UC Irvine
ICS Technical Reports

Title
A metaphor and a conceptual architecture for software development environments

Permalink
https://escholarship.org/uc/item/09233176

Authors

Shy, Izhar
Taylor, Richard
Osterweil, Leon

Publication Date
1989-07-14

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0g233176
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

A Metaphor and a Conceptual Architecture
for Software Development Environments

Izhar Shy,
Richard Taylor
Leon Osterweil

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92717

Technical Report 89-23

Z

679

C3

no, ¥923
C.3

A Metaphor and a Conceptual Architecture for Software
Development Environments

Izhar Shy
Richard Taylor

Leon Osterweil

Department of Information and Computer Science
University of California, Irvine! 92717

14 July 1989

1This material is based upon work supported by the National Science Foundation under
Award No.s CCR-8704311 and CCR-8996102-01, both with cooperation from the Defense
Advanced Research Projects Agency, by the National Science Foundation under Award
No.s CCR-8451421 and CCR-8521398, Hughes Aircraft (PYI program), and TRW (PYI
program).

Contents
List of Figures
1 Introduction

2 Views of Software Development Environments

2.1 Function View i e e e e
2.2 Object and Relations View
2.3 Software Process View v i i i i i e e

3 Process Organization in Software Development Environments
3.1 Hierarchical Contracts Model

3.2 Individual/Family/City/State Model
3.3 Corporation Model e

4 The Corporation Model
4.1 Description e e e e
4.1.1 Initial Components v i e e
4.1.2 Active Agents e e e e e e
4.1.3 Infrastructure Creation

4.1.4 Corporate/Environment Organization
4.2 Organizations Induced by Relationships between Agents

4.2.1 Corporate Autocracy o v v v i e
4.2.2 Radical Decentralization
4.2.3 Federal Decentralization
5 Relations among Contexts and Agents
5.1 Instantiator/De-instantiatorof
5.2 Grants/Denies Access to Resources
5.3 Binding/Unbinding Resources
5.4 Corresponding with
5.5 Communication issues I T

6 Mapping from a Conceptual Architecture to an Implementation
7 Summary and Conclusion

References

List of Figures

O U W N =

Basic components of corporations and environments 7
Creation of active agents 9
Infrastructure creation 11
Infrastructure components and variant entities 12
Introducing hierarchy into corporations/environments 13

Components of a corporation unit/environment context 14

ii

o

Abstract

A conceptual architecture for software development environments (SDEs) is pre-
sented in terms of a new metaphor drawn from business enterprises. A metaphor
is employed as the architecture is complex, requiring understanding from several
perspectives. The metaphor provides a rich set of familiar concepts that strongly
aid in understanding the environment architecture and software production. The
metaphor is applicable to individual programming environments, software devel-
opment environments supporting teams of developers, and to large-scale software
production as a whole,

The paper begins by considering three perspectives on SDEs, a function-based
view, an objects-and-relations view, and a process-centered view. The process
view, being the most encompassing, is held through the remainder of the pa-
per. Three metaphors for organizing and explaining a process-centered environ-
ment are then examined, including the hierarchical contract model and the indi-
vidual /family/city/state model. Next the corporation model is introduced and a
detailed analogy is drawn between corporations and software development environ-
ments. Within the context of the corporation metaphor, three corporate organi-
zation schemes are reviewed and federal decentralization is argued to be most ap-
propriate for an SDE. Relationships induced by such an organization are discussed
and a mapping between the conceptual architecture and a possible implementation
architecture is briefly discussed.

Keywords: models of software development; software development environ-
ments; process modeling; software factory; scalable, heterogeneous architectures;
metaphors.

1 Introduction

The distinction between a system’s conceptual architecture and its implementation
architecture is between how the system is to be thought of by the system’s users
and how it is actually constructed. The conceptual architecture should reveal, to
the end user, how the problem for which the system was constructed is addressed.

The presentation of a conceptual architecture for software development envi-
ronments is a main contribution of this paper. This architecture is presented in
terms of a new metaphor for software environments and indeed for software pro-
duction as a whole. The metaphor is drawn from business enterprises. A metaphor
is employed as the architecture is complex, requiring understanding from several
perspectives. The metaphor provides a rich set of familiar concepts that strongly
aid in understanding the environment architecture and software production.

The paper is organized as follows: a brief historical view of environment develop-
ments is presented first. This reveals our focus on process-centered environments.
Three different metaphors for software environments are then considered, two of
which are well-known, having previously appeared in the literature. The corpora-
tion metaphor is then introduced. Subsequent sections present the details of the
metaphor and the corresponding components and aspects of software environments.

. Within the context of the corporation metaphor a particular kind of corporate or-
ganization, viz. federal decentralization, is then argued as particularly appropriate
for organizing software environments.

While the metaphor and conceptual architecture are the contributions of the
paper, the reader may not necessarily be convinced immediately that an achievable
implementation architecture exists for environments organized according to the fed-
eral decentralization model. We therefore include a very brief section addressing
this.

2 Views of Software Development Environments

Software development environment architects have taken several different approaches
to supporting users in their tasks, including: a function view and an ob ject and rela-
tions view. We consider these briefly, then describe our viewpoint, namely a process
view.

