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Abstract 
In this paper we show that every 2-connected embedded planar graph with faces of sizes 

d! . . . . .  df has a simple cycle separator of size 1.58~,/dl 2 + . . . + d }  and we give an almost 
linear time algorithm for finding these separators, O(m~(n. n)). We show that the new upper 
bound expressed as a function of IG{ = ~/d~ +..-  + d} is no larger, up to a constant factor than 

previous bounds that where expressed in terms of ~ S .  v where d is the maximum face size and 
/ 

v is the number of vertices and is much smaller for many graphs. The algorithms developed 
are simpler than earlier algorithms in that they work directly with the planar graph and its dual. 
They need not construct or work with the face-incidence graph as in [Mi186, GM87, GM]. 

1 I n t r o d u c t i o n  

Planar graphs have played an important role in both sequential as well as parallel algorithm 
design. They arise in may areas of computation including: numerical analysis, animation, and 
VLSI. One of the important properties possessed by planar graphs, but not true for general 
graphs, is that they have small separators. Historically, a separator, in a graph G = (V, E), is a 
subset C C V such that (1) the remaining vertices can be partitioned into two sets: A and B, (2) 
IAI. IB{ ~ 2/3{VI, and (3) there are no edges between vertices in A and vertices in B. Lipton and 
Tarjan were the first to show that paper graphs have O(,fv) separators, [LT79]. Improvements 
in the constant have been made by Djidjev and the first author, [Dji81, Gaz86]. There are two 
important additional properties we require of  separators. First, we shall assign a weighting 
function # to the vertices, edges, and faces of  the embedded planar graph and require that the 
separator will "separate" the weighted graph. Second, we shall require that the separator be a 
cycle or collection of cycles. Intuitively, this means that we separate the planar graph "drawn" 
on the plane by cutting along the edges of the graph. Since all the separators we construct in 
this paper are in fact simple cycles, we will restrict our attention to the simple cycle case. These 
two restrictions have been addressed by the second author in [Mi186]. We will assume that the 
reader has some knowledge of this paper. The following definition is from [Mi186]. 
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Definition 1.1 Let G be an embedded planar graph and # an assignment of  nonnegative weights 
to the vertices, edges and faces of G which sums to 1. We say that a simple cycle C of G is a 
weighted-simple-cycle separa tor  if both the weight of the interior of C and the weight of the 
exterior is <_ 2/3. 

Let G be an embedded planar graph. The size of a face of G is the number of edges, 
equivalently the number of faces, on its boundary counting multiplicity. The Euclid norm of 
G equals 

IGI2 = \/cl~t + . . .  + ~ where d; is the size of  the ith face of  G. 

We can now state the main theorem of this paper. 

Theorem 1.2 A planar embedded graph G has a weighted-simple-cycle separator of size <_ 
1.581GIz. The separator is computable in O(nc~(n. n)) sequential time where ~ (n. n) is the inverse 
of  Ackerman s fun,~tton. 

We first observe, up to a constant factor that Theorem 1.2 is stronger than the best previous 
bound of 2 ~/d. v where d is the maximum face size and v is the number of  vertices, [Mi186]. 

Lemma 1.3 The Euclidean norm [a12 < 6~-6-d-: v if G has no faces of  size <_ 2. 

Proof: It will suffice to show (IG[2) 2 < 6d.  v. We first observe that ~{=l di < 6v. By Euler's 
¢ d _ formula e - f  < v. Substituting in the facts that Y~f=l d; = 2e and ~i=1 ; > 3f into the Euler 

equality from above we get: 

f f f 
d; = 3 ~ di - 2 ~ di <_ 6e - 6f < 6v. 

i=1 i=1 i=l 

To finish the proof consider the following equalities: 

f f 
(tGI2) 2 = ~ d{ ~ d ~ d; < 6d. v. 

i=1 i=1 

2 A New Way to Level a Planar Graph 

In our previous papers we performed a BFS numbering in the face-incidence graph. We 
performed the numbering in this graph so that frontier of the search at any stage will always 
be a collection of cycles. In the previous papers we assumed that all the faces were basically 
the same size. Therefore, we added to the new level all the faces adjacent to the frontier at 
the same time. Here we do not assume that all the faces are the same size. Therefore, we add 
faces adjacent to the frontier in a more judicious manner. The main new idea in this section is 
to perform the BFS numbering in G itself, and to introduce artificial edges called level-edges, 
to be defined later, such that the frontier is again a set of simple cycles. We can not use these 
edges in the final cycle separator, but they will be important for bookkeeping. 

