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Abstract

This paper presents the implementation of scientific programs on a decoupled
data-driven architecture with vectors and macro actors. This hybrid multiprocessor
combines the dynamic data-flow principles of execution with the control-flow of the
yon Neumann model of execution. The two major ideas utilized by the decoupled
model are: vector and macro actors with variable resolution, and asynchronous
execution of graph and computation operations. The compiler generates graphs with
various-sized actors in order to match the characteristics of the computation. For
instance, vector actors are proposed for many aspects of scientific computing while
lower resolution (complier-generated collection of scalar actors) or higher resolution
(scalar actors) is used for unvectorizable programs. A block-scheduling technique
for extracting more parallelism from sequential constructs is incorporated in the
decoupled architecture. In addition a graph.level priority-scheduling mechanism
is implemented that improves resource utilization and yields higher performance.
A graph unit executes all graph operations and a computation unit executes all
computation operations. The independence of the two main units of the machine
allows the efficient pipelined execution of macro actors with diverse granularity
characteristics.

1 Introduction

The Decoupled Data.Driven Architecture with Vectors and Macro Actors is a hybrid
data-driven/control-driven architecture with decoupled graph and computation units [1].
It provides an efficient way, both in cost and performance, to implement the data-flow
principles of execution at the macro level. Two major ideas are utilized by this ar-
chitecture: vector and macro actors with variable resolution, and decoupling of graph
and computation operations. The variable-resolution model retains the dynamic data-
flow model at the coarse-grain level and utilizes the vectorized control-flow model at the
fine-grain level. Vectorization and vector processing in general provides a very efficient
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platform for scientific computing. The variable-resolution graphs expand on this princi-
ple by having actors of varying degrees of granularity. At the fine level, scalar actors are
supported, while vectors of variable length make up the intermediate level of granularity.
The vector size can be determined at compile time or at execution time with the use

of special-purpose actors. Compound Macro Actors (CMA) are supported at the coarser
level of granularity. These are compiler created collections of scalar and/or vector actors.
However, increasing the level of granularity decreases the amount of parallelism. Thus
there is a tradeoff involved in determining the level of resolution. The variable-resolution
model has the ability to adjust the granularity to match program characteristics for best
performance.

Iterative methods for solving linear systems, an integral part of scientific comput-
ing, are inherently highly sequential. However, in data-driven machines, scheduling the
iterative part of the algorithms in blocks and looking ahead across several iterations
can exploit a lot of parallelism. Block-scheduling techniques are incorporated into the
variable-resolution graphs.

The decoupled model of execution separates (decouples) each actor into two parts: the
graph portion and the computation portion. The computation portion of each actor is a
collection of conventional instructions (load/store, add, etc). The graph portion contains
information about the executability of the actor and its consumers• Thus, a decoupled
data-driven graph can be viewed as a conventional program with a data-dependency
graph superimposed on it. In the decoupled architecture, the graph unit executes all
graph operations (determination of executability) and the computation unit executes all
computation operations (code fetching and execution). The two units execute in an asyn-
chronous manner, i.e., the computation unit does not have to execute the computation
portions of actors in the same order as the graph unit executes the graph portions. Com-
munication between the two units is provided via queues. Under steady-state conditions,
provided the queues are not empty, the effective pipeline cycle of the processor is reduced
to that of the computation unit. This can yield a considerable boost in performance.

The fundamental principle of data-driven machines, execution upon data availabih'ty,
gives no special treatment to the critical path. This results in inefficient resource utiliza-
tion and loss of performance in loop-based algorithms with dependencies across iterations.
A graph-level priority-scheduling mechanism has been incorporated in the decoupled ar-
chitecture that improves resource utilization and yields higher performance.

In Section 2, the construction of variable-resolution graphs for scientific applications
is introduced. The basic framework of the decoupled architecture and the graph-level
priority scheduling is presented in Section 3. Concluding remarks and future research
issues are presented in Section 4.