2.1 Function View

In this view, environments are seen as consisting of relatively unstructured collec-

tions of functions invokable by “one” person.
UNIX (when considered as an environment) [KM81] and Interlisp [TM81] are
examples of this approach. In UNIX the user is provided with low-level support

mechanisms that aid in building systems; function to function communication is
achieved through byte streams. In Interlisp the functions are structured around an
interpreter and a shared data structure for representing Lisp programs.

This view is deficient in a number of respects:

¢ the approach taken is low level — there is no particular organization of the
active elements of the environment and there is little distinction between the
conceptual architecture and the implementation architecture,

¢ only one person can interface with a tool at any one time, and most important

o the approach stresses the way tools operate and not what they produce, and
certainly not why they do so.

2.2 Object and Relations View

Stoneman [BD80], and later Osterweil {Ost81], recognizing the limitations of the
function model, proposed that, since the whole purpose of software development
is to produce objects (code, documentation, design, etc.), an object-centered view
of the environments should be adopted. In this view tools and project efforts are
coordinated by access to a central repository of information. The set of objects
captures the state of the system, and is manipulated by applying operations.

Such systems often store object histories (versions) as well as object derivations
(structures indicating which objects have been produced from which other objects).
It should be noted that, from this view, objects are considered passive entities,
mostly responding to requests and not initiating activities on their own.

Odin [CO89] and Apollo’s Domain Software Engineering Environment (DSEE)
[LRPC84| are examples of environments integrated according to this view. In Odin,
the environment is viewed as a collection of tools which are satellites around a large
structured data repository. Similarly, DSEE provides a comprehensive set of data
bases for coordinating the building and maintenance of software systems.

While a major improvement over the function view, some deficiencies are to be

found.

e There is emphasis on what is being done while the details of how to generate
an object are mostly overlooked. More to the point, the purpose of object
generation (why) is still ignored.

e While software artifacts are organized in this view, there is typically no signif-
icant organization of the active elements in the environment. Moreover there
is no clear way in which software environments scale from small object/tool

bases to very large ones.

¢ The paradigm is well suited for writing a system which a single individual at
a workstation can understand in its entirety, but is less suitable for multiple
users.

2.3 Software Process View

In this approach environments are seen as entities to support a well-defined pro-
cess. The process ideally captures the purpose, as pre- and post-conditions for a
development activity, as well as the plan for orchestrating the development. As
process-support entities, environments are thus concerned with the functions used
and the objects built. In other words, this approach integrates the function view
and the object view in the context of the purpose for this application or creation.

Another feature of this view is that it supports representation of how humans
participate in the activities of the environment. Moreover, while the implementa-
tions of thi€ two previous views have tended to presuppose that only one person
interacted with environment facilities at a time, here multiple persons can partici-
pate in a way specified as part of the environment. The environment can support
description of exactly how individuals interact, or do not interact, in cooperating
to achieve the common goal of software development.

Arcadia [TBC*88] is an example of an environment being built using such a
view, where the processes supported are programmed for individual project needs!.

Some additional features that characterize this view are as follows.

o The approach invites a view in which machines and individuals operate con-
currently and in co-operation with the goal of accomplishing software tasks,
potentially yielding a finely structured organization of all the active elements
in the environment.

o The paradigm is well suited for supporting the writing of systems in which sev-
eral individuals operate at workstations, but where each individual is looking
at only a part of the total system. A process can be constructed to coor-
dinate the activities. Since it is expected that systems of the future will be
more complex, embodying multiple users, machines and even subsystems, this
approach will become increasingly attractive.

Additional advantageous features of this view will become apparent in the sub-
sequent sections.

1One could also construct a process environment where the process supported was fixed. While
such an environment might be useful in certain limited development settings, the limitations of
such an approach are so obvious that further discussion of process environments is limited to those
enabling extension, change, and development of new processes.

o~

3 Process Organization in Software Development En-
vironments

A useful approach to deciding the conceptual organization of a software process en-
vironment is to look for analogies in other domains where multiple users, activities,
projects, and so forth form structured, coordinated aggregates. That is, we seek
another domain where process is paramount. However, the selection of an analogy
most useful in explicating the architecture of an SDE should also help determine
the structure/organization of the environment. It should help determine the proper
mechanisms that link the software development problem with its solution.
The following analogies are thus useful.

3.1 Hierarchical Contracts Model

In this model, proposed by Dowson [Dow86], each identified process in a software
development activity is carried out in fulfillment of an agreed upon contract. The
entities in the model play two roles.

¢ Clients, which define by means of a contract, the deliverables, acceptance
-criteria, resources, schedules, and reporting requirements to be followed.

o Subcontractors, which conduct activities as specified by clients.

This model has been implemented and is available as a commercial product named
IsTAR.

While the model exhibits some clear strengths, some significant limitations can
be identified.

In general the contracting structure allows too little interaction. Although it is
possible for contracts to be, in-turn, subdivided into additional subcontracts, the
organization allowed by the model is restricted to a pure tree structure. More-
over sharing of data between contracted tasks is not allowed. Each contractor
can proceed autonomously, recording all pertinent information in a local “contract
database”. No provision is made for sharing of such information between contrac-
tors, however. Formal channels of communications strictly follow the organization
structure of a project. No lateral communications between contractors exist. This
makes communication among sibling and cousin tasks expensive and ungainly.

