
Another view on the SSS* algorithm

Wim Pijls,

Arie de Bruin

Erasmus University Rotterdam

P.O.Box 1738, NL-3000 DR Rotterdam,

The Netherlands,

wimp@cs.eur.nl

September 26, 1995

Abstract

A new version of the SSS* algorithm for searching game trees is pre-
sented. This algorithm is built around two recursive procedures. It �nds
the minimax value of a game tree by �rst establishing an upper bound to
this value and then successively trying in a top down fashion to tighten
this bound until the minimax value has been obtained.
This approach has several advantages, most notably that the algorithm is
more perspicuous. Correctness and several other properties of SSS* can
now more easily be proven. As an example we prove Pearl's characteriza-
tion of the nodes visited by SSS* [Pl].

1 Introduction

During the last two decades several algorithms have been developed for com-
puting the minimax value of a game tree. The most famous one is the alpha-
beta-algorithm [Kn]. Another well known one is the SSS*-algorithm [St]. In
this paper a new version of the latter algorithm will be developed equivalent
with SSS* in the sense that the same nodes are examined in the same order.
Recursion plays a key role in this version.
The SSS* algorithm originates from Stockmann [St]. The explanation in this
paper is rather opaque, the algorithm is presented as a (semi-) parallel search
in the "state space" consisting of so called partial (min-) solution trees. Later
papers by Kumar and Kanal [KK1, KK2] recognized this algorithm as a special
case of Branch and Bound. In [KK2] the observation is made that there is a
dual view on SSS*, namely as a (sequential) search over (max-) solution trees.
We will expand on this view and give it some formal underpinning.
Several authors have studied SSS*, most notably Pearl [Pl] and Ibaraki [Ib1].
These papers give amongst others characterizations of the nodes which are vis-
ited by SSS*, and contain proofs of the superiority of SSS* over alpha-beta in

1

this respect. Due to the fact that in these papers the SSS* algorithm is speci�ed
essentially as a search these investigations are complicated.
In this paper we present a version of SSS* as a top down recursive algorithm.
This leads to a more perspicuous description of the algorithm. We will use this
presentation amongst others to present an alternative proof of the fact that
SSS* surpasses alpha-beta [Ib1].
After some preliminaries, our version of SSS*, which will be called SSS-2, is
introduced in section 3. In section 4 some properties are derived which will be
needed for a comparison between SSS-2 and alpha-beta. Some of these results
are similar to the ones published by Pearl and Ibaraki, also a few new results are
presented. In section 5 we will make a few remarks on implementation issues,
and we will sketch how SSS-2 can be transformed into the usual format.

2 Game trees and solution trees

Game trees are related to two person games with perfect information like Chess,
Checkers, Go ,Tic-tac-toe, etc. Each node in a game tree represents a game
position. The root represents a position of the game for which we want to
�nd the best move. The children of each node n correspond to the positions
resulting from one move from the position given by n. The terminals in the tree
are positions in the game for which a real valued evaluation function f exists
giving the so called game value, the pay-o� of that position.
We assume that the two players are called MAX and MIN. A node n is marked
as max-node or min-node if in the corresponding position it is max's or min's
move respectively. We assume that MAX moves from the start position.
The evaluation function can be extended to the so called minimax function, a
function which determines the value for each player in any node. The de�nition
is:

f(n) = max ff(x)jx child of n g, if x is a max node,
min ff(x)jx child of n g, if x is a min node,

We adopt the convention that the minimax value of a game tree T , denoted by
f(T), is the minimax value of the root of this tree. In Figure 1 an example of
a game tree is shown labelled with its f-values. The bold lines in this �gure
de�ne a so called solution tree. This is an important notion in our version of
SSS*.

De�nition 1 A (max-) solution tree S in a game tree T is de�ned as a subtree
T with the property that for all non terminal nodes n in S we have:

- if n is a max node, then all its children are included in S.

- if n is a min node, then exactly one of its children is included in S.