2 Variable-Resolution Graphs for Scientific Appli-
cations

Variable-resolution graphs (VR-graphs) are composed of actors of varying resolution
. (amount of computation per actor). They retain the dynamic data-flow principles of

execution at the coarser level (macro actor). Vectorized control-flow is employed at the



function dac(a: array; x ,b vectors function V-Jac(a: array; x ,b vectors
returns vector ) returns vector )

lor I in 1,n for i in 1,n
returns array of lp := Vmask(i, Vmul( a[I],x));
( b[i] - for Jin 1,n am:= Vsum{Ip)

returns value of sum a[h[] "x[j]when I=-I returns array of Vsub( b[i] • sm) / a[i,i]
end for ) / a[I,i] end for

end for end function
end function

(a) (b)

Figure 1: Jacobi algorithm expressed in (a) SISAL and (b) V-SISAL

fine level (within a macro actor). The actor._ supported by the VR-graphs can be grouped
into three major classes:

• Scalar actors.
• Vector and Macro actors.

• Compound Macro Actors (CMAs): Compiler-generated collections of scalar
and/or vector instructions.

VR-graphs exploit the locality present in vectorizable apphcations with the use of
vector macro actors, Also, sequential constructs like index generation for loops are imple-
mented by CMAs. Thus, the dynamic data-flow overhead (tag creation and processing)
is not applied on a per-instruction basis but is instead applied on a macro-actor basis.
Let the average processing requirements of an instruction be tp, and let to denote the
average overhead per instruction in machine cycles. Processing a vector of size n with
fine-grain resolution requires n x (Q + to) cycles, where the coarser grain (vector macro
actors) requires nQ + to. Thus, the per-instruction overhead is reduced by a factor of n if
to>> tp.

As in the original U-interpreter [5], the token format for the VR-graphs is V[c.0.i]where
V is the data value, which can be scalar or a vector, and [c.°._]is the tag. The first part
of the tag "¢" is the context identifier, "a" is the destination address, and "i" is the
iteration identifier (used for loops). Portions or the whole of the tag might be omitted in
the examples presented in this paper if no ambiguity arises.

2.1 An Example Vectorized Jacobi Algorithm

Iterative algorithms are very powerful tools for solving linear systems and are particularly
efficient in solving large sparse systems, frequently encountered in the Bolution of Partial
Differential Equations. The Jacobi algorithm for solving linear systems expressed in both
SISAL [6] and V-SISAL [7] (SISAL 1.2 with our vector extensions) is depicted in Figure

i 1. The VR-graph of the vector Jacobi algorithm is depicted in Figure 2.a.
The general form of a vector instruction is Vadd(N,a,b), where a and b are vectors

of length N. The vector load instruction, Vgather(a,b,c, v), provides the flexibility of
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operating on selected elements of a vector, where a is the first value to be processed, b

is the maximum range, and c is the stride or offset. The indices actor o.lso receives as

input a 3-tuple < a, b, c > and creates the indices of the loop (Do i=a,l:,,c). The actor

a) vecto fromm t ix o.t
i *hvalue from the vector a. in Figure 2.a the actor Vmul performs the multiplications of
the i th row of matrix A with vector X. The Vmaak actor masks out the ita value of the

resulting product in compliance with the algorithm. The summation part of the algorithm

is performed by the the Vsum actor; the rest of the computation is then performed in

a fine-grain fashion. The resolution of the vectorized Jacobi can be e.;,ther decreased or

increased to better match the target machine's characteristics. Partitioning Figure 2 into

CMAs decreases the resolution, which in turn reduces the amount of overhead. Chaining

can also be achieved by grouping vector actors into CMAs. An increase in granularity

increases the amount of parallelism.

Conventional vector supercomputers are generally very efficient when operating on

large vectors. However, the proposed architecture is targeting a large number of processors
with an emphasis on parallelism. Therefore, it is desirable that large vectors be distributed

throughout the machine. The VR-graphs support the runtime adjustment of graaularity
with the use of the split and merge actors. The split actor spltk takes as input the total

range < a.b.c > and splits it into r_parts of size k, each with a unique tag. Thus n partial

threads of computation are created, executed independently, and merged at the end.
Merging of the partial threads is performed by the merge actors. These are divided into

two subclasses: reduction and non-reduction. The reduction merge actors are used when



the merge operation occurs after a reduction operation (vector-to-scalar), for example,
Vsum is coupled with mrg-sum. A non-reduction merge actor is used when the overall

thread of computation is non-reduction (vector-to-scalar-producer), for example, Vstore
is coupled with mrg-store. In non-reduction mode, the merge actors process subvectors as
they arrive. For example, the mrg-s_ove actor will receive n subvectors, which it must store
in the structure store. The tags of the subvectors allow the mvg-sum actor to determine
their positions in the vector. The value k can either be determined at compile time or be
evaluated at execution time as a function of the data-set size and machine load.