3.2 Individual /Family /City /State Model

This model was proposed by Perry and Kaiser [PK88] at ICSE9 and views environ-
ments as consisting of policies, mechanisms, and structures. Policies are the rules
imposed on the users, mechanisms are the functions (or tools), and the structures
are the objects on which such tools operate. The model then uses a sociological

metaphor, classifying environments into four categories: individual, family, city,
and state on the basis of the policy/mechanism/structure criteria.

e In the individual model, mechanisms (tools) and their construction are em-
phasized, UNIX and Interlisp once again being typical examples of such envi-
ronments.

¢ In the family model structures (objects) and coordination between them are
the main aspects. Odin, RCS [Tic82], SCCS [Roc75] and DSEE are examples
for such environments. '

¢ In the city model policies and cooperation mechanisms are characteristic.
IsTAR and INFUSE [PK87] (an environment developed by Perry and Kaiser)
are viewed as instances of such environments.

o The state model represents the the culmination of high level policies imple-
mented on common mechanisms and structures. There are no instances of
this model in any existing environments, according to Perry and Kaiser.

This classification of SDEs is similar to the view of SDEs proposed in this paper.
The individual model matches our function view and the family model our object
* view. The city and state models do not adequately capture the notion of a software
process environment, however.
The approach taken by the authors has some further limitations:

e Perry and Kaiser have not drawn from the analogy any details concerning
how to build an environment. No refinement was proposed to expand on the
abstractions; the major concern seems to be only the creation of a taxonomy
for SDEs and not determining SDEs architectures.

¢ The individual/family/city/state structure implies a hierarchy: families con-
tain several individuals, cities several families, and so forth. The analogy fails,
however, when an attempt is made to apply it to environments. No hierar-
chies nor any formal relationships are found to exist between the various SDEs
presented. For example, Unix is not a member of the RCS family, nor is Odin
a family within INFUSE.

o The sociological metaphor chosen does not seem to provide any clues as how
environments should be architecturally built, nor how they operate as far as
policies/mechanisms/structures are concerned.

To summarize, the taxonomy used in the model deals mainly in scale and rela-
tionships within environments. It can be argued that the model proposed is not
sufficiently rich to serve as a blueprint of how to build a highly integrated environ-
ment which is nonetheless extensible, scalable, and flexible.

3.3 Corporation Model

This new model draws similarly from a sociological metaphor; software development
environments are seen as analogous to corporate organizations. We will show how
this metaphor avoids the problems mentioned above and in fact presents useful
guidance in the design of a SDE.

We can envision a corporation as consisting of four major components: Re-
sources, Descriptions, Support Groups, and Active Agents. Resources in a business
enterprise are of two types, physical and human. A corporation’s descriptions in-
clude its charter which is a description of its goals, nature of its business, and prod-
ucts, and its corporate job description. Support groups, such as payroll or facilities
maintenance, provide services to other components of the corporations. A corpora-
tion’s active agents are its managers and associates. Managers are responsible for
directing the activities of Associates who execute such activities as designated in
their job description or statement-of-work. Resources are provided by managers to
associates in order to enable performance of the work assigned to them.

Similarly we argue that in process-oriented software development environments
there are also four major components: Resources, Descriptions, Infrastructure, and
Active Agents. Resources are people, objects, processors, and so forth. Descrip-
tions are process specifications which indicate the purpose and objectives of an
environment and process descriptions which are vehicles for expression, with the
aid of programming techniques, of how the process specification is to be achieved.
Environment infrastructure consists of all mechanisms necessary for automated in-
terpretation of process programs. An environment’s active agents are its software
processes and software tools. Software processes represent execution of process
programs, while software tools represent execution of tool descriptions 2.

It can therefore be seen that while the purpose of a corporation is to “support
its owners” in some business activity (economic performance), the purpose of an
environment is to “support its users” in software activities.

For abbreviation purposes we will use the term “agent” as a substitute for man-
agers and associates in the corporation model and software processes and software
tools in SDEs.

2As will be seen later the distinction between software process and tool is typically one of
perspective, in the same way that to a president a vice-president is an associate, while to the

vice-president’s staff the vice president is a manager.

Corporation
Environment

. / \ .
consists-of consists-of

&
Resources Descriptions

R /N

is-a is-a is-a 18-a

Physical Human Charter Job Description
Resources Resources Process Specification Process Description
Legend:

Roman font = Corporation model
Italic font = Environment model
If box contains only Roman font, it applies to both models.

Figure 1: Basic components of corporations and environments

4 The Corporation Model

4.1 Description
4.1.1 Initial Components

Our corporation model portrays a corporation as consisting initially of two basic
components: Resources and Descriptions. Figure 1 presents a view of corporations
and environments consisting of these components. '

Resources: Economic activity requires two kinds of resources: physical resources
such as land, buildings, offices, supplies and capital; and human resources — people.
In order to operate successfully, a business enterprise must be able to attract both
physical and human resources and put them in productive use.

In environments, software development activity requires physical resources such
as objects, processors, and communication channels, as well as human resources
that can perform creative development activities.

