Complexity Issues
in Discrete Neurocomputing

by

Juraj Wiedermannn *
A 10/90

May 1990

FB 10, Informatik
Universitat des Saarlandes
D-6600 Saarbriicken
West Germany

Abstract: An overview of the basic results in complexity theory of discrete neural com-
putations is presented. Especially, the computational power and efficiency of single neurons,
neural circuits, symmetric neural networks (Hopfield model), and of Boltzmann machines is
investigated and characterized. Corresponding intractability results are mentioned as well.
The evidence is presented why discrete neural networks (inclusively Boltzmann machines) are
not to be expected to solve intractable problems more efficiently than other conventional

models of computing.

This work was finished while the author was on leave from VUSEI-AR, Bratislava, CSFR. The
research was partially supported by the ESPRIT II Basic Research Actions Program of the EC
under contract No. 3075 (Project ALCOM).



Complexity Issues in Discrete Neurocomputing
Juraj Wiedermann

VUSEI-AR, Dibravska 3, 842 21 Bratislava
Czechoslovakia

Abstract: An overview of the basic results in complexity theory of discrete
neural computations is presented. Especially, the computational power and ef-
ficiency of single neurons, neural circuits, symmetric neural networks (Hopfield
model), and of Boltzmann machines is investigated and characterized. Corre-
sponding intractability results are mentioned as well. The evidence is presented
why discrete neural networks (inclusively Boltzmann machines) are not to be
expected to solve intractable problems more efficiently than other conventional
models of computing.

1. Introduction

1.1. Motivation. The recent renewed interest in neurocomputing is undoubtedly moti-
vated by our ever increasing quest for exploiting new, non-traditional ways of computing.
Along these lines at the border between computational physics and neurobiology a new
computational paradigm is emerging saying that certain collective spontaneous proper-
ties of a mass of some simple computational devices can be used to immediately realize
the computations. This gives rise to a brand-new class of computational machines in
which the physics of the machine is intimately related to the algorithm of computations.

The prominent representatives of simple computational devices from which the re-
sulting machines are assembled, are (artificial) neurons. These neurons are connected
into a neural network and depending on the way in which the neurons work and coop-
erate, and on the topology of the resulting network, various types of neural nets can
be distinguished: neural circuits, symmetric neural networks (so-called Hopfield neural
networks), Boltzmann machines, etc.

So far these machines have been experimentally used for solving various isolated
problems, like associative memory realizations [H1, H2], solving some combinatorial
problems [AH,HT1,KGV] , simple models of learning [AH], or speech recognition [H3].

Despite some promising experimental evidence of these machines no sufficient at-
tention from the side of computer science has been paid to these machines and therefore

This work was finished while the author was visiting the Department of Computer
Science, University of Saarland, West Germany (Spring 1990)



2

the corresponding complexity theory that would answer the general questions concern-
ing their computational power and efficiency has emerged only slowly and in fact only
recently [P, W1].

One reason for this unfortunate state of the matters could be that until recently
the corresponding devices have developed themselves mostly outside the framework of
complexity theory — viz. within the framework of artificial intelligence, computational
physics, or neurobiology. As a result, the main emphasis was put mostly on the learning
abilities of these devices, too often without bothering explicitly about their computa-
tional power and efficiency. The second reason could have been that the results were
scattered throughout non-computer science journals, the respective models varied from
author to author, the used terminology ranged from that of mechanics through elec-
tricity up to biology, both discrete as well as analog devices were used, and therefore it
was difficult for an ‘outsider’ to arrive at a reasonable computational model, from the
viewpoint of complexity theory.

But, slowly, as the field has matured and certain devices have established themselves
as more or less fundamental ones, the attention of computer science has been caught,
especially when the neurocomputing researchers reported unusual efficiency of their
devices in solving some intractable problems [HT1, J, KA].

Nowadays, at least as far as discrete neurocomputing is concerned, the complexity
theory disposes of quite a solid body of knowledge about these devices that places them
into the proper perspective among the other known models of computations and thus
explains some of experimentally observed phenomena [W2].

Nevertheless, the analog neurocomputing remains still outside the reach of today’s
complexity theory, as it is regrettably the case with analog computations per se.

1.2. The aims. The goal of the paper presented is to give a contemporary state-of-the
art survey on the basic complexity results concerning the fundamental classes of dis-
crete neural machine models. We shall not be concerned in neural learning although this
topic traditionally ranks among prime ‘practical’ motivations in studying neurocomput-
ing. Notwithstanding, our results will shed some light on a problem what, at least in
principle, can be learned by neural nets, and therefore they can be seen as a prelude
to more advanced studies in neural learning. As a preliminary or companion reading
an excellent introduction by Parberry [P] is recommended. The present paper tries to
complement the Parberry’s paper by new results or by results not covered in details in
his paper. However, in striving for selfconsistency of our paper the overlapping of some
topics could not have been avoided.

1.3. Contents. First, in Section 2, we shall introduce the notion of an abstract neuron
and we shall characterize its computational power. We shall also present a new result
that such an apparently simple problem as deciding whether a given boolean function
can be realized by a single neuron, presents a £,—complete problem (where ¥, denotes
the complexity class in Stockmeyer’s polynomial time hierarchy — see e.g. [CKS] or
[GJ]). This result explains the exponential complexity of all known neural learning
algorithms, most notably of that by Rosenblatt (which is known as perceptron learning
procedure [MP]).

In Section 3 we shall introduce the notion of neural networks and describe the way
they compute, and the corresponding complexity measures.

In Section 4 the notion of neural circuits will be introduced and we shall briefly
investigate their computational power and efficiency. We shall show that neural circuits



can simulate efficiently any neural network. Moreover we shall also show that in the case
of bounded fan-in these circuits are equivalent to standard combinatorial circuits, while
in the case of unbounded fan-in they can compute any boolean function in constant
parallel time, however, using an exponential number of neurons. Therefore in the rest
of this Section we shall focus our attention on an interesting intermediate case of neural
circuits of polynomial size and constant depth.