In [KK2] such a tree is called an OR solution tree. The standard explanation of
the SSS* algorithm is based on the complementary notion, which we will call a
min-solution tree. Such a tree can be de�ned by interchanging the restrictions
for min and max nodes in the above de�nition. Given a game tree T and a node
n 2 T , we denote the set of all solution trees rooted in n by ST (n), or S(n) if
no confusion can occur. ST stands for ST (root of T).
We adopt the convention that the minimax function in a solution tree will be
denoted by the letter g.

Lemma 1 () [(St]) Let S be a solution tree. Then for all x 2 S we have
g(x) � f(x).

Proof. By induction on the height of S. 2

2

��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��
��
��

�
�

�
�

��

�
�

�
�

��

Q
Q
Q
Q
QQ

Q
Q
Q
Q
QQ

@
@
@
@

@
@
@
@

�
�
�
�

�
�
�
�

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

S
S
S
S

S
S
S
S

�
�

�
�

@
@
@
@

�
�
�
�

A
A
A
A

5

8 -2 7 2 -1 8 4

Figure 1: A game tree with some f-values.

Lemma 2 For each game tree T there exists a solution tree S in ST such that
f(T) = g(S).

Proof. We give a construction of S. Firstly the root of T is put in S. Then
proceed with the construction recursively: append to each min node n 2 S that
is non terminal in T a child with minimal f-value, append to each max node in
S that is not a terminal in T all its children. It can be shown by induction that
8x 2 S : g(x) = f(x) . 2

In the sequel it will be useful to have a kind of genealogical ordering � on
game trees at our disposal. To be able to establish such an order we assume
that in any non-terminal the child nodes have a �xed order, i.e. that we can
establish whether one child is older than another one.

De�nition 2 Let n be a node in a game tree T . Let S and S0 be two di�erent
solution trees in ST (n). Because S 6= S0 n cannot be a terminal. We de�ne
S � S0 recursively as follows:
If n is a max node, then consider the oldest child m of n such that the subtrees
�S and �S0, both rooted in m are di�erent (because S 6= S0, such a subtree must
exist). We de�ne S � S0 if �S � �S0.
Suppose n is a min node. Let �S be the subtree of S, rooted in the child m of
n in S, and let �S0 be the subtree of S0, rooted in the child m0 of n in S0. We
de�ne S � S0 if either m is older than m0 or m = m0 and �S � �S0.

Notice that for every n, we have that � is a total ordering on the set ST (n):
Related to this ordering is an ordering � on nodes which is an extension of the
"older than" relation. We say that m � n i� there exist two ancestors m0 and
n0 of m and n respectively, such that m0 and n0 have the same parent and m0 is

3

older than n0. An intuitive explanation of this ordering is as follows. The game
tree may be viewed as a genealogy of a royal family or a dynasty. The root is
the actual king. The ordering � on the nodes in the tree corresponds to their
priority in succeeding the king.

3 The new SSS* version

The new version of SSS*, which we call SSS-2, is based on the idea to �rst estab-
lish an upper bound for f(T), the game tree under consideration, and after that
to repeatedly transform this upper bound into a tighter one. This is repeated
until the upper bound cannot be diminished any more, in which case we have
determined the minimax value of T .
We can establish an upper bound on a game tree T by exploiting the following
recursive property of such an upper bound. The bottom of the recursion occurs
when T consists of a terminal node only. In that case the game value of this
node is a good upper bound. If the root of T is a max node, then we can obtain
an upper bound for f(T) by establishing an upperbound for each of its children
and taking the maximum of these bounds. If the root of T is a min node then
we do not need to investigate all its children, an upper bound of any child of
the root is also an upper bound for the root itself.
If we turn this description into an algorithm (this will be the procedure "ex-
pand" to be de�ned later on), then it is clear that in order to �nd an upper
bound in this way, we have to construct a solution tree in ST . We will organize
"expand" in such a way that it constructs the oldest solution tree. This will be
realized by taking in a min node the oldest child instead of "any child".
Now if we want to tighten the upper bound related to this solution tree, say
S, we can realize this by transforming S as follows. First of all, if S consists
of only one terminal node, then it is not possible to generate a better upper
bound: we have obtained the minimax value. Now if the root of S is a max
node, we can obtain a better upper bound only if for all children c of the root
with g(c) = g(root) a solution tree in ST (c) can be generated with a lower g-
value than g(c).
If, on the other hand, the root of S is a min node then there are more possibilities
to generate a better upper bound. First of all, one can try to obtain (recur-
sively) a better upper bound for the current child of the root of S. But it is also
possible to select another child c0 of the root, and to try to establish an upper
bound for f(c0) by building a new solution tree in ST (c