Charters/Job Descriptions Corporations are associations formed in order to
carry on some commercial or industrial undertaking, and they provide the machinery

to implement projects and create products. Since corporations are “goal oriented”
and they operate in most cases with the intent of generating profit, they must
be provided with a charter which defines inter alia: its name, purpose, place of
business, nature of business, names of incorporators, products, etc. In other words,
the charter identifies the “goal and purpose” of the corporation.

Specifying the goals and purpose of an organization (the “what”), is not sufficient
to encompass the description of its operation. It is also necessary to provide it with
specifications of the jobs that have to be performed by it, i.e. how various jobs are
to be carried out. Such specifications are available in the form of job descriptions,
corporate “standard operating procedures”, work breakdown structures, task orders,
and the like.

Both charters and job descriptions are static, inert entities essential for the
instantiation and activation of any business organization.

In the SDEs domain the process specification corresponds to the charter in the
corporation domain. It identifies the the “goal and purpose” of software activities
but does not specify the way such activities are to be carried out. The process de-
scription is roughly equivalent to the detailed work breakdown structures in the cor-
poration domain but process descriptions are far more formal and specific [Ost87].
Process descriptions may also be viewed as process programs.

4.1.2 Active Agents

The initial components of the corporation — resources and descriptions — are un-
able by themselves to perform, i.e. to execute any work on behalf of the corporation.
The actual work is performed by active agents created from the basic components.
Figure 2 shows how such creation is taken place: physical and human resources are
assigned to job descriptions in keeping with the charter thus creating active agents.
In corporations such agents are managers and associates.

Similarly, in the SDE domain, resources such as people and processors machines
are bound to process programs in keeping with the process specification creating
active agents — software processes and software tools. The actual binding operation
is performed by another active agent, and is discussed in section 4.1.3.

Managers/Software Processes Managers create a productive entity containing
more than the sum of resources put into it and, at the same time, harmonize in their
decisions and actions the requirements of immediate and long-range future. They
are aclive agents provided with goals by the corporation-and their superiors. In
the SDE domain, managers have their analogue in software processes. The goals in
software projects are the creation and maintenance of software products and such
goals are achieved by execution of process programs.
Managers perform the following functions:

Resources Descriptions
A 7 AN
18-a 1s-a is- is-
) 2 is-a is-a
Physical Human Charter Job Description
Resources Resources Process Specification Process Description
N A
\ ,/ /
uses uses guided by uses
/
Assign
bind
creates
y
Active (Managers, Associates)
Agents (Software Processes, Tools)

Figure 2: Creation of active agents

o Set Objectives - From goals provided to them by their superiors, they deter-
mine the objectives and the activities required to reach these objectives.

In an SDE the goals are provided in the form of a project specification which
lists requirements to be fulfilled in order to accomplish the project objectives.

e Organization - Managers analyze the activities needed, separate them into
manageable tasks, group the jobs into an organization structure and assign
personnel to perform these tasks. To perform required tasks, managers may
need to provide the subordinates with other resources.

In the SDE domain, project organization is accomplished by developing and
enacting a process program, which is the description of activities necessary to
be completed in order that the project objectives are met. Software processes,
by executions of such process programs, similarly analyze the activities needed,
separate them into tasks that can be performed by software tools and/or other
subordinate software processes that are executed by people. Software process
descriptions (process programs) are analogous to highly detailed management
job descriptions, in that they are inert entities that come to life (become
active) as soon as resources are attached (bound) to them. Like managers,
once software processes receive resources and a “go-ahead” they become active
agents.

o Communication - Managers consolidate subordinates into a successful team,
by establishing and fostering the communications between themselves and
their subordinates, between themselves and their superiors, between them-

selves and their colleagues, and between their subordinates. Similarly, soft-
ware processes may establish and control communication links upwards, down-
wards and sideways.

Process Control - Managers are also responsible to monitor their subordinates
in order to ensure that proper project performance is achieved. They must
be able to detect any deviations from the project specification and schedule
and take appropriate measures to correct them. Similarly, software processes
must be able to monitor and control the execution of subordinate processes
and tools and to make adjustments or modifications in such subordinates that

fail to perform properly.

Measurement - Successful managers must establish criteria and yardsticks by
which to analyze, appraise, and interpret the performance of their subordi-
nates. Similarly, software processes must be provided with means for mea-
surement of their subordinate software processes and tools® .

Associates/Software Tools Associates execute work designated by managers.
As such, similarly to managers, they are “active agents”. They are created by
binding job descriptions or work breakdown structures to people.

Associates are robust in that they have:

autonomy i.e. the ability to make decisions,

internal structure i.e. the ability to subdivide their tasks thus becoming man-
agers themselves,

organizational abilityi.e. the ability to determine their interactions with other
associates within same bounds.

In the SDE domain, associates find their corresponding entity in software tools and
software processes executed by people. The robustness of software tools is evident in
their ability to become software processes and recursively spawn additional software

processes and tools.

4.1.3 Infrastructure Creation

In corporations the board of directors selects the Chief Executive Officer (CEO); in
SDEs the boot operation creates the Root Process. These initial active agents are

3If we wanted to press the analogy even further, we could add:
Subordinate Development - Managers are responsible for helping their subordinates grow and im-
prove their skills through training and personal example. Similarly some software processes may
be allowed to modify other process programs to meet new objectives.