The use of split and merge actors is demonstrated with the use of the vectorized
Jacobi example, which uses a reduction merge actor mrg-sum as depicted in Figure 2.b.
The spIho actor gets as input the range < 1,100, 1 > and splits it into n = 10 subranges

(< 1,10,1 >[11 ... < 91,100,1 >[101) of 10 elements each. These subranges are tagged
uniquely. Thus during execution, n = 10 instances of the Vgather, MVgather, Vmul,
Vmask, Vsum, and mrg-sum actors will be activated. The last actor in this thread of
computation is the Vsum actor, which generates 10 partial results. The mrg-sum actor
performs the summation of the partial results and sends a scalar value to the "." actor.

The remainder of the graph is composed of scalar actors ( "-", "+", sel, and append).

2.2 Block Scheduling

The vectorized Jacobi with the variable.resolution actors exploits locality through vector-
ization and thus reduces the overhead per operation, and the variable resolution exploits
parallelism. However, the sequential nature of the algorithm (perform one iteration, check
stopping criterion, and activate the next iteration until required accuracy is achieved),
does place a limit on the amount of parallelism exploited. However, iterative algorithms i
such as the Jacobi can become more efficient t'or parallel execution if some amount of
look-ahead is employed: a parallel loop (Forall i = 1, n) is inserted inside the sequential
loop (repeat-until) [8]. This allows the dynamic data-flow graph to simultaneously un-
ravel a block of n iterations (block scheduling) instead of merely one. Figure 3 provides a
qualitative picture of the basic principles of sequential and parallel scheduling of iterative
algorithms. The basic form of the modified vector Jacobi implementation is shown in

Figure 3.c.i. Figure 3.c.ii shows the traditional implementation of the Jacobi algorithm.
The function evaluate_block.size is used to give the initial block size. The decision will
be based on the nature of the problem and the convergence rate of the algorithm. The
function evaluate.new_block.size produces a new block size by estimating the number of
iterations needed to achieve the required accuracy.

Block scheduling with look-ahead of the vectorized Jacobi implementation has the
following advantages:

• It exploits pipelining across various iterations: as soon as the subvector z__) has
been calculated, the next iteration k + ! can be initiated without waiting for the entire
production of the vector x (k).

• It reduces the algorithm overhead by drastically reducing the number of evaluations
of the convergence criterion.

• It neutralizes the effect of "overhead/synchronization" actors by making them avail-
able early in the computation so they can be executed by otherwise idle processors.

illlll I I I



n:= evaluate_blocksize(,,.)
repeat

for i=1,n
begin

vector+jacobl0t _d
Time _1_ check_stoppingcriterion(.,.)

n:=evaJuatermw block_size

6" 10 I (i) I_ockschedulingof vector Jacobi
f

o o o

relent vector'jacobiOo o o checkstopplng_crtterion(...)

until done

i fler'N _ I (,l)SequenLial schedulingof
vectorJacobi

S_luentlal Scheduling Block Scheduling (with block =.5) "

...................<+...)........................................................................... (c)

Figure 3: Sequential scheduling vs. Block scheduling

3 Decoupled Architecture

The actors of the VR-graphs have very diverse computational needs. For instance, a scalar
add requires only a few cycles, while a vector add needs time proportional to the number
of elements in the vectors. Furthermore, the size of the vector is not fixed and can vary
widely even within the same graph. On the other hand, the processing time requirements
of the graph portion of the operations (token matching and formatting) are about the
same for the various levels of resolution. This could create an imbalance in the processor
pipeline. Therefore, the synchronous processor pipeline is not an efficient approach for ex-
ecuting VR-graphs. The graph pipeline stages (match and token formatting/routing) and
computational stages (fetch and execute) should be decoupled to accommodate imbalance
among the execution times of the pipeline stages. The Decoupled Graph/Computation
(DGC) model [7, 1] decouples the processor pipeline into two pipelines that communicate
via queues. The operations performed by a decoupled data.flow computer are classified
into:

Graph operations: All operations involved in tag creation and processing are classi-
fied as graph operations (sometimes referred to as graph overhead). These include
tagged-token matching, token formatting, and routing. Graph operations can be
summarized as the operations involved in determining executability by data avail-
ability.