A BFS number ing  of G from a subset of  vertices S C V is an assignment of  a number to 
each vertex of G equal to its distance to the nearest vertex in S. 



340 

Let L be BFS numbering of G from a single source s. Let v be some vertex at level i > 0. 
The neighboring vertices of  v will be at levels i - 1, i or i + t. We introduce two level-edges at v 
for each consecutive, with respect to the cyclic ordering derived from the embedding of G in the 
plane, block of level i + I vertices adjacent to v. I f  some edge e common to v is also common to 
another vertex at level i, then mark e level i, Otherwise, let F be the face common to v such that 
one edge at v is common to a level i + 1 vertex, and the other edge is common to one with level 
number i - 1, In this case, a level i edge will be added to the face F and the other attachment of 
this level-edge is obtained by following the boundary of F, using vertices of BFS number < i, 
around until a vertex of level i is found, see figure 1. Weight on the level-edge (x. y) in face F is 
the distance between x and y by following the boundary of F in the shorter of  the two possible 
ways. 7 

/ t 
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Figure 1: A BFS Number and Its Level-Edges with Weights. The solid edges are the graph edges 
and the dashed are the level-edges. 

In prior separator papers the size of  the separator was determined partly in terms of the 
number of  vertices. In this paper it will be solely in terms of the sum of the weights on the 
level-edges. Let W(G) equal the sum of the weights on the level-edges with respect to some 
BFS of G. We next show that W(G) is bounded by ([G]2):. 

Lemma 2.1 The sum of the level weights W(G) < ~(Jalz) z. 

Proof: We show the inequality in the lemma holds for each face, and thus for the sum of the 
faces as a whole, Consider the following combinatorial problem: Let C be a simple cycle of 
size n drawn in the plane and A a set of  noncrossing, vertex disjoint chords of  C, i.e., C plus A 
forms an outer planar graph of degree at most 3. Let the weight of each chord (x, y) in A by equal 
to the distance between x and y in C. We will show that the sum of the weights of the chords 
W(A) <_ n2/8. It should be clear that if we prove the last inequality then the lemma follows. 

Suppose that W(A) is a maximum over all such sets of chords. We first observe that no 
interior face of the corresponding outerplanar graph contains more than two chords or two cycle 
edges. I f  the chords of A form faces with more chords or cycle edges, we can rearrange the 
chords of  A to strictly increase the value of W(A). 
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Except for the middle chord, if it exists, each chord has a unique shortest path in C. Thus, 
we can partition the chords into two sets, two chords belong to the same set if their shortest paths 
intersect. Thinking of the chords as drawn vertically, we therefore partition the chords in the the 
left, middle, and right chords. There are several cases depending on whether the left, middle, 
and right chords have even or odd length and whether or not the middle chord exists. We will 
only handle the case when the chords all have even length and the middle chord exists. The other 
cases are similar. Let 2k+2 be the length of the middle chord. Thus n = 2(2k+2) = 4(k+ 1). In 
this case weight of the left chord equals those from the right and therefore we get the following 
equalities: 

W(A) = ( 2 k + 2 ) + 2 ~ 2 i =  ( 2 k + 2 ) + 2 ( k +  l )k=  2(k+ 1) 2 = n2/8. 
i=l 

[3 
As in [Mi186] the level edges are formally directed edges or arcs. We decompose the level- 

edges into a collection of simple cycles called level-cycles. Since the edges in the level-cycle 
need not be edges in G, we will "pull" the level-edges back to paths in G. The pull-back of a 
level-cycle C is defined as follows: Let e = (x, y) be level-edge in C which belongs to a face F. 
The vertices x and y decompose the boundary o f F  into two paths PI and P2 from x to y. We 
replace e by the shorter of Pv or P2. If  they are equal, we pick the one consisting of smaller 
BFS numbers, see Figure 2. Observe that the number of edges on the pull-back of level-cycle 
is at most the weight of the level-cycle. Thus the length of a level-cycle is greater than or equal 
to its pull-back. 

.<:7- ...... 