10

(Payroll, .l)érsonnel)
Infrastructure (OMS, UIMS)

Corporation I'_ ______________________________
Environment |
: Resources Descriptions
!
| ~N 7
| uses uses
|
Root Process : Bind
mitiates — — _ _ _ >: creates
: ¥
t Active
: Agents
! A
: is‘—a
: Support Groups ¢g
!
t
[

OMS - object management system
UIMS - user interface management system

Figure 3: Infrastructure creation

necessary to get the corporation/environment going. Typically they are immediat-
edly responsible for the creation of the infrastructure which provides support for
the entire corporation/environment.

Figure 3 is intended to present such infrastructure creation: The CEOQ initiates
the binding of resources to descriptions thus creating the support groups such as
personnel, payroll, and legal. Similarly, the Root process initiates the binding of
resources to descriptions creating the environment infrastructure.

Support Groups/Environment Infrastructure The support groups in a cor-
poration are not direct product producing entities. Their function is to supply
services to other entities in the organization. As an example, in almost all corpora-
tions, the “payroll entity” computes the wages for corporation employees, subtracts
the appropriate deductions, disburses the net pay, and maintains records as required
by various government and other agencies. In our view of environments, the analogs
of support groups in the SDE domain are all the mechanisms necessary for the au-
tomated interpretation of process programs [TBC*88]. Figure 4, taken from that
paper presents one opinion of what constitutes an appropriate infrastructure for an
extensible process-centered environment. It consists of:

11

User Interface
Management
System

Process Program
Interpreter

nderlying Machine

/\

“Makes a request upon”

Object Manager | J. Data Objects

! Relationships
: Tools
!

Process Descriptions
1

Figure 4: Infrastructure components and variant entities

¢ A process programming language system (PPLS) including a process program
language and a system enabling the interpretation of programs written in the

language.

¢ A object management system (OMS), which provides the facilities for man-
aging persistent typed objects.

o A user interface management system (UIMS), which provides the human user
with access to the functions supported by the environment?.

4.1.4 Corporate/Environment Organization

In order to become active enterprises, in addition to the infrastructure, corporations
need to create the proper organization structure by instantiating its operating units
and providing them with. proper resources.

Figure 5 shows how an agent within a corporate unit at one level can instantiate
a unit at an immediately lower level by providing the new unit with its charter
and job, as well as granting access to resources to be used by the new unit. The

*The “underlying machine” which encapsulates functions provided by a Virtual Operating Sys-
tem (VOS) finds its corporation model equivalent in those individuals or groups chartered with
providing all foundational functions in order to ensure the proper operation of the environment
infrastructure. Electricity, water, and similar other basic foundational services are examples in the

corporation model.

12

- T
All Variant Entities, e.gl

Corporate Unit
Environment Context

level n
) —7 N, ~ -
consists-of consists-of 11 consists-of T~
] \‘ N\ ~
Support Groups ' .
PP P Resources P Descriptions
Infrastructure P
A ;o A
uses ;! uses
|
I
|

A
| Clstantiate >
~ - v
to TY¥ ‘treating
N L
Corporate Unit
Environment Context

level n+1
/7 N,
consists-of consists-of
yA N
Resources Descriptions
X 4
————————— = uses uses

Agent within Unit
executes ...

Figure 5: Introducing hierarchy into corporations/environments

agent within the original unit can then bind resources to descriptions creating active
agents in the new unit.

In environments, the equivalent entity for the unit is the environment context,
or just “context”, and the figure shows the jnstantiation, resource access-granting,
and binding required to create a lower level context.

Figure 6 presents a view of a corporate/environment unit after active agents
have been bound and activated. Support groups/infrastructure are also shown.
Tt should be noted that the acts of instantiation, resource access-granting, and
binding can potentially be performed by units at any level and thus present the
mechanisms sufficient for the creation and activation of an entire organization,
regardless of size. Similarly in SDEs it supports the model of small single user
environments, through team projects, and up to very large project development

13

Active (Managers, Associates)
Agents (Processes, Tools)

Corpofation Unit
Environment Context

. 7 T
consists-of consists-of consists-of consists-of
Active Support Groups B .
Agents Infrastructure Resources Descriptions

VAN . VAR

is-a is-a is-a

is-a is—a\ / / \
Managers Associates Physical Human Charter Job Description
Processes Tools Resources Resources Process Specification || Process Description

Figure 6: Components of a corporation unit/environment context

activities.

4.2 Organizations Induced by Relationships between Agents

No connection has yet been established between agents and the support groups
higher up in the hierarchy of units. The agents in a corporation do not exist in a
vacuum; they are interrelated to each other and to the corporation’s support groups
in order to achieve their goals. Depending upon the level of autonomy allowed the
agents in a corporation it is useful to identify the following organizational structures.