In Section 5 we shall continue our excursion with investigation of symmetric neural
nets (so-called Hopfield model [H2]). We shall show that the computational power and
efficiency of these networks is equivalent to that of neural circuits [W1, W2|. Further
we shall introduce the notion of energy function for symmetric neural networks which
exemplifies the close connection between computations of these networks and energy
states of certain physical systems. We shall state here the fundamental Hopfield’s result
that any computation of symmetric neural networks can be seen as the minimization
process of the corresponding energy function [H2]. We will also study the relation
between nondeterministic computations and energy function minimization problem and
we show that the process of minimizing the energy function of a symmetric neural
network presents an N P-complete problem. As a consequence we obtain the main
result of this Section stating that any nondeterministic Turing machine computation
can be realized by a symmetric neural network that ends its computation in a state
that presents the global minimum of the corresponding energy function [W2]. We shall
close this section by investigating briefly the terminating problem for parallel symmetric
neural networks.

Finally, in Section 6 we shall further enrich the computational capabilities of neural
networks by introducing the probability into the computations of the respective neu-
rons. As a result we obtain a discrete Boltzmann machine, studied intensively in the
connection with so-called simulated annealing [KGV]. We will sketch here the recent
surprising result by Parberry and Schnitger [PS] that from computational complexity
point of view these machines are equivalent to neural circuits introduced in Section 4.

In Conclusions we shall briefly summarize the importance and the contribution of
neurocomputing to complexity theory.

2. Neurons

2.1. Basic definitions. A ‘neuron’ is a catchy name, inspired by the analogy with real
neurons (in biology), of an abstract device that is capable to compute the values of
so-called linearly separable, or weighted threshold functions in one computational step.

Definition 2.1. A boolean function f of n variables & = (z1,z2,...,%,) is called a

linearly separable function if and only if there is an integer vector w = (wy,ws,...,w,)

and an integer constant t such that the set f~!(1) e | f(£) = 1} equals the set
def

{z | (wW,z) >t} and f71(0) = {y | f(¥) = O} equals the set {§ | (w,y) < t}, where
(w,Z) = Y_I_, wiz; denotes the usual operation of scalar product of vectors w and z. =

Following the geometrical interpretation we say that the sets f~(1) and f~*(0)
are linearly separable by a separating hyperplane whose equation in an n-dimensional
Euclidean space is given by (w,Z) = t.

Such a separable function can be formally represented by a so-called wetghted
boolean threshold function f[w,t] defined as follows: f[w,t](Z) =1 iff (w,Z) > t.



4

Definition 2.2. An n-input neuron with weights (wy,...,w,) and the threshold t is an
abstract device capable to compute the values of a weighted threshold function f[w,t|(Z)
in one computational step, for any . =

Schematically, a neuron computing the function f[w,1| is depicted in Fig. 1.

The values of  are called the inputs of a neuron.
When for a given input & f[w,t](Z) =1
we say that the corresponding neuron is active,

L Wn or is in an active state; its output is then defined
to be 1; otherwise it is in a passive state and its
Ty T2 ...ZTo output is then 0.

Fig. 1 A neuron

2.2. Size of neural representation. Clearly, by changing the weights or the threshold
of a neuron we obtain another neuron that may compute another weighted boolean
threshold function. We may now ask what is the number N(n) of different n-input
neurons (i.e., those computing different functions)?

Although N(n) is not known to be determined exactly, except for small values of
n < 8 [MTB|, its asymptotic behavior is known: from [Mu] it follows that N(n) =
29("2), i.e., there exist approximatively 27" different n-input neurons.

This means that to be able to describe an arbitrary n-input neuron in general ©(n?)
bits are necessary and enough. It follows that in the worst case there must exist weights
of size at least (}(n) bits. Futher, it is known [Mu] that it is enough for weights to be
of size O(n logn), and as Parberry [P] noticed it is an open problem whether O(n) bits
would be always sufficient.

2.3. The complexity of finding neural representation. Given a boolean function f, e.g.
by the help of a formula in a conjunctive normal form, it seems that it is not an easy task
to find the corresponding neural representation (i.e., its representation as a weighted
boolean threshold function), providing that f is a linearly separable function. In fact,
the next theorem shows that the corresponding decision problem of asking whether a
given boolean function is linearly separable presents an intractable problem.

Theorem 2.1. The SEPARABILITY problem of deciding whether a given boolean
function f is linearly separable is a ¥,-complete problem.

Proof (Sketch): First we shall show that the above problem is in ¥,, i.e., in the class of
polynomially time-bounded alternating Turing machine computations that use at most
2 alternations on each computational path, starting in an existential state (see [CKS]
and [GJ] for the definition of the complexity class X,).

Consider therefore an alternating Turing machine M that works in the following
manner. The machine M starts in existential mode guessing the neural representation
fn of f — which is of size O(n?logn) bits (see 2.2), and therefore can be guessed
in polynomial time. Then, in parallel, M verifies for each input & of size n whether
fn(Z) = f(Z). This takes again a polynomial time.



Secondly, we show that the problem of testing the validity of a given quantified
boolean formula F' in a conjunctive normal form with m variables, starting with ex-
istential quantifiers followed by universal ones, is polynomial-time reducible to SEPA-
RABILITY. Since it is known that the validity problem of such formulae presents a
¥,-complete problem [GJ]|, this will be enough to prove the X,-completeness of SEPA-
RABILITY.

Hence our goal will be to construct a boolean function f # 0 which will be separable
iff F is valid.

W.l.o.g. suppose that F is of form (3z;) ... (3zk)(Ver+1) - .. (VZm)g(21,. -y Zm) Of
length n, where g is a boolean formula, and suppose that F' is valid. This means that
there exist z1,...,zx € {0,1} such that g(z1,..., 2k, Tk+1,...,Zm) = 1 irrespective of
the values of z;’s. W.l.o.g. suppose further that 2; = ... =2z, = land z,4; = ... =
zr, =0, forsomep,0 < p<k,andput w; =...=wp =1, wp4; =... =wr = —(p+1),
Wgt1 = ... = Wy, = 0, and ¢t = p, and define f as f(Z) := if (W, Z) > ¢ then g(Z) else
0 fi.

We shall show that f is separable.

For that purpose consider the values of (w, Z) for all Z. If the vector & = (z1,..., zk,
Tkily---,ZTm), then (W0,Z) > t, g(Z) = 1, and therefore also f(z) = 1. On the other
hand, when the first £ components of z are different from z,,..., z;, the scalar product
(w,Z) < t, and due to the definition of f, f(Z) = 0. This means that h: (w,Z) =t is a
separating hyperplane of f indeed, and therefore f is a separable function.