,,,, ii i ii ii II I I, IIII I I II IIIIII



r

t ,

Computational operations: These include conventional instructions such as load, store,
and ALU operations.
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Figure 4: A processing element with decoupled graph computation units

Graph operations are performed by the Data-Flow Graph Engine (DFGE) and com-
putational operations are performed by the Computation Engine (CE). The two engines
communicate via two queues. The Ready Queue (RQ) holds the actors deemed executable
by the DFGE. The Acknowledge Queue (AQ) holds the actors executed by the CE.

The basic structure of a decoupled processing element is depicted in Figure 4. The CE
is a RlSC-like processor. It executes the computation operations of each actor in a control-
flow mode of execution (program counter). The interface to the decoupled architecture is
provided by the addition of a new instruction (Ret) that acknowledges the execution of
the current actor by placing its address in the AQ and then uses the top of the RQ to fetch
the first instruction of the next actor to be executed. The DFGE determines which actors

are ready to be executed by updating the dynamic data-flow graph. It places the dynamic
identification (actor's name and specific context < ID, con_ezt >) of ready actors in the
RQ. The DFGE receives the Ack signals through the AQ and updates the data-flow graph.
The Ack signals are used to notify actors that their operand(s) is (are) ready. Thus, the
operand matching and the token formatting and routing stages of the data-flow model

are reduced to one stage. However, the Ack signals are not pointers to the data produced;
this information is embedded into the internal graph of the actor templates.

3.1 Mode of operation

The DGC architecture uses dynamic data-frames for implementing the data-driven prin-
ciples of execution. Each dynamic instance of an actor reads its inputs form and writes
its output into unique memory locations. The overall mode of operation of the decoupled
architecture is described with the aid of the the inner product example depicted in Figure
5.
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for I In 1,n

returns value of sum a(i)'b(i)
end for

end function
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Figure 5: The vector inner product example (a) SISAL code and (b) D3-graph

Applications programs written in SISAL are first compiled into VR-graphs and then
into decoupled data-driven graphs (D3-graph). The decoupled data-driven graph of the
inner product example is shown in Figure 5. The shaded lines represent data dependencies
with no actual movement of data; the solid lines represent actual data movement. This

graph has one static value (rt) and five dynamic values (i, J.mu], r.mu], l.add, psum). The
static values remain constant throughout the execution of the block, as opposed to the
dynamic values, for which a new value is created at each iteration. Figure 6 depicts the i
contents of graph and computation memories for the inner product example. Each actor
is represented by an actor template, which is made up of a graph and a computation sub-
template (stored in the graph and computation memories, respectively). The graph sub-
template contains the following: (1) the address of the corresponding computation code;
(2) the actor number within the block; and (3) the consumer hst. The computation sub-
template is a thread of computation. The code shown in Figure 6.a is in a generic 3.address
RISC assembly form: Label : opcode so_trceI[, so_trce_], destination

The basic component of the DS-graphs is the cortteztblock. The context-blocks mark

the boundaries of a loop that changes the iteration context part of the tag. The inner
product example of Figure 5 and 6) represents one context-block. For each invocation of
the context-block a new graph and computation base address must be assigned. Thus the
context in a context-block is synonymous with the iteration number. The computation
data-frame is composed of all the dynamic values of the block, and the graph data-frame
is composed of the status-words (number of tokens required for the actor to fire) of the
actors in the block.

The contents of the Ready Queue is the 2-tuple actor < actor address, context >. The
CE uses the actor address to fetch the first instruction of the actor and also loads the

new context in the context register. The dynamic values belonging to certain context are
accessed by using the context register (Rc) as index register. The instruction:

load i,Rc, R1



causes register R1 to load the dynamic instantiation of the value i that belongs to the
context pointed to by the Re.

The first actor of Figure 6 is the implementation of the switch actor. In the decoupled
data-driven graph, the switch actor does not transfer any values but instead activates
the "true" or the "false" block according to the evaluation of its predicate. The "Ret"
instruction is not sufficient to implement the switch actor because it gives no information
about the evaluation of the predicate. Two more instructions are necessary for that:
RetT, which causes the DFGE to update the status of the consumers of the "true" block,
and RetF, which activates the consumers of the "false" block.

Split-phase transactions are used for structure synchronization. Actors 3 & 4 of Figures
5 and 6 represent the I-structure [9] select operation. The CE executes thses actors by
placing a request to the structure controller (Figure 4). When the requested value is
ready the structure controller stores it in the location specified by the CE and notifies the
DFGE which in turn updates the status of the consumer actor(;.) (actor 5 of Figure 5).