4.2,1 Corporate Autocracy

In such a structure, agents utilize only global support services provided by the cor-
porate headquarters for all mechanisms needed in carrying out their functions. The
control on the structure of the organization is extremely tight and agents are not
given any freedom in selecting the provider of services they need. For example,
all divisions in an organization are directed, by policy, to utilize corporate services
for payroll, computer services, legal, etc. They are specifically forbidden to pro-
vide such services within their own unit. Communication between agents may be
proscribed to be strictly upwards and downwards in the hierarchy. The analogy in
environments is to software processes and tools that use only global services, such
as the OMS, UIMS, and PPLS given the example description of the components of
an environment infrastructure in section 4.1.3.

4.2.2 Radical Decentralization

Here the corporation has no global support groups and all needed functions are per-
formed by the agents themselves. The control on the structure of the organization

14

is loose; each entity has independence to conduct business as it sees fit. Com-
munication between agents is non-existent and unnecessary since all functions are
performed within the agent itself. A corporation example is any corporate holding-
company where there are no restrictions on the local companies except that they
are required to show profit. The local companies are free to construct their local
support services which they can use at will.

In an analogous environment all OMS, UIMS and PPLS functions are performed
entirely within the separate processes themselves. There is no global environment
infrastructure and communication between active agents i§ non-existent.

4.2.3 Federal Decentralization

Here the corporation has global support groups but active agents also have some
internal facilities that provide services. The control under this scheme is “flexible”
allowing agents to determine how much central support to use. As a clarifying
example we can view the structure and policies of the McDonalds corporation.
Franchisees are allowed and encouraged to use service facilities as provided by the
franchising headquarters, but they are also given some freedom to acquire such ser-
vices at the local level, as long as the company image and standards are preserved.
In environments this is equivalent to providing global environment infrastructure
capabilities but at the same time allowing processes to include local internal ver-
sions of services such as an object manager. Just as relations between the agents of
a federal decentralization organization must be negotiated and mediated, it is also
true that relations between processes in a federated process environment must be
mediated. Consider for example the requirement that all communications between
agents within Quebec corporations be made in French; however agents that are more
comfortable communicating in English may do so by agreement. In environments
such agreements could, for example, be mediated and achieved by a Unified Type
System (UTS) service [WWRTS89). In an environment two agents with different ob-
ject managers may have different type systems or models inhibiting communication.
The UTS service provides these agents with the means to communicate in spite of
the different type models used.

The federal decentralization model seems to us to offer flexibility and robustness
and seems to serve as a good basis for environments because:

o The level of usage of global support services is not rigid but it is determined by
agents at all level in the organization. In some instances such determination
can be dictated from above, in other it can be negotiated between agents, and
in still others it can be arbitrarily determined by the agents themselves. A
wide spectrum of possibilities are thus available.

e Mechanisms for communication between agents (upwards, downwards and
sideways) are provided and maintained under the control of the agents them-

15

selves. The communication however, is established under guidelines that are
determined by the policy (process specification) of the organization.

¢ Flexibility in the structure allows for diversity of services. For example, orga-
nizations are able to experiment with different payroll systems concurrently in
several units, without any disturbance to the global payroll service provided

to remaining units.

¢ Organizations become extensible with minimum disruption since integration
of services can be implemented gradually.

e Organizations can grow easily because the support services can be used from
many levels within the organization.

o The model allows for foreign tool importation; it is analogous to having a
corporation acquire a new corporation, allowing it to operate as an semi-
independent unit.

5 Relations among Contexts and Agents

Agents exist in both the corporate model and SDEs; they interact with each other
in a variety of ways according to relationships established between them. We now
describe various of the key relationships needed in a federal decentralization process
environment.

5.1 Instantiator/De-instantiator of

In the corporate model, to instantiate or create a new unit is to generate a new en-
tity that is identifiable by name. From this moment on, the new unit is recognized
as “existing” as a member in the community of units including all the machinery
required to interface with the support staff within the corporation. This involves
creation of a new unit in a corporation, providing it with its charter and job de-
scriptions, and naming its manager. It should be noted here that the naming of a
manager in no way implies that such a unit has been activated and made opera-
tional. The instantiation action is best illustrated in figure 5.

In SDEs agents within contexts instantiate other contexts; the new contexts
becoming members of the community of contexts and containing machinery to in-
terface with the environment infrastructure (PPLS, OMS and UIMS) and other
VOS services. It should also be noted that neither transfer of resources from the in-
stantiator, nor binding of any resources in the instantiated context has taken place.
The instantiation of a new context does not activate it either (see below).

16

We hypothesize that context instantiation is a fundamental activity in an envi-
ronment and each context can have only one instantiator. Therefore the “instan-
tiator of” link must establish a context instantiation in a tree hierarchy. Only an
instantiator is allowed to de-instantiate its instantiated children. In order to provide
robustness, the recursive de-instantiation of contexts should be one of the design
objectives in SDE architecture.

In the corporate model transfer of entire units from one manager to another are
possible. Similarly, in SDEs the position of a context in the instantiation hierarchy
is not fixed; an instantiator is allowed to move any of its dependents within its
subhierarchy.

5.2 Grants/Denies Access to Resources

Resources in corporations reside within corporate units and are under the ownership
and control of the unit manager. Therefore, a manager in a corporation at any one
time possesses one or more resources required in order to accomplish his mission
and, at his discretion, may grant or deny access to such resources to other managers,
including subordinate managers. Since instantiation does not imply transfer of
access rights to the newly created organization, a relationship is required in order
. to provide managers and associates in units with such access. The relationship of
granting rights to resources does not have to follow the instantiation hierarchy; it
is entirely separate. In corporations granting access to resources implies physical
transfer of such resources to the recipient.