Let f be a separable function — i.e., there is a hyperplane h : (W,Z) = t such
that f(z) = 1 iff (w,Z) > t. W.l.o.g. suppose that w; # 0 for i = 1,...,k, and
w; = 0 for j = k+1,...,m, for some k, 1 < k < m. Then, clearly, the formula
F:(3z1)...(3zk)(VErt1) - .. (Vo) f(z1,...,2m) is valid: namely, to achieve f(Z) =1
it is enough to choose such an & : (W, Z) > t. =

The previous Theorem thus explains the exponential time complexity of all known

neuron learning algorithms, among them most notably of that by Rosenblatt (see e.g.
in [MP], a so-called perceptron learning procedure).

3. Neural networks

3.1. Basic definition. Informally, neural networks are obtained from individual
neurons by connecting the outputs of some neurons to inputs of some neurons and by
declaring certain neurons as input ones, others as output ones.

Definition 3.1. A neural network is a 7-tuple M = (N,C,1,0,A,w,h) , where
— N is a finite set of neurons
— C C N x N is a set of ortented interconnections among neurons
— I C N is a set of tnput neurons
— O C N is a set of output neurons
— A C N is a set of initially active neurons, ANT =0
— w : C — Z is a weight function; Z is the set of all integers
— h: N — Z is a threshold function

The ordered pair (N,C) forms an oriented graph that is called an interconnection
graph of M. m



6

Each neuron u; € N can enter two different states: 0 (inactive) or 1 (active) as
characterized by its output z;. There is a so-called threshold value t; € Z assigned by
the function h to each neuron u;. Each neuron has an arbitrary number of input and
output connections that are labeled by wetghts. The total input to each neuron u; at any
moment is given by the sum h; = Z?=1 a;;jzj, where a; ; € Z is the weight (assigned
by the function w) of the u;’s input connection leading from u; to u;, z; is the state of
u; at a given moment and n is the total number of neurons in the network.

3.2. Neural network computation. The computation of such a system on a given input
starts by initializing the states of input neurons in the set I to corresponding tnput
values (0 or 1), the states of neurons (if any) in the set A of initialized neurons to 1's,
and the remaining neurons are left in a passive state.

The description of states of all neurons in the network at any moment is called a
configuration of that network at that moment. Further the network can compute in
two different ways: in a parallel, and in a sequential mode. In a parallel (sequential)
mode each neuron u; samples its inputs synchronously in parallel with other neurons
(sequentially, in any order in each step) and if h; > t; the output z; is set to 1, otherwise
to 0.

The time interval within which the actions of all neurons are accomplished is called
a computational cycle. Note that in a parallel computational mode the number of com-
putational cycles performed during a computation corresponds to parallel computational
time.

The network then works as described above and the computation on a given input
is finished when a stable state is achieved which is the situation in which the state of
each neuron remains unchanged during one computational cycle. In that case we say
that the computation was convergent.

The result of the convergent computation on a given input is given by the states of
some selected output neurons. When the stable state is not reached the output of the
computation is not defined.

Note that due to the fact that the neurons in a sequential computation mode can
sample their inputs in any order even from the same initial configuration each sequential
computation can lead to different results or some (in any mode) can lead to no results
at all. It will be our concern to design the network in such a way that the computations
will be convergent and the results will be unique if necessary. However, the satisfaction
of the latter two conditions can be guaranteed only for certain special classes of neural
networks that we shall deal with in a sequel.

3.3. Complexity measures. The time complerity of a convergent computation on an
input of length n will be given as the maximum number of computational cycles needed
for achieving a stable state taken over all inputs of length n.

The size of the network will be given by the number of its neurons.

4. Neural circuits

4.1. Basic definition. Neural circuits are special instances of neural networks:



zAN Dy zO Ry 0) NOT=z
-1

[y
[y
—
—

z y z y z
Fig. 2 Neural realization of basic boolean operations

Definition 4.1. A neural circuit is a neural network with a directed acyclic inter-
connection pattern; its input neurons are those having no predecessors and its output
neurons those having no successors in its interconnection graph.

The depth of a neural circuit is the length of the longest path between some input
and some output neuron. =

From this definition it follows that neural circuits possess some desirable properties
which cannot be guaranteed in the general case of neural networks: it is clear that
starting from a given initial configuration any computation of a neural circuit must
terminate always in the same stable final configuration, in parallel mode in a time that
is proportional to the depth of the circuit, and in sequential mode in a time that is
proportional to its size.

4.2. Neural networks and neural circuits. Neural circuits, being a special case of neural
networks, cannot be computationally more powerfull than neural networks. Nevertheless
the following adaptation of a standard simulation technique from complexity theory (see
e.g. [PS1, PS2|) shows that everything what can be computed by neural networks can
be computed by neural circuits as well, even in the same parallel time.

Theorem 4.1. Any neural network N of size S(n) and of parallel time complexity T'(n)
can be simulated by a neural circuit C of size O(S(n)T(n)) in parallel time O(T'(n)).

Proof (Sketch). We shall construct a circuit C in which the computation proceeds
through a sequence of ‘layers’, :—th layer corresponding to i-th configuration ¢; of N.

In the first layer of C there is exactly S(n) input neurons. At the beginning of the
computation the state of each of them corresponds to that in the initial cinfiguration ¢
of the respective neurons in N. In the next layers inputs to any neuron u in the (¢+1)—st
layer are connected by oriented edges with the same weights as in NV to those neurons
in the ¢:—th layer whose outputs are sampled by u in N, for : = 0,1,...,T(n) — 1. This
construction quarantees that there are no cycles in C and when the computation of C
terminates the states of neurons in its T'(n)—th layer correspond to those in the final
configuration of N. =

4.3. The computational power of neural circuits. The previous result states that the
computational power of neural circuits equals to that of neural networks. But what is
the computational power of these devices when compared to more traditional models
of computation? It appears that in this respect there is no difference between neural
circuits and boolean combinatorial circuits.