"~, .z, "~ "<-~g" 

Figure 2: A Level-Cycle, Its Pull-back, and Its Retrack. The first is a graph and a level-cycle, the 
second is its pull-back, and the third is its retrack-cycle. 
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In the remainder of  the paper we will assume the BFS is performed from the boundary 
vertices of some face F0 of G. In this case we get the notion of a retract. The retract  of  a 
level-cycle C is the subgraph pt contained in the pull-back P of C defined as follows: Let H be 
all the faces in G which are reachable from Fo in G ~ without using edges that cross edges in 
P. The boundary-, see [Mi186], of H is the retract of  C. In the ~ c i a l  case when H contains all 
the faces of G we return some fixed vertex in P such as the vertex with largest level number. 
If  there is more than one we pick the most centered one (if there are two just pick one), In 
general P '  is not a simple cycle but we can decomposed it into simple cycles, as we did to get 
the level-cycles. 

The retrack-cycles form tree structure as did their level-cycles. In section 5 we show how 
to determine this structure, the length of each cycle, and the weight on the exterior and interior 
of each cycle. We will assume that we have computed this information. 

Let Fo be the face of G from which we perform the BFS of G and RI . . . . .  Rk be the 
corresponding set of retract-cycles. The rest of the algorithms will only work with this tree of 
retrack-cycles. The retract-weight  of  G with respect to Fo is: 

]GIR = IRll + " '  + [Re[ where IRi[ is the weighted length of its level-cycle. 

Since the retack-cycles form a tree rooted at Fo, we get an ancestor/descendent relation. I f  
R and R' are retrack-cycles where R' is a descendent of R, then the distance from R to R' is 
the maximum distance from any point in R' to the closest point in R. The distance between 
retrack-cycles may be quite large even though they are close in the descendent relation. We can 
bound this distance as follows: 

Lemma  2.2 i f  R ~ is a kth direct descendent of R then the distance from R to R' is at most 
k+ ]RI/2 + IR'I/2. 

Proof: Observe that the distance in G from a level-cycle C and its retract can be at most half the 
weighted length of C. Let C and C' be the level-cycles of R and R', respectively. Therefore the 
distance from R' to C' is at most fR't/2 , the distance from C' to C is at most k, and the distance 
f r o m C t o R i s a t m o s t l R l / 2 .  Thus thed i s tance f romR' toRisa tmos t tR ' I /2+k+lRI /2 .  [] 

3 Phase I 

As in [Mi186], the algorithm shall have two phases° In the first phase, developed in this section, 
we find a subgraph H of G with diameter and maximum face size IGI2. In phase 2, as described 
in [Mi186], we find an o ( [ a h )  separator in H. 

In this section we show that 

Theorem 3. l If G is a 2-connected embedded planar graph with weights which sums to I, no 
face weight > 2/3, there exists a 2-connected subgraph H with spanning tree T satisfying." 

1. The diameter dia of T plus the maximum size h of any non-leaf face of H is at most IGI2, 
i.e., dia + h _< 1.58JG12. 

2. The maximum induced weight on any face of H is < 2/3. 

The form of the algorithm follows quite closely that of Section 4 from [Mi186]. We will use 
the notation and idea from this section. Rather than use the branch cycles, defined in [Mi186], 
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we will use the retract-cycles. As in [Mi186], the t runk R1 . . . . .  Rt is a sequence of retract-cycles 
where R~ is the root cycle, Ri+ I i s  the direct descendence of Ri, where Ri+l has the largest exterior 
weight amongst their siblings. Let C = R~ be the first cycle in the trunk with interior weight is 
at least 1/3. Set nl = tRIt + ' - '  + IR~I and n2 equal to the sum of the weights of  the remaining 
retract-cycles. By the same arguments used in the proof of Lemma 5 in [Mi186] we get: 

Lemma 3.2 There exists an integer ~ t > 0 such that some ~th ancestor of  C, say B, satisfies 
3 

Proof: The proof is very similar to that of Lemma 5 in [Mi186]. We give the details for 
completeness. 

