
UC Irvine
ICS Technical Reports

Title
A metaphor and a conceptual architecture for software development environments

Permalink
https://escholarship.org/uc/item/0g233176

Authors
Shy, Izhar
Taylor, Richard
Osterweil, Leon

Publication Date
1989-07-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g233176
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A~Metaphor and a Conceptual Architecture
for Software Development Environments

Izhar _§hz_
Richard Taylor
Leon Osterweil

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Technical Report 89-23

2
b99
C3

no, '81-,)3

c,5

A Metaphor and a Conceptual Architecture for Software
Development Environments

Izhar Shy
Richard Taylor
Leon Osterweil

Department of Information and Computer Science
University of California, Irvine1 92717

14 July 1989

1This material is based upon work supported by the National Science Foundation under
Award No.s CCR-8704311 and CCR-8996102-01, both with cooperation from the Defense
Advanced Research Projects Agency, by the National Science Foundation under Award
No.s CCR-8451421 and CCR-8521398, Hughes Aircraft (PYI program), and TRW (PYI
program).

Contents

List of Figures 11

1 Introduction 1

2 Views of Software Development Environments 1
2.1 Function View 1
2.2 Object and Relations View 2
2.3 Software Process View . . . 3

3 Process Organization in Software Development Environments 4
3.1 Hierarchical Contracts Model 4
3.2 Individual/Family/City/State Model 4
3.3 Corporation Model 6

4 The Corporation Model 7
4.1 Description 7

4.1.1 Initial Components . 7
4.1.2 Active Agents 8
4.1.3 Infrastructure Creation 10
4.1.4 Corporate/Environment Organization 12

4.2 Organizations Induced by Relationships between Agents 14
4.2.1 Corporate Autocracy . . . 14
4.2.2 Radical Decentralization . 14
4.2.3 Federal Decentralization .

5 Relations among Contexts and Agents
5.1 Instantiator /De-instantiator of ..
5.2 Grants/Denies Access to Resources
5.3 Binding/Unbinding Resources .
5.4 Corresponding with
5.5 Communication issues

·.

15

16
16
17
17
18
18

6 Mapping from a Conceptual Architecture to an Implementation 19

7 Summary and Conclusion 20

References 21

(

Abstract

A conceptual architecture for software development environments (SDEs) is pre­
sented in terms of a new metaphor drawn from business enterprises. A metaphor
is employed as the architecture is complex, requiring understanding from several
perspectives. The metaphor provides a rich set of familiar concepts that strongly
aid in understanding the environment architecture and software production. The
metaphor is applicable to individual programming environments, software devel­
opment environments supporting teams of developers, and to large-scale software
production as a whole.

The paper begins by considering three perspectives on SDEs, a function-based
view, an objects-and-relations view, and a process-centered view. The process
view, being the most encompassing, is held through the remainder of the pa­
per. Three metaphors for organizing and explaining a process-centered environ­
ment are then examined, including the hierarchical contract model and the indi­
vidual/family/ city/ state model. Next the corporation model is introduced and a
detailed analogy is drawn between corporations and software development environ­
ments. Within the context of the corporation metaphor, three corporate organi­
zation schemes are reviewed and federal decentralization is argued to be most ap­
propriate for an SDE. Relationships induced by such an organization are discussed
and a mapping between the conceptual architecture and a possible implementation
architecture is briefly discussed.

Keywords: models of software development; software development environ­
ments; process modeling; software factory; scalable, heterogeneous architectures;
metaphors.

mechanisms that aid in building systems; function to function communication is
achieved through byte streams. In Interlisp the functions are structured around an
interpreter and a shared data structure for representing Lisp programs.

This view is deficient in a number of respects:

• the approach taken is low level - there is no particular organization of the
active elements of the environment and there is little distinction between the
conceptual architecture and the implementation architecture,

• only one person can interface with a tool at any one time, and most important

• the approach stresses the way tools operate and not what they produce, and
certainly not why they do so.

2.2 Object and Relations View

Stoneman [BD80), and later Osterweil [Ost81], recognizing the limitations of the
function model, proposed that, since the whole purpose of software development
is to produce objects (code, documentation, design, etc.), an object-centered view
of the environments should be adopted. In this view tools and project efforts are
coordinated by access to a central repository of information. The set of objects
captures the state of the system, and is manipulated by applying operations.