It is not difficult to verify that neurons from Fig. 2 realize the basic logical opera-
tions AND, OR and NOT; it follows that every combinatorial circuit can be simulated
by a neural circuit of the same topology, i.e., of the same size and depth (see also [M]
for the proof that any deterministic Turing machine can be build out of neurons!).



all weights are equal to 1

Ty o Ty

Fig. 4 A neural binary sorter

However, using the ‘full capacity’ of neural circuits, i.e., the unbounded fan-in, it
is possible to compute any boolean function f by a neural circuit of constant depth,
simply by constructing a circuit that mimics the representation of f in its disjunctive
normal form (Fig. 3).

It follows that in a parallel computation mode the value of any boolean function
can be computed by a neural circuit in constant time! It is not known whether in
general the size of such circuit can be substantially less than as in the above example
while maintaining the constant depth of a circuit.

OR a DNF

multiple AN D’s

NOT's

literals

Fig. 3 A circuit computing a boolean function in DNF

4.4. Neural circuits of constant depth and polynomial size. The circuit from the last
example has the size exponential w.r.t. the number of its inputs. Circuits of exponential
size have to be considered as unrealistic ones from the same reasons as exponential time
is considered as an intractable one. Therefore the attraction of researchers has focused
to an interesting intermediate case — namely that of neural circuits of simultaneously
polynomial size and constant depth.

Such circuits can be also very powerful — e.g. in Fig. 4 there is a so-called binary
sorting circuit , of linear size, that rearranges the 0’s and 1’s appearing on its input so
that 1’s precede the 0’s on its output, in a constant parallel time.

4.5. Threshold circuits. In the complexity theory a somewhat special case of neural
circuits hidden under the disguise of so called threshold circuits has been extensively
studied.

A threshold circuit (TC) is just a neural circuit with unit weights. In fact, both
neural circuits from Fig. 3 and 4 are threshold circuits.



9

The full characterization of the class of functions that can be computed by TC’s of
polynomial size and constant depth in terms of some standard complexity classes is not
known. Nevertheless, it is known that some very important classes are computed by such
circuits. Along these lines the important recent result is that by Reif and Tate [RT|, who
found the surprising relationship between TC’s and so-called finite field Zp(y,) circuits
(FFC’s). In the latter circuits each node computes either multiple sums or products
of integers modulo a prime P(n). FFC’s are especially suitable for the realization of
various basic numerical algorithms like simple and iterated addition and multiplication,
computing integer reciprocal, etc.

The main result of Reif and Tate is that all functions computed by TC’s of size
S(n) > n and depth D(n) can also be computed by FFC’s of size O(S(n)log S(n) +
nP(n)log P(n)) and depth O(D(n)), and vice versa, all functions computed by FFC’s
of size S(n) and depth D(n) can be computed by TC’s of size O((S(n) log P(n)'*€/¢?)
and depth O(D(n)/¢€®).

They got many useful and quite surprising consequences of this result. For exam-
ple, integer reciprocal can be computed in size n°(1) and depth O(1). More generally,
any analytic function (such a sine, cosine, exponentiation, square root, and logarithm)
can be computed within accuracy 2~ ™, for any constant ¢, by TC’s of polynomial
size and constant depth. In addition, integer and polynomial quotient and remainder,
FFT, polynomial interpolation, Chinese Remaindering, all the elementary symmetric
functions, banded matrix inverse, and triangular Toeplitz matrix inverse can be exactly
computed by such TC’s. For details see the original paper [RT].

5. Symmetric neural networks

5.1. Basic definition. Symmetric neural networks are neural networks with an undirected
interconnection graph containing no loop-edges:

Definition 5.1. A symmetric neural network M is a neural network for which a;; =
a;; and a;; = 0, where a; ; is the weight of an edge connecting an i-th neuron with a
j-th neuron in M.

Symmetric neural networks are often termed Hopfield neural networks since it was
apparently Hopfield who as the first recognized that these special instances of neural
networks are of particular interest. Namely, for any Hopfield network the termination
of any computation in the sequential mode can always be guaranteed (see Section 5.3.)!
Moreover, there exist some natural physical realizations just of this type of neural
networks — viz. Ising spin glasses [B], or certain models of so—called ‘optical computers’
[FPPP|.

It is therefore quite surprising that until recently the computational power of sym-
metric neural networks has not been known [ESM, F] as it was conjectured that perhaps
these networks need not be as powerful as asymmetric ones since the former are but a
special case of the latter ones.

5.2. The computational power of symmetric neural networks. We shall show now
the result by Wiedermann (W1, W2| that the computational power and efficiency of
symmetric neural networks is no less as that of neural circuits (the independent proof
is given also in [P]). To prove this claim we shall need the following definition.



10

Definition 5.2. We shall say that a given neuron u (with symmetric weights) has the
insensitivity range (a,b), with a < 0, b > 0, if the addition of a further input with
weight w € (a,b) will not affect the activity of u (i.e., its behavior will further depend
only on the original inputs). =

In the proof of the following lemma we shall see that the definition of insensitivity range
is correct, i.e., that the insensitivity range of any neuron always comprises an interval
of form (a,b), with @ <0 and b > 0. The lemma actually says more:

Lemma 5.1. For any neuron u and any a < 0 and 3 > O there is an equivalent neuron
v that computes the same function as u does, and with insensitivity range (a,(3).

Proof (Sketch). Let w;,ws,...,wr be the input weights of u and ¢ its threshold. De-
fine a = ma:c{zf:l wiz; | Zle wiz; < t,z; € {0,1}} and b = min{zle wiz; |
Zle w;x; > t,z; € {0, 1}}

Clearly a <t < b and (t — b,t — a) is the insensitivity range of u, for any ¢ € (a,b).
Select now such a to € (a,b) that splits the interval (a,b) in the same ratio in which 0
splits the interval (a, ) — i.e., {; = (aa — 8b)/(a — B). To obtain the weights and the
threshold of v multiply all weights of v and ¢, by (8 —a)/(b —a). =

Now we are ready to formulate the main result of this subsection.

Theorem 5.1. Any neural circuit C of size S(n) and depth D(n) can be simulated by
a symmetric neural network N of size S(n) in parallel time O(D(n)).