In the SDE domain, software contexts own resources and may grant or deny
access to such resources to other contexts. Here as well the granting of access rights
need not follow the instantiation hierarchy. Some systems (UNIX for one) automat-
ically grant access rights to descendents upon creation; however this burdens some
processes with access to resources for which there is no need or use.

5.3 Binding/Unbinding Resources

Managers in corporations assign (bind) people (human resources) to job descrip-
tions. Such binding evolves them into active managers and associates.

Similarly, in the SDE domain, a software process binds resources to descriptions.
Binding of computer processors or people to process programs evolves them into
active software processes. It should be noted that a process can be granted access
rights to resources owned by various other processes while this binding action can
be initiated by a still different process. This allows for substantial flexibility in
resource control in the environment.

17

5.4 Corresponding with

In the corporate models there are formal and informal lines of communications be-
tween managers and their superiors, colleagues, and associates. The formal lines
are established by the corporate organization charts and by a set of rules and proce-
dures, while the informal ones are established through day by day operation of the
corporation. In general, the formal lines of communication within an establishment
follow the management control structure, i.e. managers communicate only with
their immediate superiors and their subordinates. This arrangement is, of course,
suboptimal and additional informal channels of communications, not necessarily
implying any authority or control, are established routinely.

In the SDE domain, the formal lines of communications are represented as com-
munications along the instantiator relationships. Analogously to the informal com-
munications analogue, a process may or may not grant another process the right to
send messages to it and the expectation of receiving responses from it. It can be
seen that there is a close similarity between the “own resource” and the fact that
a process owns the receiving communication mechanisms. As such only the process
which is the owner of these mechanisms can determine which other processes are
allowed to communicate with it.

The last three relationships (grant access, binding, and corresponding) handle
resources. The agent that has the authority to grant access, bind or establish
correspondence is the only agent allowed to respectively deny access, unbind and
disallow communications to the receiving agent. It should be realized that such a
requirement presents difficulties in housekeeping but it is the only method by which
sufficient control can be exercized over relationships between agents and contexts.

5.5 Communication issues

The “corresponding with” relationship serves as the basis for establishment of com-
munication between processes.
The information that can potentially be communicated is as follows:

e “objects” as defined by the object management component.

e resources/capabilities belonging to the environment (e.g. identification of ap-
propriate user interface servers, resources belonging to the underlying abstract
machine).

This is because entities either belong within the domain that the environment is
dealing with, or are part of the implementation of the environment.

18

To ensure proper communication linkages between environment contexts and
agents it is necessary to observe the following rules:

e A creator task has the inherent capability of communicating objects and re-
sources to its createes (dependents), so that the objects and resources needed
by the dependent to do its work can be transmitted,

e A created task has the inherent capability of communication with its creator,
to return developed products and, e.g., request additional resources,

e A process is the sole owner of its resources and communication capabilities.
As such only a process can assign the capability of communication with it to
others. In other words the process determines from whom and to whom it is
willing to accept and send messages.

e capabilities may be taken away by creators.

The first two capabilities mirror the kind of formal communication links established
in the corporate model. The third capability reflects the informal communication
paths that get established within an organization.

6 Mapping from a Conceptual Architecture to an Im-
plementation

One aspect of an implementation architecture is provision of components to manage
the relations described in section 5. Thus functions to manage resources, establish
communications, and oversee creation of new contexts are required. Components to
support the other actions of agents, such as listed in 4.1.2 are also required. Included
here e.g. is functionality to enable measurement of one associate by its manager.
These primitives must be able to maintain consistency among the relations and
enforce the policy decisions contained in a context’s descriptions.

Such services can be provided reasonably. Our confidence here is based on
recognizing the similarity of the functional primitives identified through this top-
down design exercise with the functions identified, e.g. in [TBC*88] as components
of an environment infrastructure. One could argue that an object management
systein or a user interface management system are substantial technologies that
require the primitives resulting from our top-down design. Since [TBC*88] identified
such components in a bottom-up fashion — drawing from experience with many
implemented environments, we foresee no barriers to an implementation.

Consideration of some general characteristics of the conceptual architecture also
identifies some desirable properties of an implementation substrate. Since corpo-
rations are highly concurrent entities it is clear that environments should be as
well. Implementation primitives for managing concurrency are therefore required.

19

The hierarchical decomposition of a corporation, considered with the limited het-
erogeneity of the federal decentralization model, argues for mechanisms to support
component implementation that follow the client/server model. That would enable
effective use of a support service within one context by agents in another. While
other desirable properties could be enumerated, we think it is clear that an effective
implementation of the conceptual architecture presented in this paper could fully
utilize the novel characteristics of modern distributed operating systems.

7 Summary and Conclusion

Current activities in modeling and developing software development environments
have produced a number of proposals for conceptual architectures focusing on var-
ious metaphors. This paper has presented a view that is useful in deriving a sound
conceptual architecture from which several implementation architectures are possi-
ble.