Suppose Bi ancestor fB, t 3 
c a s e  > i the lemma is false and is the ith of C. In this ~3- v n/~l 

for 0 < i < [ 2x/2h~L]. Now the sum of the weights of the Bi satisfy the following: 

[ ~ - i =  ~ i > (  , f ~ + l ) (  x / h ~ ) / 2 > ~ n ,  
i=0 i=1 

But this contradicts the fact that the sum can be at most an 1. [] 
Let H' be the subgraph consisting of vertices and edges "between" B and C. We next cap 

the large faces of H'  by simultaneously adding on retract-cycles. We stop after o2 levels where 
-2 is given by the following lemma: 

Lemma 3.3 There exists an integer o 2 ~ 0 such that after adding all ~ 2 direct descents of 
the retract-cycles in H' the maximum retract-cycle size d, which is a leaf in the construction, 
satisfies 2~2 + ~3 ~ v~vn~2. 

Proof: The proof of this lemma is the same as that of Lemma 3.2. 
The subgraph H will consist of a subtree of retract-cycles rooted at B plus all vertices and 

edges in G "between" these cycles. The height of this tree of retract-cycles will be ~ l + -z.  Our 
spanning tree of H will consist of all edges in B but one plus a BFS spanning tree from B into H. 
By Lemma 2.2 the total distance between the retract-cycles will be at most c~ + q2 + 4. Thus 
the diameter of the spanning tree will be at most 

3 ' B ' + 2 ~ '  +2°2  + I ~ ~743- ~/3 <_ 2 v :~  + v ~ v : ~  <_ v~W(G) <_ IGI2. 

We next must bound the maximum nonleaf face size of H. The maximum face is either a face 
from G or a new face in one of the caps. In the latter case, its size can be at most ] from 
Lemma 3.3. In the prior case it will be at most d, the largest size face in G. If we start the BFS 
from the largest face, then the largest face from G in H can be at most the second largest face 
of G, which can be; at most IG12 / x/2. We claim that :~ < IGI2 / v/2. By Lemma 3.3 we know 
that ,~ < 2v/~  < \ 2W/'2-W~ < 41-1Gtz. Thus the diameter of the spanning treeplus the size of the 

maximum nonleaf face size is at most V/~tGIz + ~f~5[GI2, < (~f~ + ~f~)lGIz- < 1.58. 
The above discussion proves Theorem 3.1. 
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4 Phase II 

In this section we simply observe that we can apply Theorem 5 from [Mi186]. We state the 
Theorem here for completeness. 

Theorem 4. ! If G is a 2-connected weighted and embedded planar graph with no face weight 
> 2/3  and T is a spanning tree of G then there exists a weight-separator of size at most the 
diameter of T ptus the maximum non-leaf face size. 

Combining Theorems 3.1 and 4.1 we get a proof of Theorem 1.2. 

5 Algorithms for Finding the Separator 

In this section we discuss implementation details for finding the separator in Theorem 1.2. The 
sequential algorithm we presented uses Union-Find, and thus is not linear, but may require time 
O(nG(n)) time, see [AHU74]. The main difficulty is finding the tree of retract-cycles and the 
associated weights. The rest of the construct is straight forward and follows, for the most part, 
from the algorithms in [Mi186]. First we begin by determining when a face is interior to the 
ith level and also interior to the ith retract. We start by constructing the geometric dual of G 
and determining the size of each face. Next, we add the level edge to G in a BFS manner. We 
determine as we go the weight of each level edge. Observe that when the weight on a level 
reaches half the face size we use the face size in determining the rest of the edge weights. At 
this point.the face, say F, is interior to the level. We mark the face as captured. To determine if 
it is interior to the retract, we check if any of the faces adjacent to F in G ~ are in the retract. If  
we find such a face we mark F interior and check i f F  is adjacent to any faces which are marked 
as captured but not interior. We mark each such face interior and inspect in a DFS manner their 
adjacent faces~ It follows that we traverse each edge and its dual at most a constant number 
of times, and determine for each face the level at which its is interior to the retract cycles, its 
index. 

We next compute the tree determined by the retract-cycles. Observe that we cannot even 
explicitly write out these cycles because the sum of their lengths may be as large as n 2. Thus, 
we must find this tree without expficitly computing the cycles. By Lemma 3 in [Mi186] each 
retract-cycle at level i corresponds to the boundary of a connected component in the subgraph 
G 7 of G ~ induced by the faces of  index > i. We need the following three pieces of information: 

s A rooted tree corresponding to the tree of retract-cycles. 