Proof (Sketch). The main idea in the construction of N is to adjust the weights and the
thresholds of each neuron in C with the help of Lemma 5.1 so as the total minimal and
maximal sum of its output weights would lie in the insensitivity range of each neuron.
This will enable then to introduce to each output connection the symmetric connection
with the same weight — i.e., the transformation of C to N. To do so start with the set
of neurons of C that have no successors in C and leave their weights and thresholds as
they are and consider these neurons as being already adjusted. Now proceed recursively
as follows : for each neuron v whose weights have already been adjusted compute the
minimal sum o« and the maximal sum f of its output weights. Then adjust the input
weights and the threshold of v with help of Lemma 5.1 so that the insensitivity range
of v would be (a,3). The process will stop at input neurons that have no predecessors.

As a result we obtain a circuit C' equivalent to C. To obtain N introduce the
backward connections to existing ones in C' with the same weights and note that these
connections can by no means affect the behavior of the corresponding target neurons
since their contribution lies always in the insensitivity range of target neurons.

Thus the neurons that are farther from the input neurons cannot affect those that
are closer to them; hence in a sense the computation is directed from input neurons
towards the output ones. Therefore the computation time will be O(D(n)). =

Thus, recalling also the result of Theorem 4.1 it follows that from a computational
point of view there is no difference between the computational power of neural circuits
and that of symmetric neural networks. The transformation from the previous theorem
can be of practical significance e.g. in a case when the technological constraints allow
only for realization of Hopfield networks.



11

5.3. The termination of sequential symmetric network computations. Hopfield [H2| has
shown that the computation of any symmetric neural network can be thought of as
a process of a minimization of a certain energy function. This energy function takes
the form F = —% Z?zl E?;] a;jr;r; + z?:l t;x;, with a;; = aj;, a;; = 0, and the
meaning of individual symbols as described in Section 3.2. Hopfield proved in fact the
following theorem that makes symmetric neural networks so attractive:

Theorem 5.2. Starting from any initial configuration any symmetric neural network
with energy function E computing in a sequential mode will achieve a stable state after
at most O(p) computational cycles, wherep = 3 > - | Z?=1 |la; ;| + Y i, |ti|; moreover
this stable state represents a local minimum of E.

Proof (Sketch). The change AE in E due to changing the state of i—th neuron by
Az; is AE = =3 7_,[a;j2; — tj]Az;. According to the mechanism of neural network
computation the change of z; is positive if and only if the expression in the bracket
is positive and similarly for the negative case. Thus any action of any neuron cannot
cause the increase of the value of F and whenever some neuron changes its state the
value of F will decrease. Since |E| is bounded by p after at most p computational cycles
the network must reach a stable state which is a local minimum of E. =

5.4. Nondeterministic computations and energy function minimization. From Theorem
5.2 it follows that the computation of any symmetric neural network in sequential mode
will always terminate in some final configuration in which the corresponding energy
function achieves its minimum. Which minimum will be achieved — whether a local
or a global one — depends, of course, on the initial configuration and in the sequential
computational mode also on the order in which neurons sample their inputs during each
computational cycle.

Later on we shall see that certain computations of symmetric neural networks
are of special interest — namely those for which the corresponding energy function
achieves its global minimum at the end of computation. Such computations correspond
to successfull nondeterministic computations (see Corollary 5.3.1). Therefore it is worth
to study the minimization problem of energy functions of such networks. Unfortunatelly,
the following theorem by Wiedermann [W2| shows that the above minimization problem
is a difficult one.

Theorem 5.3. Let N be a symmetric neural network with weights of at most polyno-
mial size in the size of N. Then for any integer k the problem of deciding whether there
exists an initial configuration of N for which a stable state with energy not greater than
k will be achieved is an N P-complete problem.

Proof (Sketch). First we shall show that the above problem is in N P. Consider therefore
a nondeterministic Turing machine M that simulates N. M first guesses the initial
configuration of N. This takes time polynomial in the size of N since the size of each
configuration is linear. Then for this configuration M simulates the computation of
N. According to Theorem 5.2. this simulation will end in polynomial time due to our
assumption concerning the size of weights of N.

The computation of M ends successfully if and only if for our initial configuration
a stable state with energy < k is achieved.



12

Thus the total running time of M’s simulation is polynomial and hence our problem
belongs to N P.

Next we shall construct a special symmetric network N with energy function E
that tests the satisfiability of a given boolean formula f in a conjunctive normal form
with n variables. It is known that the satisfiability problem of such formulae presents
an N P-complete problem [GJ]. Then we will show that there is a constant k£ such that
f is satisfiable if and only if there is an initial configuration for which a local minimum
of F with a value < k is achieved.

The schema of N is depicted in Fig. 4.

i iz in

Fig. 4 A schema of a symmetric network for satisfiability testing

In this figure the thresholds of only some neurons that will be important in the fol-
lowing explanation are given in circles representing the corresponding neurons; similarly
important edges are labeled by their weights.

The states of neurons i,1,,...,1, play the role of boolean variables in f ; neurons
n1, Ny, ..., Ny are negating neurons that compute literals (they are present only when the
respective variable has to be negated in the corresponding clause of f). Neurons a;,a,,-
..., ar compute multiple OR’s — i.e., individual clauses of f and the neuron v computes
the multiple AND of all clauses — i.e., the value of f on the input represented by states
of il) ’1:2, ceey in-

The purpose of w is to decrease the value of E as low as we wish in the case that
v is active; this is achieved by choosing p large enough. Note that when neurons v and
w are both active they contribute with a value of ©(p) to the energy function.

In the initial configuration of N the neurons 7;’s corresponding to variables in f
represent the input neurons . The states of all other neurons are initialized to O.

Under this arrangement it follows that for some initial configuration the neuron v
could be active in some stable state if and only if f is a satisfiable formula.



13

Consider now the corresponding energy function E. It is clear by now that by a
suitable choice of p we can achieve that the value of E is < k for any computation that
starts in any initial configuration that satisfies f.

Finally note that the value of p need not be greater than the one used in Theorem
5.1. and that all weights in N, and the size of N, is polynomial in the length of f.
Therefore the reduction from f to N (and hence to E) takes polynomial time. =

Corollary 5.3.1. Let M be an arbitrary single-tape nondeterministic Turing machine
of time complexity T'(n) > nlogn. Then there is a symmetric neural network N of
size O(T'(n)) with energy function E and a constant k such that M accepts its input
if and only if there is such an initial configuration of N for which a stable state with
energy < k is achieved.