Such systems often store object histories (versions) as well as object derivations
(structures indicating which objects have been produced from which other objects).
It should be noted that, from this view, objects are considered passive entities,
mostly responding to requests and not initiating activities on their own.

Odin [C089) and Apollo's Domain Software Engineering Environment (DSEE)
[LRPC84) are examples of environments integrated according to this view. In Odin,
the environment is viewed as a collection of tools which are satellites around a large
structured data repository. Similarly, DSEE provides a comprehensive set of data
bases for coordinating the building and maintenance of software systems.

While a major improvement over the function view, some deficiencies are to be
found.

• There is emphasis on what is being done while the details of how to generate
an object are mostly overlooked. More to the point, the purpose of object
generation (why) is still ignored.

• While software artifacts are organized in this view, there is typically no signif­
icant organization of the active elements in the environment. Moreover there
is no clear way in which software environments scale from small object/tool
bases to very large ones.

2

(

3 Process Organization in Software Development En­
vironments

A useful approach to deciding the conceptual organization of a software process en­
vironment is to look for analogies in other domains where multiple users, activities,
projects, and so forth form structured, coordinated aggregates. That is, we seek
another domain where process is paramount. However, the selection of an analogy
most useful in explicating the architecture of an SDE should also help determine
the structure/organization of the environment. It should help determine the proper
mechanisms that link the software development problem with its solution.

The following analogies are thus useful.

3.1 Hierarchical Contracts Model

In this model, proposed by Dowson [Dow86], each identified process in a software
development activity is carried out in fulfillment of an agreed upon contract. The
entities in the model play two roles.

• Clients, which define by means of a contract, the deliverables, acceptance
·criteria, resources, schedules, and reporting requirements to be followed.

• Subcontractors, which conduct activities as specified by clients.

This model has been implemented and is available as a commercial product named
!STAR.

While the model exhibits some clear strengths, some significant limitations can
be identified.

In general the contracting structure allows too little interaction. Although it is
possible for contracts to be, in turn, subdivided into additional subcontracts, the
organization allowed by the model is restricted to a pure tree structure. More­
over sharing of data between contracted tasks is not allowed. Each contractor
can proceed autonomously, recording all pertinent information in a local "contract
database". No provision is made for sharing of such information between contrac­
tors, however. Formal channels of communications strictly follow the organization
structure of a project. No lateral communications between contractors exist. This
makes communication among sibling and cousin tasks expensive and ungainly.

3.2 Individual/Family /City /State Model

This model was proposed by Perry and Kaiser [PK88] at ICSE9 and views environ­
ments as consisting of policies, mechanisms, and structures. Policies are the rules
imposed on the users, mechanisms are the functions (or tools), and the structures
are the objects on which such tools operate. The model then uses a sociological

4

3.3 Corporation Model

This new model draws similarly from a sociological metaphor; software development
environments are seen as analogous to corporate organizations. We will show how
this metaphor avoids the problems mentioned above and in fact presents useful
guidance in the design of a SDE.

We can envision a corporation as consisting of four major components: Re­
sources, Descriptions, Support Groups, and Active Agents. Resources in a business
enterprise are of two types, physical and human. A corporation's descriptions in­
clude its charter which is a description of its goals, nature of its business, and prod­
ucts, and its corporate job description. Support groups, such as payroll or facilities
maintenance, provide services to other components of the corporations. A corpora­
tion's active agents are its managers and associates. Managers are responsible for
directing the activities of Associates who execute such activities as designated in
their job description or statement-of-work. Resources are provided by managers to
associates in order to enable performance of the work assigned to them.

Similarly we argue that in process-oriented software development environments
there are also four major components: Resources, Descriptions, Infrastructure, and
Active Agents. Resources are people, objects, processors, and so forth. Descrip­
tions are process specifications which indicate the purpose and objectives of an
environment and process descriptions which are vehicles for expression, with the
aid of programming techniques, of how the process specification is to be achieved.
Environment infrastructure consists of all mechanisms necessary for automated in­
terpretation of process programs. An environment's active agents are its software
processes and software tools. Software processes represent execution of process
programs, while software tools represent execution of tool descriptions 2 .