0) with g- value < g(S).
Finding such a new solution tree is in fact a generalization of the expand process
mentioned before: the di�erence is that now we are not satis�ed with any new
solution tree, we want a solution tree with a g- value better than a given value
(i.e. g(root)). We will therefore de�ne a procedure expand(n; vin; vout) that
generates the oldest solution tree in ST (n) with g -value < vin (if possible).
Notice that by taking vin =1 the oldest solution tree is obtained.
Later in this section we will de�ne the procedure diminish which is based on
the description given above on how to obtain from a given solution tree a bet-
ter one. This procedure has three parameters, a node n, an input value vin,
and an output parameter vout. On call of this procedure it is supposed that
there is a solution tree S rooted in n with g(S) = vin. If possible, after execu-
tion there will be a new solution tree S0, rooted in n, with the property that
g(S0) = vout < g(S) and furthermore that it is the oldest solution tree with that
property.

4

The overall idea behind SSS-2 can thus be described as follows. Construct
the oldest solution tree S in T . Repeatedly transform this solution tree S into
another tree S0 such that g(S0) < g(S) and S0 � S in such a way that if this
transformation does not succeed, we have obtained the solution tree with the
smallest g-value which is, by Lemma 1 and 2 the minimax value of T . The
algorithm uses a global variable G which has as a value the current solution tree
in ST .

We now give the main body of SSS-2.

begin
root:= the start position of the game;
expand(root, 1, vout, S);
G := S;
repeat

[vin := vout;
diminish(root, vin , vout);

]
until vin = vout ;

end.

In order for this program to work correctly the procedures expand and diminish
must have the properties sketched above. In a moment we will give a precise
speci�cation for these procedures. But we need a de�nition �rst.

De�nition 3 Let n 2 T; G 2 ST ; v a real number. The triple < n; v;G > is
called D-correct if n 2 G; v = g(Gn), where Gn is the subtree of G rooted in n,
and for all subtrees S in ST (n) older than Gn we have that g(S) > v.

Speci�cation of procedure diminish(n, vin, vout): input-parameters: n; a node
in the solution tree G, vin, a real number
output-parameter: vout, a real number.

If the call diminish(n, vin, vout): is executed in a situation with global solution
tree G such that < n; vin; G > is D-correct, then
either this call terminates with vin = vout (no better solution tree found), in
which case vin = vout = f(n),
or the call terminates with vin > vout (a better solution tree was found), in
which case G has a new subtree Gn, rooted in n, with g(Gn) = vout, such that
Gn is the oldest solution tree with g-value < vin.
Notice that in the latter case, on succesful termination of diminish, we appar-
ently have that the triple (n; vout; G) is again D-correct.
Speci�cations of the procedure expand(n, vin, vout, S) input-parameters: n;
a node in T , vin,a real number
output-parameters: S, a solution tree rooted in n vout, a real number.
The call expand(n, vin, vout, S)
either terminates with vin = vout (no suitable tree found), in which case f(n) �
vin,
or terminates with vin > vout (there is a suitable tree), in which case S is the
oldest solution tree in ST (n) with g-value < vin, and furthermore g(S) = vout.
We now give the code of diminish and expand.

procedure diminish(n, vin, vout)
begin
if terminal(n) then vout := vin
else if type(n)=max then

5

[for c:= �rstchild(n) to lastchild(n) do
[if g(c) = vin then diminish(c,vin, v0

out);
if vin = v0

out then exit forloop;
]

vout := max(g-values of all children of n)
]

else if type(n)=min then
[c := the single child of n in G;
diminish (c, vin, vout) ;
if vin = vout then
for b:=nextbrother(c) to lastbrother(c) do

[expand(b, vin, v0

out, S);
if vin > v0

out then
[detach in G from n the subtree rooted in c

and attach S to n;
vout := v0

out;
exit forloop;