Proof (Sketch). There is a reduction [R] from a single-tape nondeterministic Turing
machine with time complexity T'(n) > nlogn to a boolean formula f in conjunctive
normal form of length T'(n) which is satisfiable if and only if the machine accepts its
input. For this formula use the construction from the previous theorem. =

Observe the ‘cautious’ formulation of the last corollary: it is not claimed here
that N will always find a solution of the original problem. No doubt that the network
will converge to some stable state but not necessarily to that in which the value of E
is < k. The network will converge to that local minimum that is a so—called attractor
of the initial configuration of the network. Hence the convergence can be ‘directed’ by
a suitable choice of initial states of certain neurons — but Theorem 5.3. and its proof
show that exactly this presents an N P-complete problem by itself! This also seems
to be the bottleneck of analog Hopfield networks when used for solving N P—complete
problems (see e.g. [HT2]) where in order to obtain a correct or a good approximate
solution, it was necessary to set the initial values of analog variables so as they lie in
the region of attraction of sufficiently low local minimum of the corresponding energy
function.

Note also that if there were a uniform family of symmetric neural networks of
polynomial size, with weights also of polynomial size that would always find a solution
of some N P—complete problem, it would imply that P = NP = co — NP!

5.5 The terminating problem of parallel symmetric neural networks. Providing the
sequential computational mode Theorem 5.2 guarantees the termination of any sym-
metric neural network computations. Surprisingly the result does not hold for parallel
computational mode as seen from the simple example of a symmetric neural network
consisting od two zero—threshold neurons connected by an edge with weight equal to —1.
Starting from an initial configuration in which both neurons are in the same state the
network will flip—flop for ever between two configurations. However, the computation of
the same network will terminate when started in a configuration with different states of
both neurons. This observation can be generalized to the case of arbitrary symmetric
neural networks [BG,P].



14

Theorem 5.4. Starting from any initial configuration after at most O(p) parallel com-
putational steps any symmetric neural network N will alternate between two configu-
rations or will achieve a stable state (where p is the same as in Theorem 5.2).

Proof (Sketch). We shall construct a symmetric neural network M that will simulate N
in a sequential mode. M will consist of two sets of neurons — M, and M,, respectively.
There is one-to-one correspondence between neurons of N and My, and N and M; (and
therefore M, and M; are of equal cardinality). There are no connections among the
neurons in M, and the same holds for M;. However, if in N there is a neuron u that
is connected with neurons uy,...,u; for some k > 1, then the corresponding neuron in
M, is connected with the corresponding neurons in My, and vice versa. Doing so, the
respective weights and thresholds remain the same as in N.

At the beginning of the simulation of N by M the neurcns in M, are initialized
similarly as the neurons in N; neurons in M; are set into passive states. Then the
sequential simulation can start. First, the states of all neurons in M; are updated
sequentially, then again the states of all neurons in My, etc.

It is clear that during the simulation the following invariant holds: for ¢ even (odd),
after updating the states of all neurons in M, (M;), the configuration of neurons in M,
(M) corresponds to the configuration of neurons in N after :—th parallel step of N.

Since our simulation is sequential due to Theorem 5.2 it must terminate in some
stable configuration after at most O(p) computational cycles (note that the energy
function of M differs from that of N only by the multiplicative factor of 2). When in
this stable configuration of M the configuration of neurons in Mj is different from those
in M, the original parallel network N will alternate between these two configurations;
otherwise it will stop as well. »

6. Boltzmann Machines

6.1. Escaping from local minima. In the last section we have demonstrated a close con-
nection between nondeterministic computations and the minimization of energy function
that corresponds to some symmetric neural network. We have seen that in order to get
the correct result of the original nondeterministic computation it was necessary to en-
sure somehow, by a choice of a suitable initial configuration, the convergence of the
computation to some ‘sufficiently low’ local minimum — of course, the best of all, to a
global minimum.

However, since the finding of such a suitable initial configuration presents an N P-
complete problem by itself, as we have proved, even without knowing the theoretical
reason physicists devised other, in fact heuristics techniques how to increase the prob-
ability of arriving into some acceptable local minimum of energy function.

Roughly, the idea is as follows. We start from any initial configuration and wait
until the network converges by repeatedly transiting from a given configuration to a
configuration with a lower energy, in accordance with Theorem 5.2., into some stable
state. Now, if the value of the corresponding energy function is not sufficiently low, we
try to ‘escape’ from the local minimum we are in by changing temporarily the mode of
neuron computations! This is achieved by allowing also transitions from configurations
to other configurations with higher energy.

6.2. Simulated annealing. The mechanism that allows for escaping from local minima
of energy functions is the probabilism. Namely, we arrange the things so that the



15

neurons are not necessarily obliged to change their states as dictated by the deterministic
rule described in Section 3, i.e., depending on whether the total input exceeds the
corresponding threshold value or not. Rather, this change becomes now a subject
of a probabilistic decision — the neurons will change their state only with a certain
probability that can be controlled, so to speak, from outside.

From historical reasons in analogy with statistical mechanics (the behavior of sys-
tems with many degree of freedom in thermal equilibrium at a finite temperature) the
process of probability approaching 1 in the behavior of neurons is termed ‘temperature
lowering’ or ‘cooling’.

Thus, to escape from a local minimum (which, in physical terms, corresponds to
a complete ‘freezing’ of a system) we start to increase the temperature slowly in order
to come temporarily into higher energy states, and than again we start with cooling, in
hoping that we arrive into another local minimum, with lower energy than before.

The whole process is appropriately termed simulated annealing and its history goes
back to Metropolis et al. [MRRTT], and Kirpatrick et al. [KGV]. The corresponding
device is called a Boltzmann machine, and the above physical motivation explains how
Boltzmann’s name came into the play.

6.3. The Boltzmann machine definition. Formally, a discrete Boltzmann machine is
modeled by a symmetric neural network with neurons enhanced by a probabilistic mech-
anism.