It can therefore be seen that while the purpose of a corporation is to "support
its owners" in some business activity (economic performance), the purpose of an
environment is to "support its users" in software activities.

For abbreviation purposes we will use the term "agent" as a substitute for man­
agers and associates in the corporation model and software processes and software
tools in SDEs.

2 As will be seen later the distinction between software process and tool is typically one of
perspective, in the same way that to a president a vice-president is an associate, while to the
vice-president's staff the vice president is a manager.

6

to implement projects and create products. Since corporations are "goal oriented"
and they operate in most cases with the intent of generating profit, they must
be provided with a charter which defines inter alia: its name, purpose, place of
business, nature of business, names of incorporators, products, etc. In other words,
the charter identifies the "goal and purpose" of the corporation.

Specifying the goals and purpose of an organization (the "what"), is not sufficient
to encompass the description of its operation. It is also necessary to provide it with
specifications of the jobs that have to be performed by it, i.e. how various jobs are
to be carried out. Such specifications are available in the form of job descriptions,
corporate "standard operating procedures", work breakdown structures, task orders,
and the like.

Both charters and job descriptions are static, inert entities essential for the
instantiation and activation of any business organization.

In the SDEs domain the process specification corresponds to the charter in the
corporation domain. It identifies the the "goal and purpose" of software activities
but does not specify the way such activities are to be carried out. The process de­
scription is roughly equivalent to the detailed work breakdown structures in the cor­
poration domain but process descriptions are far more formal and specific [Ost87].
Process descriptions may also be viewed as process programs.

4.1.2 Active Agents

The initial components of the corporation - resources and descriptions - are un­
able by themselves to perform, i.e. to execute any work on behalf of the corporation.
The actual work is performed by active agents created from the basic components.
Figure 2 shows how such creation is taken place: physical and human resources are
assigned to job descriptions in keeping with the charter thus creating active agents.
In corporations such agents are managers and associates.

Similarly, in the SDE domain, resources such as people and processors machines
are bound to process programs in keeping with the process specification creating
active agents - software processes and software tools. The actual binding operation
is performed by another active agent, and is discussed in section 4.1.3.

Managers/Software Processes Managers create a productive entity containing
more than the sum ofresources put into it and, at the same time, harmonize in their
decisions _and actions the requirements of immediate and long-range future. They
are active agents provided with goals by the corporation and their superiors. In
the SDE domain, managers have their analogue in software processes. The goals in
software projects are the creation and maintenance of software products and such
goals are achieved by execution of process programs.

Managers perform the following functions:

8

(

selves and their colleagues, and between their subordinates. Similarly, soft­
ware processes may establish and control communication links upwards, down­
wards and sideways.

• Process Control - Managers are also responsible to monitor their subordinates
in order to ensure that proper project performance is achieved. They must
be able to detect any deviations from the project specification and schedule
and take appropriate measures to correct them. Similarly, software processes
must be able to monitor and control the execution of subordinate processes
and tools and to make adjustments or modifications in such subordinates that
fail to perform properly.

• Measurement - Successful managers must establish criteria and yardsticks by
which to analyze, appraise, and interpret the performance of their subordi­
nates. Similarly, software processes must be provided with means for mea­
surement of their subordinate software processes and tools3 .

Associates/Software Tools Associates execute work designated by managers.
As such, similarly to managers, they are "active agents". They are created by
binding job descriptions or work breakdown structures to people.

Associates are robust in that they have:

• autonomy i.e. the ability to make decisions,

• internal structure i.e. the ability to subdivide their tasks thus becoming man­
agers themselves,

• organizational ability i.e. the ability to determine their interactions with other
associates within same bounds.

In the SDE domain, associates find their corresponding entity in software tools and
software processes executed by people. The robustness of software tools is evident in
their ability to become software processes and recursively spawn additional software
processes and tools.

4.1.3 Infrastructure Creation·

In corporations the board of directors selects the Chief Executive Officer (CEO); in
SDEs the boot operation creates the Root Process. These initial active agents are

3If we wanted to press the analogy even further, we could add:
Subordinate Development - Managers are responsible for helping their subordinates grow and im­
prove their skills through training and personal example. Similarly some software processes may
be allowed to modify ~ther process programs to meet new objectives.