]
]

]
end.

procedure expand(n, vin, vout , S);
begin

if terminal(n) then
[if f(n) < vin then S := the tree consisting only of node n;
vout := f(n);

]
else if type(n) = max then

[for c := �rstchild(n) to lastchild(n)
[expand (c, vin, v

0

out
, S');

if v0

out � vin then
[vout := v0

out;
exit forloop;

]
]

S := the tree composed by attaching
all intermediate values of S' to n;

vout := max of all intermediate values of v0

out;
]

else if type (n)=min then
[vout := vin;
for c := �rstchild(n) to lastchild(n)

[expand (c, vin, v0

out, S');
if v0

out < vin then
[S := tree with S' attached to n;
vout := v0

out;
exit forloop;

]
]

]
end;

6

Lemma 3 The prcocedures diminish and expand meet the speci�cations stated
above.

Proof (outline). It is su�cient to prove that the bodies of diminish and expand
are correct, under the assumption that the inner calls of diminish and expand
within these bodies con�rm to the speci�cations. In essence this is a proof
by induction on the number of nested calls. In order to prove correctness of
the bodies it is, amongst others, needed to check whether before each call of
diminish its precondition (D- correctness) is established. 2

Lemma 4 During execution of the SSS-2 algorithm we have that before each call
of diminish the tripel < n; vin; G > is D-correct. Here n and vin are parameters
of the call and G is the global solution tree.

Proof (outline). From Lemma 3 we can prove that before each call in the main
program we have a D-correct situation. That this is also the case for inner calls
can be established by the argument used in the proof of Lemma 3. 2

Corollary 1 For every �nite tree T SSS-2 terminates with vin = f(T).

Proof. There are only �nitely many elements in ST . If diminish terminates
with vout < vin then, by the speci�cation of diminish, we have that G has
changed into a younger solution tree. Therefore the repeat loop in the main
program must terminate. That vin = f(T) follows from Lemma 3 , Lemma 4
and the speci�cation of diminish.

Corollary 2 Consider an execution of SSS-2 on a game tree T . Suppose the
main loop performs n iterations, and let Gi be the value of the global solution
tree G before the i-th call of diminish in this loop. Then we have:
-G1 is the oldest solution tree in ST .
-Gi+1 is the oldest solution tree with g-value < g(Gi)
(i = 1; : : : ; n� 1).

Proof. Immediate from Lemma's 3 and 4. 2
We call G1; : : : ; Gn the solution tree sequence related to the execution of SSS-2
on T . Notice that Corollary 2 does not state anything on the �nal value �G of G
on termination of the algorithm. It is always true g(Gn) = g(�G), but it is not
necessarily the case that Gn = �G.

4 Some properties of the new algorithm

In this section we will compare the e�ciency of SSS-2 and the alpha-beta al-
gorithm. Before doing so a few useful results will be derived. First a few
de�nitions. For each node n in the game tree the quantities �(n), �L(n) and
�R(n) can be de�ned. These quantities play an important role in the well known
alpha-beta-algorithm. Firstly we need the the notions AMIN, AMAX, AMIN-
LC and AMAX-LC. The de�nitions are quite equal to those in [Pl]; in [Ib1] the
same notions are used by a di�erent name.

De�nition 4 For each node n the following quantities are de�ned:
AMAX(n) = f x j x is a max-node and x is a proper ancestor of n g
AMIN(n) = f x j x is a min-node and x is a proper ancestor of n g
AMIN-LC(n) = f x j x is a child of an element in AMIN(n) and x � n g
AMAX-LC(n) = f x j x is a child of an element in AMAX(n) and x � n g
AMAX-RC(n) = f x j x is a child of an element in AMAX(n) and x � n g

See Figure 2 to illustrate these de�nitions.

7

�

��m

�

��m

�

��m

�

��

��

J
J
J

J
J
J

�
�
�

�
�
�

J
J
J

�

���

��
�

��

�

��

�

��

�

��

�

�� j

������

QQ

������

QQ

���������

"
"

"
""

BB

���������

"
"

"
""

BB

������

QQ

q q q

q q q

q q q

q q q

q q q

: AMAX(P)

: AMIN(P)

: AMIN-LC(P)

: AMAX-LC(P)

P

Figure 2: The sets AMAX, AMIN, AMAX-LC, AMIN-LC.