Definition 6.1. A discrete Boltzmann machine is a symmetric neural network en-
hanced by a so-called temperature funetion v : N x Z — Z which assigns a ‘temperature’
to each neuron and time. m

The state of each neuron is updated as follows. The total input to the ¢—th neuron
u; in time m > 0 is given similarly as in Section 4 by the sum h;(m) = Y I a; jz;(m —
1), where a; ; € Z is the weight of an edge connecting u; with u;, and z;(m) is the state
of u; in time m. Then u; is active in time m with some probability p(h;(m) — t;,m) =
p(Ai(m),m), where t; is the threshold of u;. Typically, in the literature the activation
probability function p(A;(m),m) = 1/(1 + e~2:(m)/7(im)) j5 recommended.

Note that as 7 approaches oo, the above probability approaches 1/2, and thus the
network behaves more or less unpredictably, and as 7 approaches 0, the neurons start
to act deterministically, as in an ordinary neural network.

The machine usually operates in a parallel mode.

6.4. The art of simulated annealing. There is a lot of interesting and successful ex-
periments with simulated annealing used in solving various problems (like traveling
salesman problem and wire routing [KGV], independent set, max cut, graph coloring
[KA]) described in the literature. Most of the results were obtained with the help of an
analog Boltzmann machine, i.e., such where the ‘state’ of neurons can take continuous
values between 0 and 1.

Computational experiments with these machines seem to indicate that the conver-
gence to sufficiently minimal energy states need not occur if the temperature is lowered
too fast through many different levels. Thus various annealing schedules that could
guarantee the convergence to the global optimum have been investigated. Numerical
experience of most researchers recommends the following procedures to yield the best



16

results: iterate at a fixed temperature ‘long enough’ before lowering the temperature to
the next level. Then usually few different temperatures were sufficient.

Theoretical explanation why the latter procedure should be preferred over the first
one is given in [FS]. However, it must be noted that in general the convergence to a global
minimum could not be guaranteed and that the above methods can give acceptable
results only when good, not necessarily optimal solutions are sufficient to obtain.

6.5. Boltzmann machines and neural circuits. Bellow we shall sketch a recent and a
quite surprising result by Parberry and Schnitger [PS1, PS2| that Boltzmann machines
are not much more powerful than neural circuits introduced in Section 4.

More precisely these authors have shown that any Boltzmann machine of polyno-
mial time complexity as defined in Section 6.3 can be simulated by a neural circuit with
running time greater by a constant factor and size greater by a polynomial. It means
that probabilism and the related ability to perform simulated annealing are unimportant
from the complexity point of view!

The proofs of the above claim are based on known techniques from theory of itera-
tive arrays and combinatorial circuits. First, the cycles are removed from the intercon-
nection graph of a Boltzmann machine B at hand using the method of ‘unwrapping’
the computation in time, i.e., a circuit is build in which i—th layer corresponds to a
configuration of B immediately after performing its :—th computational cycle (similarly
as in the proof of Theorem 4.1). Then, the probabilism is removed from neurons firstly
by replacing each neuron by a small number of deterministic neurons with random in-
puts, and then by using the well-known technique by Adlemann [A] that transforms
the above circuit with random inputs to a completely deterministic one. As a result a
neural circuit equivalent to B with complexity characteristics as above is obtained.

6.6. The computational limits of Boltzmann machines. Although occasionally some
experimental researchers report that Boltzmann machines are surprisingly good in solv-
ing some N P—complete problems where only exact rather than approximate solutions
make sense (like in the 3-satisfiability problem — see e.g. [J]), and thus seem to indicate
that it might be the case that P = N P, we will further give a strong evidence why such
claims should be regarded with the greatest possible care.

Our reasoning will be based on some of our earlier results mentioned here and, for
the sake of correctness, it must be stressed that it holds only for discrete Boltzmann
machines.

Imagine therefore that we wish to solve some N P—complete problem P with the
help of a Boltzmann machine B as described in Section 6.2. Due to the last result from
Section 6.5 there is a neural circuit C of polynomial size that is equivalent to B. In
turn, according to Theorem 4.1, C is further equivalent to a symmetric neural circuit
N. To solve P on N we have to initialize N so as its computation ends in a stable state
with sufficiently low energy. According to Theorem 5.3 this presents an N P—complete
problem by itself!

Thus we see that unless P = N P even discrete Boltzmann machines do not present
a way to go round the intractability of N P—complete problems.

7. Conclusions

7.1. Summary. In the previous review we have presented basic models of abstract
discrete neural devices: single neurons, neural circuits, symmetric neural networks, and



17

Boltzmann machines. We have seen that except single neurons, whose computational
power is restricted to linearly separable boolean functions, all the other devices are
equivalent in the sense that they can compute any recursive function. For a given
boolean function we have shown that the problem of deciding whether there exists an
equivalent neural representation presents an intractable problem. Moreover, we have
seen that all the above neural networks can simulate each other with at most polynomial
increase in size and a constant increase in time — whether in a parallel or in a sequential
computational mode.

The link to traditional models of computations was provided via combinatorial
circuits. It is well-known that combinatorial circuits with bounded fan-in belong to a
so-called second machine class [vEB| that embodies machines allowing for unrestricted
parallelism. For instance, this class includes alternating Turing machines, vector ma-
chines, array processing machines, various versions of parallel RAM’s, etc. It follows
that neural circuits with bounded fan-in belong also to the second machine class, while
these with unbounded fan-in are outside of this class, since they can compute any
boolean function in a constant depth.

For symmetric neural networks it was shown that there is a close connection between
nondeterministic computations and minimization of corresponding energy functions.

Finally, the evidence was presented that even discrete Boltzmann machines, with
their added ability to perform simulated annealing, are not much more powerful than
simple models of neural nets.

7.2. The significance of neurocomputing . From the complexity point of view the previ-
ous results demonstrate that models of discrete neurocomputing just enrich the classic
repertoire of computational models by devices that are inspired by biological or physical
motivations — depending on which framework is preferred. The computational power
and efficiency of these models have been studied already for years and our review shows
in fact that most of results and open problems achieved in neural formalism can be
translated into other formalisms, and vice versa. Nevertheless, there are also results
specific to neurocomputing — most notably those concerning the relation between non-
deterministic computations and energy function minimization — that have brought new
insights into general mechanisms of computations.

Last but not least, the significance of discrete neurocomputing should be seen also
on a methodological level, where these models provide new natural conceptual tools for
modeling some problems that we believe can be related to brain activities.