10

User Interface
Management

System

"Makes a request upon"

,--------------,
All Variant Entities, e.gl

- - - ___ ~ Data Objects :
1 Relationships 1
1 Tools 1
I I
1 Process Descriptions 1 L _____________ _J

Figure 4: Infrastructure components and variant entities

• A process programming language system (PPLS) including a process program
language and a system enabling the interpretation of programs written in the
language.

• A object management system (OMS), which provides the facilities for man­
aging persistent typed objects.

• A user interface management system (UIMS), which provides the human user
with access to the functions supported by the environment4 .

4.1.4 Corporate /Environment Organization

In order to become active enterprises, in addition to the infrastructure, corporations
need to create the proper organization structure by instantiating its operating unit!?
and providing them with. proper resources.

Figure 5 shows how an agent within a corporate unit at one level can instantiate
a unit at an immediately lower level by providing the new unit with its charter
and job, as well as granting access to resources to be used by the new unit. The

4 The "underlying machine" which encapsulates functions provided by a Virtual Operating Sys­
tem (VOS) finds its corporation model equivalent in those individuals or groups chartered with
providing all foundational functions in order to ensure the proper operation of the environment
infrastructure. Electricity, water, and similar other basic foundational services are examples in the
corporation model.

12

IS-a

Managers
Processes

Corporation Unit
Environment Context

/ ' consists-of consists-of consists-of
-..............

consists-of

Support Groups
Infrastructure

Descriptions

is-a

activities.

Physical
Resources

IS-a

Human
Resources

IS-a

Charter
Process Specification

Figure 6: Components of a corporation unit/environment context

4.2 Organizations Induced by Relationships between Agents

is-a

Job Description
Process Description

No connection has yet been established between agents and the support groups
higher up in the hierarchy of units. The agents in a corporation do not exist in a
vacuum; they are interrelated to each other and to the corporation's support groups
in order to achieve their goals. Depending upon the level of autonomy allowed the
agents in a corporation it is useful to identify the following organizational structures.

4.2.1 Corporate Autocracy

In such a structure, agents utilize only global support services provided by the cor­
porate headquarters for all mechanisms needed in carrying out their functions. The
control on the structure of the organization is extremely tight and agents are not
given any freedom in selecting the provider of services they need. For example,
all divisions in an organization are directed, by policy, to utilize corporate services
for payroll, computer services, legal, etc. They are specifically forbidden to pro­
vide such services within their own unit. Communication between agents may be
proscribed to be strictly upwards and downwards in the hierarchy. The analogy in
environments is to software processes and tools that use only global services, such
as the OMS, UIMS, and PPLS given the example description of the components of
an environment infrastructure in section 4.1.3.

4.2.2 Radical Decentralization

Here the corporation has no global support groups and all needed functions are per­
formed by the agents themselves. The control on the structure of the organization

14

(

selves. The communication however, is established under guidelines that are
determined by the policy (process specification) of the organization.

• Flexibility in the structure allows for diversity of services. For example, orga­
nizations are able to experiment with different payroll systems concurrently in
several units, without any disturbance to the global payroll service provided
to remaining units.

• Organizations become extensible with minimum disruption since integration
of services can be implemented gradually.

• Organizations can grow easily because the support services can be used from
many levels within the organization.

• The model allows for foreign tool importation; it is analogous to having a
corporation acquire a new corporation, allowing it to operate as an semi­
independent unit.

5 Relations among Contexts and Agents

Agents exist in both the corporate model and SDEs; they interact with each other
in a variety of ways according to relationships established between them. We now
describe various of the key relationships needed in a federal decentralization process
environment.

5.1 Instantiator /De-instantiator of

In the corporate model, to instantiate or create a new unit is to generate a new en­
tity that is identifiable by name. From this moment on, the new unit is recognized
as "existing" as a member in the community of units including all the machinery
required to interface with the support staff within the corporation. This involves
creation of a new unit in a corporation, providing it with its charter and job de­
scriptions, and naming its manager. It should be noted here that the naming of a
manager in no way implies that such a unit has been activated and made opera­
tional. The instantiation action is best illustrated in figure 5.

