979. ACM monograph series.

A. Bundy. The use of explicit plans to guide inductive proofs. In
R. Lusk and R. Overbeek, editors, 9th Conference on Automated
Deduction, pages 111-120, Springer-Verlag, 1988. Longer version
available from Edinburgh as Research Paper No. 349.

A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Fzperiments
with Proof Plans for Induction. Research Paper 413, Dept. of Artifi-
cial Intelligence, Edinburgh, 1988. To appear in JAR.

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Math-
ematics with the Nuprl Proof Development System. Prentice Hall,
1986.