The last actor of each context-block is the Return actor, which stores the result of the
context-block in the parent's data-flame. It also triggers garbage collection for the data
frames used by the context-block. In Figure 6, the RESULT label points to the location
where the result of the context-block must be stored.

When a block is activated, the addresses of all ready actors are placed in the Ready
Queue. The CE removes one actor address at a time, executes all instructions of that
actor, and places the actor address into the AQ. The DFGE removes the address of an
"executed" actor from the AQ and reads its consumer list from its graph subtemplate.
It then decrements the status word of each consumer. The triplet <base address, actor
number, context> makes up the address of the status word of each actor. When the status
word reaches zero, the actor is deemed executable, and the DFGE places the address of F
its computation code in the RQ.

Our multiprocessor architecture is cluster based with global virtual address space. A
schematic diagram of the architecture for a 256 processor machine is depicted in Figure 7.
Two disjoint virtual addressing spaces are used for the graph and computation memories.
Each cluster has a shared graph memory and a shared computational memory. All cluster
memories are connected via a communication medium that allows inter.cluster reads and
writes.

3.2 Priority Scheduling

The basic principle of the data.flow model of execution is execution upon data availability.
If this, however, is the sole scheduling criterion, the critical path of the graph receives
no special treatment. This becomes essential in applications with a high degree of data.
dependencies like iterative or direct methods for solving linear systems. It has been

shown in [8] that graph-level priority scheduling using the outermost level of the tag as
the priority field results in higher performance and more efficient use of machine resources,

We have adopted a relative-priority mechanism for the decoupled architecture: priority
is assigned according to the iteration identifier at the outermost level of the tag. Thus
no absolute priority is enforced but rather priority is enforced among actors belonging to
the same context-block. Consider, for example, the block-scheduling implementation of
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Figure 6: Contents of the graph and computation memories for the inner product exmple

theJacobialogorithmthatconsistsofthreenestedloops(scalarimplementation).Figure

8 depictstheevolutionofthetagofa tokenwhileittraversesthegraph,and itsfinal
structureattheoutermostlevelofthethreenestedloopsThe outermostiterationidentifier

i (shadedinFigure8)isusedastheprioritykey (highestpriorityisgiventothelowest

iterationnumber). IntheDGC architecturethegraph-levelpriorityisimplementedby
hardwareintheReady Queue. As mentionedearlier,thecontentsoftheReady Queue

are2-tuples<actorsaddress,contezt>(contextistheiterationnumber). The priority

hardwarekeepsthereadyqueuesortedaccordingtothecontextofeachentry.
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Figure 7: Decoupled'cluster based multiprocessor architecture
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for IIn 1,n
ooo ........ , [c.I]
for jln !,m

ooo ...... ,. [c'.J] =[[C.I].J]
for k in I,I

,,=o ..... ,, [c".k]=t[(cJ]4].k]
end Ior

end for

end for
LII : :IIJIL[ _._£[....

Figure 8: Tag structure for nested loops

4 Concluding Remarks

In this paper, we have presented some implemetation issues of scientific appliactions on
a hybrid data.driven/control-driven architecture where the atomicity of computation is
variable (micro, vector, and compound actors). The vaziable-resolution graphs facilitate
high performance by exploiting locality through efficient vector operations. For non-
vectorizable code, the proposed architecture can benefit from the parallelism provided
by the dynamic data-flow principles of execution applied to fine-grain actors and CMAs,
while retaining the benefits of vector operations. Furthermore, the performance of it-
erative algorithms can be enhanced by the block.scheduling techniques, which can be
applied regardless the level of grar.ularity. Block scheduling allows maximum pipelJning
among successive iterations. Furthermore, it allows saving on the amount of computation
performed for checking termination criterion by employing look.ahead. The variable-
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resolution model allows many degrees of freedom in adjusting computation granularity
and thus can match program and machine characteristics for best performance. Graph-
level priority scheduling has been incorporated in the decoupled architecture. This yields
considerably better resource utilization and faster execution.

In the proposed decoupled model both the graph unit and the computation unit oper-
ate asynchronously. Thus under steady-state conditions, if both queues are not empty, the
effective pipeline cycles is reduced, which can yield a considerable boost in performance.
The hybrid nature of the architecture allows it to adapt and readily uses technology and
building blocks of the yon Neumann model of execution.
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