In SDEs agents within contexts instantiate other contexts; the new contexts
becoming_ members of the community of contexts and containing machinery to in­
terface with the environment infrastructure (PPLS, OMS and UIMS) and other
VOS services. It should also be noted that neither transfer of resources from the in­
stantiator, nor binding of any resources in the instantiated context has taken place.
The instantiation of a new context does not activate it either (see below).

16

The hierarchical decomposition of a corporation, considered with the limited het­
erogeneity of the federal decentralization model, argues for mechanisms to support
component implementation that follow the client/server modeL That would enable
effective use of a support service within one context by agents in another. While
other desirable properties could be enumerated, we think it is clear that an effective
implementation of the conceptual architecture presented in this paper could fully
utilize the novel characteristics of modern distributed operating systems.

7 Summary and Conclusion

Current activities in modeling and developing software development environments
have produced a number of proposals for conceptual architectures focusing on var­
ious metaphors. This paper has presented a view that is useful in deriving a sound
conceptual architecture from which several implementation architectures are possi­
ble.

It is our contention that the software process view is the most encompassing and
comprehensive and that it is the view that be taken in the conceptual architecture
of SDEs in the future.

Another issue as presented here is the development of a conceptual architecture
based upon sociological metaphors. Here the proposed corporation model seems to
provide useful insights into the structure and organization of an SDE that can serve
as a foundation for its conceptual architecture.

It should be noted that the proposed model differs in some key ways from the
"software factory" model [Mat87). The factory model tends to suggest a structure
and organization where most of the operations are geared to the generation of
specific products, and such operations are mostly mechanical, automatable, and,
surely, easily organized. As such, little flexibility or creativity is possible or expected.
On the other hand, our corporation model enables much more prominence to be
placed on the role of creative individuals. Furthermore modern corporations are
highly flexible and allow for more complex structures in their organization.

Lastly, we note that Conway [Con68) postulated that "there is a very close
relationship between the structure of a system and the structure of the organization
which designed it". The statement was meant in a derogatory way, i.e. that systems
tend to be complex, cumbersome, and difficult to use and understand because their
structure is homomorphic to the producing organization. Our thesis is different:
modern corporations exhibit remarkable similarities across diverse product ventures
and even different cultures. The· common character and success of corporations is,
we believe, due to their ability to effectively manage complex development activities
in which change to products, change to the processes that control product creation,
and change to the organizational structure itself are common. Since complexity and
change characterize software development we can learn and apply principles from

20

[Ost87] L. J. Osterweil. Software processes are software too. In Proceedings of
the Ninth International Conference on Software Engineering, pages 2-
13, Monterey, CA, March 1987.

[PK87] Dewayne E. Perry and Gail E. Kaiser. Infuse: A Tool for Automatically
Managing and Coordinating Source Changes in Large Systems. In
ACM Fifteenth Annual Computer Science Conference, pages 292-299,
St. Louis, MO, February 1987.

[PK88] Dewayne E. Perry and Gail E. Kaiser. Models of Software Development
Environments. IEEE Transactions on Software Engineering, 10(4):60-
68, April 1988.

[Roc75] M. J. Rochkind. The Source Code Control System. IEEE Transactions
on Software Engineering, 1(4):364-370, December 1975.

[TBC*88] . Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil,
Richard W. Selby, Jack C. Wileden, Alexander L. Wolf, and Michal
Young. Foundations for the Arcadia environment architecture. In Pro­
ceedings of ACM SIGSOFT '88: Third Symposium on Software Devel­
opment Environments, pages 1-13, Boston, November 1988. Appeared
as Sigplan Notices 24(2) and Software Engineering Notes 13(5).

[Tic82] Walter F. Tichy. Design, implementation, and evaluation of a revision
control system. In Proceedings of the Sixth International Conference
on Software Engineering, pages 58-67, Tokyo, Japan, September 1982.

[TM81] W. Teitelman and L. Masinter. The Interlisp programming environ­
ment. IEEE Computer, 14(4):25-33, April 1981.

[WWRT89] Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and
Peri L. Tarr. lfTM-0: Initial Proposal for a Unified Type Model for
Arcadia Environments. Arcadia Technical Report UM-89-01, Univer­
sity of Massachusetts, Amherst, 1989.

22