8

De�nition 5 Suppose n is a node in a game tree. Then we de�ne:
�(n) = minff(x)jx 2 AMIN-LC(n) g
�L(n) = maxff(x)jx 2 AMAX-LC(n) g
�R(n) = maxff(x)jx 2 AMAX-RC(n) g
(we assume max(;) = �1 and min(;) =1).

Further we de�ne the notion of �-ancestor of n. This node is the ancestor of n
that is responsible for the value �(n), i.e. this ancestor has a child in AMIN-LC
with minimal f-value over AMIN-LC.

De�nition 6 Given a node n in a game tree. Suppose m0 is a node such that
m0 in AMIN-LC(n) and f(m0) = �(n). Then the �-ancestor of n is de�ned
as the father of m0. In case of ties the node closest to the root is chosen. If
AMIN-LC(n)= ; we take the root of T as the �-ancestor. Notice that for every
node n for which AMIN-LC(n) 6= ; we have that the �-ancestor of n is a min
node.

We now derive a few results on the execution of SSS-2. First, we establish
a property of every node n that is subjected to a diminish call during this
execution.

Lemma 5 During execution of SSS-2, before each call diminish(n, vin; : : : ;) we
have that �(n) > vin > �L(n) and that vin � �R(n).

Proof. It is su�cient to prove that if this property holds before a call of di-
minish, that it then also holds for each inner call of diminish in the body, cf.
the remarks in the proof of Lemma 1. In order to prove this, Lemma's 1 and 2
must be used. 2

We have a similar results for expand calls.

Lemma 6 During execution of SSS-2, before each call expand(n, vin; : : : ;) we
have that �(n) = vin > �L(n) and that �(n) � �R(m), where m is the �-
ancestor of n.

Proof. Similar to the proof of Lemma 5. In the proof of lemma 5 must be used
as well. For the case that a call of expand(n, vin; : : :) is performed inside the
body of diminish we use the fact that the �-ancestor of n is its parent. 2

Now the superiority of SSS-2 (and SSS*) over alpha-beta follows from these
lemma's and the following result by Pearl[Pl]:

Lemma 7 A node n is examined by the alpha-beta algorithm if and only if
�(n) > �L(n).

Proof. See [Pl]. Notice that a di�erent proof can be given along the lines of
Lemma 5 and 6. 2

Theorem 1 SSS-2 surpasses alpha-beta in the sense that SSS-2 visits no more
nodes than alpha-beta does.

Proof. From the algorithm it is clear that a node can only be visited by SSS-2
if it is created in an expand call. Now the theorem follows from Lemma's 6 and 7.

The next result that we want to derive is an extension of Lemma's 5 and 6:
we want to establish that the property of n given in Lemma 6 is not only a
necessary condition for a node to be expanded but a su�cient condition as well.
This result gives us a precise characterization of the nodes generated by SSS*,
similar to the result (see Lemma 7) for alpha-beta. We need an auxiliary lemma
�rst.

9

Lemma 8 Suppose during execution of SSS-2 a call of expand(n, vin; : : :) is
performed with vin = �(n). Then during this call a recursive call expand(m,
vin; : : :) will be generated for every child m of n for which �(m) = �(n) and
�(m) > �L(m) holds.

Proof. We treat only the case that n is a max node (the case that n is a min
node uses a similar argument).
If n is a max node then we have for all children m of n that �(m) = �(n) and
that �L(m) is the maximum of �L(n) and the values f(m0) for m0 the older
brothers of m. By Lemma 6 we have that �(m) = �(n) > �L(n). Moreover,
one straightforwardly shows that an expand call will be generated for a child m

of n only if all its brothers have an f-value > �L(m).

Lemma 9 For each node n in a game tree T we have that n is examined by
SSS-2 if �(n) > �L(n) and �(n) � �R(m), where m is the �-ancestor.