® The length of each retract-cycle. 

® The weight exterior to each retract-cycles. 

We compute all the information in one pass using one Union-Find. Suppose the face indexes 
run from 0 to k. We start by doing a Union for each edge between two faces of index k, 
technically we are working in thedual G". Using Finds we determine a representative for each 
connected component consisting of faces with index k. For a component, we determine its 
weight and boundary length. Thus, we have computed the three pieces of information for the 
leaf retact-cycles of  index k. Suppose we have computed this information for index k' + 1. We 
compute the information for index k as follows. 
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1. Perform a Urdon for each edge between two faces one of index k' and the other of  index >_ k'. 

2. Perform a Find for each face of  index k' and each representative from level E + 1, obtaining 
new representatives for level k'. 

. The weight of each component at level k' will be the sum of the weights of the component 
from level k' + 1 in it, plus the weight contributed to it from its faces of  index k' and their 
boundaries. 

4. The new boundary will be the sum of its children's boundary sizes from level k' + 1, plus one 
for each new edge on the boundary of an index k' face, minus one for each old edge. 

With this tree, all the remaining algorithms implicit in Phase I can be done in linear time. 
The algorithms for Phase II are in [Mi186]. 

6 Applications 

6.1 E d g e  S e p a r a t o r s  

By considering the dual graph to G, we can construct edge separators. 

Definition 6.1 I f  G = (V.E) is a graph with nonnegative weights on the vertices and edges 
which sums to one then a subset E' C E of edges is a weighted-edge separa tor  irE' partitions 
G into two disjoint subgraphs such that the weight of each is at most 2/3. 

Theorem 6.2 below improves the previous best upper bound of ~/k. v obtained by [Mi186, 
DDSV]. In [Mi186] the weaker bound was proved for 2-connected planar graphs and was 
extended to all planar graphs in [DDSV]. By arguments similar to those used in Lemma 1.3, 
we see that this new bound is better up to constant factor. 

Theorem 6.2 A planar graph G with vertices of degree k~ . . . . .  k~. has an edge separator of size 

158 + 

Proof: Suppose G is an embedded planar for which we would like a separator. It is well 
known that G is 2-connected if and only if its dual G* is 2-connected, see [Eve79], Thus, if 
G is 2-connected, we simply find a simple cycle separator in G ~ where the weight on a vertex 
is zero, the weight on an edge is the weight assigned to its dual, and the weight on a face is 
the weight assigned to its dual, a vertex in G. It follows that the simple cycle separator of 
G ~ corresponds to an edge separator in G. If  G is not 2-connected, we compute the tree T of 
2-connected components of  G. The vertices of T are either 2-connected components of  G or cut 
points. We weight each vertex of T as in the proof of  Theorem 2 in [Mi186]. I f  T has a separating 
vertex v, which is also a cut vertex of G, it follows that the edges of v form an edge separator 
of G of size at most [G]2. If  on the other hand, the only separating vertex of T corresponds to 
a proper 2-connected component C then we proceed as follows: Consider the weight graph C 
where the weight of each cut vertex x belonging to C includes the weight of  the subtree of T 
which was attached to x. The graph C is 2-connected, no vertex weight greater than 2/3, and 
any weighted-edge separator of C is one for G. Thus, we have reduced the general case to the 
2-connected case which we handle as above. [] 
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6.2 The Finite Element Graph from Numerical Analysis 

Planar separators can be used for direct as well as indirect methods for solving certain linear 
systems. Possibly the most famous of these methods is nested and parallel nested dissection, 
[LRT79, PR85]. 

Definition 6.3 The Finite Element graph G = (V. E') of a planar embedded graph G = (V. E) 
has as its edge set 

{(v. w)[ v and w share a face of G. } 

By Theorem t .2 a finite element graph G = (V. E) has a separator of size O(tE I). Thus if the 
nonzero entries of an n by n matrix A form a finite element graph then the linear system Ax = b 
can be solved in time O(w(A) 15) where w(A) is the number of nonzero entries in A. 

7 Open Questions 

It is open whether or not the O(xfn log n) time using xfn/log n processors parallel algorithms 
in [GM] can also be used to find a Euclidean separator. It would be very interesting to know if 
there is a processor-efficient NC algorithm which finds Euclidean separators, [GM87]. 
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