References

[A] Adlemann, L.: Two Theorems on Random Polynomial Time, Proc. 19-th FOCS,
Washington D. C., 1978, pp. 75-83
[AH] Ackley, D. N. — Hinton, G. E. — Sejnowski, T. I.: A Learning Algorithm for
Boltzmann Machines. Cognitive Science 9, 1985, pp. 147-169
[B] Barahona, F.: On the Computational Complexity of Ising Spin Glass Models.
J. Phys. A. 15, 1982, pp. 3241-3253
[BG|] Bruck, J. — Goodman, J. W.: A Generalized Convergence Theorem for Neural
Networks and Its Application in Combinatorial Optimization. Proc. IEEE First
International Conf. on Neural Networks, Vol. 3, 1987, pp.649-656



18

[CKS] Chandra, A. K. — Kozen, D. C. — Stockmeyer, L. I.: Alternation. JACM 28, 1981,
pp- 114-133
[CSV] Chandra, A. K. — Stockmeyer, L. I. — Vishkin, U.: Constant Depth Reducibility.
SIAM J. Comput. Vol. 15, No. 3, 1984, pp. 423-432
[ESM] Egecioglu, O. — Smith, T. R. — Moody, I.: Computable Functions and Complexity
in neural networks. Tech. Rep. ITP-124, University of California, Santa Barbara,
1986
[FPPP| Farhat, N. H. — Psaltis, D. — Prata, A. — Paek, E.: Optical Implementation of
the Hopfield Model. Applied Optics, 24, 1985, pp. 1469-1475
[FS] Faigle, U. — Schrader, R.: On the Convergence Of Stationary Distributions in
Simulated Annealing Algorithms. Inf. Proc. Letters, 27, 1988, pp. 189-194
[F] Feldman, J. A.: Energy and the Behavior of Connectionist Models. Tech. Rep.
TR-155, University of Rochester, Nov. 1985
[GJ] Garey, M. R. — Johnson, D. S.: Computers and Intractability. A Guide to the
Theory of NP-Completeness. Freeman and Co., San Francisco, 1979
[H1] Hopfield, J. J.: Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proc. Natl. Acad. Sci. USA 79, 1982, pp. 2554-2558
[H2] Hopfield, J. J.: Neurons with Graded Response Have Collective Computational
Properties Like Those of Two—state Neurons. Proc. Natl. Acad. Sci. USA, 1984,
pp. 3088-3092
[H3] Hopfield, J. J.: The Effectiveness of Neural Computing. Proc. IFIP’89, North-
Holland, 1989, pp. 503-507
[HT1] Hopfield, J. J. — Tank, D. W.: ‘Neural’ Computations of Decisions in Optimization
Problems. Biol. Cybern. 52, 1985, pp. 141-152
[HT2] Hopfield, J. J. — Tank, D. W.: Computing with Neural Circuits: A Model. Science
233, 1986, pp.625-633
[J] Johnson, J. 1.: A Neural Network Approach to the 3-Satisfiability Problem. J. of
Parall. and Distrib. Comput. 6, 1989, pp. 435-449
[KGV] Kirkpatrick, S. — Gellat, C. D., Jr. — Vecchi, M. P.: Optimization by Simulated
Annealing. Science, 220, No. 4598, 1983
[KA] Korst,. J. H. M. — Aarts, E. H. L.: Combinatorial Optimization on a Boltzmann
Machine. J. of Parall. and Distrib. Comput. 6, 1989, pp. 331-357
[MRRTT] Metropolis, N. — Rosenbluth, A. — Rosenbluth, M. — Teller, A. — Teller, E.: J.
Chem. Phys., 21, 1087, 1953
[M] Minsky, M.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967
[Mu] Muroga, S.: Threshold Logic and Its Applications. Wiley-Interscience, New York,
1971
[MP] Minsky, M.— Papert, S.: Perceptrons. An Introduction to Computational Geome-
try. The MIT Press, Cambridge, Mass., 1969
[MTB] Muroga, S. — Tsubi, T. — Baugh, Ch. R.: Enumeration of Threshold Functions
of Eight Variables. IEEE Trans. on Comp., C-19, No. 9, 1970, pp. 818-825
[P] Parberry, I.: A Primer on the Complexity Theory of Neural Networks. Research
Report CS-88-38, Dept. of Comp. Sci., The Pennsylvania state university, October
1988

[PS1] Parberry, I. — Schnitger, G.: Parallel Computation with Threshold Functions.
JCSS 36, 1988, pp. 278-302



19

[PS2] Parberry, I. — Schnitger, G.: Relating Boltzmann Machines to Conventional models
of Computations. Neural Networks, 2, 1989
[RT] Reif, J. H. — Tate, S. R.: On Threshold Circuits and Polynomial Computation.
Technical Report, Dept. of Comp. Sci., Duke University, 1988
[R] Robson, J. M.: Linear Size Formulas for Non-deterministic Single Tape Computa-
tions. Proc. 11-th Australian Comp. Sci. Conference, Brisbane, Feb. 3-5, 1988
[vEB] van Emde Boas, P.: Machine Models and Simulations. ITLI Prepublication Series of
Computation and Complexity Theory CT-88-95, University of Amsterdam, 1988
[W1] Wiedermann, J.: On the Computational Power of Neural Networks and Related
Computational Systems. Technical Report OPS-9/1988, Department of Program-
ming Systems, VUSEI-AR, Bratislava, June 1988 (in Slovak), also in Proc. SOF-
SEM’88, VUSEI-AR Bratislava, November 1988, pp. 73-78
[W2] Wiedermann, J.: On the Computational Efficiency of Symmetric Neural Networks.
Proc. 14-th Symp. on Math. Found. of Comp. Sci.,, MFCS’89, LNCS Vol. 379,
Springer Verlag, Berlin, 1989, pp. 545-552



	fb1990-10-0001
	fb1990-10-0002
	fb1990-10-0003
	fb1990-10-0004
	fb1990-10-0005
	fb1990-10-0006
	fb1990-10-0007
	fb1990-10-0008
	fb1990-10-0009
	fb1990-10-0010
	fb1990-10-0011
	fb1990-10-0012
	fb1990-10-0013
	fb1990-10-0014
	fb1990-10-0015
	fb1990-10-0016
	fb1990-10-0017
	fb1990-10-0018
	fb1990-10-0019
	fb1990-10-0020