Proof. Choose such a node n. Without loss of generality we can assume that
AMIN-LC(n) is not empty, i.e. that the we have a proper �-ancestor of n. This
is the case if n is at least two levels deep in the game tree.
We will prove that n will be subjected to a call of expand, by constructing a
solution tree S 2 ST that will be an element Gi in the solution tree sequence
(cf. the remarks after Lemma 2), and furthermore showing that in the next
iteration of the main loop of SSS-2 the call diminish(root,...) will generate,
somewhere in the recursion, a call of expand(n, : : :) .
Suppose the �-ancestor of n is m and consider the path from m upward to the
root. This will be the backbone of the solution tree to be constructed. See
Figure 3.
Attach to the max nodes in this path all its children p (which are therefore

members of AMAX-LC(m) and AMAX-RC(m)). We will next describe what
the subtrees Sp rooted in these nodes p should be.
For each node p in AMAX-LC(m) we have f(p) � �L(m) � �L(n) < �(n). So
there exists for each p in AMAX-LC(n) a solution tree Sp rooted in p with the
property g(Tp) � �(n). Attach the oldest solution tree with this property to p.
For each node p 2 AMAX-RC(m) we have f(p) � �R(m) � �R(n) � �(n).
Attach to such a p the solution tree Sp de�ned as the oldest solution tree rooted
in p with g(Sp) � �(n). Because m is the �-ancestor of n, m has a child with
f-value = �(n). Let c1 be the oldest child of m with that property. The child
of m on the path from m to n is called c2. Then we have that c2 is younger
than c1, that the children of m older than c1 have an f-value > �(n), and that
the children of m between c1 and c2 have f-value � �(n). Since f(c1) = �(n),
there exists a solution tree rooted in c1 with g-value = �(n). Attach the oldest
solution tree with this property to m. We call this tree S1.
This construction has now resulted in a solution tree S 2 ST with g-value
= �(n). Moreover for every S0 � S , we have g(S0) > g(S). Therefore S is an
element of the solution tree sequence discussed after Corollary 2.
Now consider the call diminish(root,: : :) in the main loop of the program which
tries to diminish this S. The reader is invited to check that during this call, the
procedure expand is activated with input parameters n = c2 and vin = f(c1).
For all nodes n0 on the path from c2 up to and including n we have the property
that �(n0) = �(n) > �L(n) � �L(n0), that n0 and n both have m as �-ancestor,
and thus that �(n0) � �R(m) . By induction on the length of the path from c2
to n we can prove, using Lemma 8, that each n0 on this path will be expanded.
So, n will be expanded. 2

10

��
��

��
��

��
��

��
��

��
��

��
��

��
��

����
HHHH

����
HHHH

����
HHHH

c1 c2

m

Figure 3: The tree constructed in the proof of Lemma 9.

As mentioned in Lemma 7 the nodes which are examined by alpha-beta are
characterised by one simple condition. We have seen in the previous lemma
that the characterisation of the nodes visited by SSS-2, needs one additional
condition. In the next theorem we show a particular type of game tree where
this additional condition is satis�ed automatically for any node that satis�es
the alpha-beta condition.

Theorem 2 Suppose T is a game tree with the property that in each max node
n the children c1; c2; : : : ; cn are ordered in such way that f(c1) � f(c2) � : : : �
f(cn). Then the alpha-beta-algorithm and SSS-2 examine the same set of nodes.

Proof. For the given game tree T it holds for any node x: �L(x) � �R(x).
Moreover in any game tree it holds for any two nodes x and y: if y is an ancestor
of x, then �R(x) � �R(y)
Suppose that a node n is examined by alpha-beta; then by Lemma 6 �(n) >
�L(n). Now we may state: �(n) > �L(n) � �R(n) � �R(m), where m is the
�-ancestor of n. By Lemma 8 the node n will be examined by SSS*. For the
given game tree T alpha-beta surpasses SSS*. As a consequence of Theorem 1
it follows that both algorithms examine the same set of nodes. 2

The alpha-beta algorithm (see [Kn]) contains a recursive procedure with three
input parameters: a node parameter n and two real parameters called alpha and
beta respectively. The main body of the algorithm calls this procedure with n =
root of T (T is a game tree), alpha=�1 and � = +1. It can be shown that
the alpha-beta procedure returns the value f(T) also when the two parameters
have values such that alpha < f(t) < beta holds. The set of examined nodes
becomes smaller as the distance between alpha and beta decreases. In the next

11

��
��

��
��

�
�
�

@
@
@

�
�
�
�
��

A
A
A
A
AA

R0

R1

R2

Figure 4: The extended tree in Theorem 3

theorem a smaller alpha-beta window is given that still yields a superset of the
node set examined by SSS-2.