It is our contention that the software process view is the most encompassing and
comprehensive and that it is the view that be taken in the conceptual architecture
of SDEs in the future.

Another issue as presented here is the development of a conceptual architecture
based upon sociological metaphors. Here the proposed corporation model seems to
provide useful insights into the structure and organization of an SDE that can serve
as a foundation for its conceptual architecture.

It should be noted that the proposed model differs in some key ways from the
“software factory” model [Mat87]. The factory model tends to suggest a structure
and organization where most of the operations are geared to the generation of
specific products, and such operations are mostly mechanical, automatable, and,
surely, easily organized. As such, little flexibility or creativity is possible or expected.
On the other hand, our corporation model enables much more prominence to be
placed on the role of creative individuals. Furthermore modern corporations are
highly flexible and allow for more complex structures in their organization.

Lastly, we note that Conway [Con68] postulated that “there is a very close
relationship between the structure of a system and the structure of the organization
which designed it”. The statement was meant in a derogatory way, i.e. that systems
tend to be complex, cumbersome, and difficult to use and understand because their
structure is homomorphic to the producing organization. Our thesis is different:
modern corporations exhibit remarkable similarities across diverse product ventures
and even different cultures. The common character and success of corporations is,
we believe, due to their ability to effectively manage complex development activities
in which change to products, change to the processes that control product creation,
and change to the organizational structure itself are common. Since complexity and
change characterize software development we can learn and apply principles from

20

this other domain.

Acknowledgements

We gratefully acknowledge the contributions made by members of the Arcadia con-
sortium in review, criticism and encouragement provided to the authors throughout
the development of this paper. In particular we wish to thank Barry Boehm for
pointing out the advantages of the corporation metaphor over the software factory
metaphor as well as some of the control functions performed by managers.

References

[BD8O]
[CO89]

’ [Con68]

[Dow86]

| [KM81]

[LRPC84]

[Mat87]

[Ost81]

John N. Buxton and Larry E. Druffel. Rationale for Stoneman. In
Fourth International Computer Software and Applications Conference,
pages 66—72, Chicago, IL, October 1980.

Geoffrey M. Clemm and Leon J. Osterweil. A mechanism for environ-
ment integration. ACM Transactions on Programming Languages and
Systems, 1989. To appear.

Melvin E. Conway. How do Committees Invent. DATAMATION,
14(4):28-31, April 1968.

Mark Dowson. ISTAR - an integrated project support environment. In
Proceedings of the Second ACM SIGSOFT/SIGPLAN Symposium on
Practical Software Development Environments, pages 27-33, Palo Alto,
California, December 1986. Appeared as SIGPLAN Notices 22(1), Jan-
uary 1987.

Brian W. Kernighan and John R. Mashey. The UNIX Programming
Environment. IEEE Computer, 14(4):12-24, April 1981.

David B. Leblang and Jr. Robert P. Chase. Computer-aided software

“engineering in a distributed workstation environment. ACM Sigplan

Notices, 19(5):104-112, May 1984. (Proceedings of the First ACM
SIGSOFT/SIGPLAN Symposium on Practical Software Development
Environments).

Yoshihiro Matsumoto. A Software Factory: An Overall Approach to
Software Production. In Peter Freeman, editor, Tutorial: Software
Reusability, pages 155-178, IEEE Computer Society Press, 1987.

Leon J. Osterweil. Software environment research: Directions for the
next five years. IEEE Computer, 14(4):35-43, 1981.

21

[Ost87]

[PK87]

[PK8S]

[Roc75]

[TBC*88]

[Tic82]

[TM81]

[WWRTS9]

L. J. Osterweil. Software processes are software too. In Proceedings of
the Ninth International Conference on Software Engineering, pages 2—
13, Monterey, CA, March 1987.

Dewayne E. Perry and Gail E. Kaiser. Infuse: A Tool for Automatically
Managing and Coordinating Source Changes in Large Systems. In
ACM Fifteenth Annual Computer Science Conference, pages 292-299,
St. Louis, MO, February 1987.

Dewayne E. Perry and Gail E. Kaiser. Models of Software Development
Environments. IEEE Transactions on Software Engineering, 10(4):60-
68, April 1988.

M. J. Rochkind. The Source Code Control System. IEEE Transactions
on Software Engineering, 1(4):364-370, December 1975.

Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil,
Richard W. Selby, Jack C. Wileden, Alexander L. Wolf, and Michal
Young. Foundations for the Arcadia environment architecture. In Pro-
ceedings of ACM SIGSOFT ’88: Third Symposium on Software Devel-
opment Environments, pages 1-13, Boston, November 1988. Appeared
as Sigplan Notices 24(2) and Software Engineering Notes 13(5).

Walter F. Tichy. Design, implementation, and evaluation of a revision
control system. In Proceedings of the Sizth International Conference
on Software Engineering, pages 58—67, Tokyo, Japan, September 1982,

W. Teitelman and L. Masinter. The Interlisp programming environ-
ment. IEEE Computer, 14(4):25-33, April 1981.

Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and
Peri L. Tarr. [JTM-0: Initial Proposal for a Unified Type Model for
Arcadia FEnvironments. Arcadia Technical Report UM—89-01, Univer-

sity of Massachusetts, Amherst, 1989.

22