Theorem 3 Given a game tree T such that f(T) = v0. Suppose the procedure
alpha-beta is executed with parameters alpha=v0 � " and beta= 1 where " is
any constant > 0. Then the set of nodes examined by the alpha-beta procedure
is a superset of the set of nodes that is examined by SSS-2.

Proof. We enhance the game tree T by some additional nodes in the way that
is illustrated in Figure 4 . The node R2 is the root of the original game tree
T; we de�ne f(R1) = v0 � ". When SSS-2 would be applied to the new tree,
the same descandants of R2 would be examined. Calling the procedure alpha-
beta with n = R0, alpha= �1 and beta= +1 causes a subcall with n = R2,
alpha=v0 � " and beta= +1. So by Lemma 7 we conclude the theorem. 2

5 Implementation issues

The global variable G should be implemented as a tree where the nodes are
labelled by its g-value. In [KK2] it is observed that the list OPEN, used in the
original SSS*, represents a OR tree by the set of its leaves. Careful observation
reveals that it is possible to use this representation in our version as well.
The procedure expand can be adapted to this new representation in a straightfor-
ward fashion. The only di�erence is that the parameter S is now implemented
as a list of its terminals. The prodecure diminish requires closer inspection.
The execution of this procedure can be divided into three stages. During the
�rst stage a terminal is selected in a top down fashion, using the g-value in the
internal nodes of G. This terminal is the oldest one with maximal value. In the
second phase it is attempted to obtain a better g-value for some ancestors of
this terminal. This can be done by a strictly local search: backing up to a father
and expanding a younger child. As soon as a better g-value has been found, the
execution enters its third phase, which in essence amounts to updating g-values
upwards until the root.
If we switch to a new representation the �rst stage can be reduced to selecting
the oldest terminal with the maximum value. During the second stage we walk
up the tree performing some expand calls on the way. The third phase can be

12

omitted, since there is no need to update g-values any longer.
Notice that this new description is closer in spirit to the original Stockman ver-
sion. Notice also that we only deal with a list of terminals ordered with respect
to their game value. There is no need for control information as it is done in
the Stockman triples, e.g. Solved/Live and g-values.

6 Conclusions

In this paper a new version of SSS* has been presented which is more transparant
and "better suited for understanding" whereas the original version is "more
convenient for implementation"[Ib1]. This enabled us to prove several properties
of the algorithm, e.g its correctness and its surpassing alpha-beta. Our intention
is to extend these results towards related algorithms, e.g. the RSEARCH version
of SSS*.

References

[Ib1] T. Ibaraki, Generalisation of Alpha-Beta and SSS* Search Problems, Ar-
ti�cial Intelligence 29 (1986) 73-117.

[Ib2] T. Ibaraki, Searching Minimax Game Trees under Memory Space Con-
straint, to appear.

[KK1] V. Kumar and L.N. Kanal, A General Branch and Bound Formulation
for Understanding and Synthesizing And/Or Tree Search Procedures, Ar-
ti�cial Intelligence 21 (1983) 179-198

[KK2] V. Kumar and L.N. Kanal, Parallel Branch and Bound Formulations
for AND/OR Tree Search, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol PAMI-6 no. 6, november 1984.

[Kn] D.E.Knuth and R.W.Moore, An Analysis of Alpha-Beta Pruning, Arti�-
cial Intelligence 6 (1975), 293-326.

[Pl] I.Roizen and J. Pearl, A Minimax Algorithm Better than Alpha-Beta?
Yes and No. Arti�cial Intelligence 21 (1983) 199-220.

[St] G.C. Stockman,A Minimax Algorithm Better than Alpla-Beta?, Arti�cial
Intelligence 12 (1979) 179-196.

13

