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1 Introduction

The interest of this paper is twofold. First it proposes a general methodology for
proving results of the kind:

The first order theory of the predicate logic model Z = --- is undecid-
able.

Second, besides examples that serve just for the illustration of the method pro-
posed, we show some applications that are interesting in their own right.

We only consider theories of given models, in contrast to theories defined by some
sets of axioms that are not necessarily complete. When applied to (the theory
of) a given model Z, the method leads to an effective mechanism that yields for
each Post Correspondence Problem P over the alphabet {a,b} a formula, denoted
solvablep, such that

P is solvable ¢ 7 |=solvablep (1)

Because of the effectiveness of the construction of this formula we immediately
get the undecidability result for the theory from the well-known undecidability of
Post’s Correspondence Problem. Furthermore we are interested in showing not
only undecidability of the whole theory of 7, but of a smallest possible fragment



of this theory. In the construction of solvablep we will therefore try to avoid
alternations of quantifiers as far as possible.

The basic principle of the proof method proposed is the simulation of the two
data types involved in Post’s Correspondence Problem: strings and sequences
(resp. sets). The representation of the objects of these data types is performed
by appropriate representation functions mapping the carrier sets into the universe
of the model under consideration. The representation does not reflect directly in
the theory of the model, especially there is no need for formulas characterizing
the images of the representation functions. The operations on the data types are
expressed by first order formulas that are to be designed in regard to the properties
of the model.

The target formula solvablep consists of a “frame” that is independent of the
model under consideration but uses subformulas representing the operations on
the data types. We present the frame formula and formulate the requirements
that guarantee the “correctness” of the representation of the carrier sets and the
pertaining operations.

To a large extend we constrain the meaning of the formulas only for those elements
of the universe that represent objects of the data types. Moreover, beyond the
correctness of data type representation we have to make sure that a certain relation
on the universe is Noetherian. This is an inherent property of the model, since the
well-foundedness of a relation is not expressible in first order logic!.

Several other methods for proving undecidability of theories have been proposed
in the literature. [Tar53] shows that a theory T is undecidable if some essen-
tially undecidable and finite axiomatizable theory T” (for instance the theory Q
[TMR53]) is relatively weakely interpretable in T'. In order to show relative weak
interpretability of 7' in T one has to find first order formulas defining the universe
and operations of T’ in some consistent extension of 7. Hence the correspondence
between the theories is expressed completely within the logic.

The method of [Rab65] does not require a finite axiomatization of the underlying
undecidable theory. In its basic form it reads: A theory T is undecidable if there
are an undecidable theory 7’ and T-formulas representing the universe, predicates
and functions of T such that it is possible to establish a correspondence between
the models of T and 7”. In this way the translation of 7’ into T is again expressed
in terms of first order logic, but in order to show the correctness of the translation
it is necessary to prove the required corresponence of models.

The method proposed here takes a different point of view: It exploits the prop-
erties of the model instead of properties of the theory of the model. The logic
is not involved in the definition of the representation functions: The intended
applications concern universes constituting a formal language, such that the rep-

INot even by a sentence of the extension L., . containg countably infinite disjunctions and
conjunctions ([Kei71]).



resentation may often be performed on a purely symbolic level. The logic is only
used in the realization of the operations of the data types. We will dcmonstrate
some applications where this technique yields very simple reduction proofs.

A first set of applications illustrating the method proposed is concerned with
equational problems, that is validity of formulas with equality as the only predicate
symbol in the initial, respectively the free algebra of an equational specification
(see [BS89] for an introduction into equational problems). The first example (A)
treats the decision problem for the theory of ground term algebras modulo the
axioms of associativity and commutativity (AC for short) and has been given as
open problem in [Com88|. In this paper the existential fragment has been shown
decidable thus extending the results for AC unification ([Sti81] and [Kir85] for
the case of additional free function symbols). The generalization of this result to
the free algebra refutes a conjecture of [BS89] where general equational problems
are claimed to be decidable provided unification with free function symbols is
decidable. The extension by the axiom of idempotency to AC1 in Example (B) is
straightforward.

To the authors knowledge the undecidability of the theory of ground terms mod-
ulo associativity alone (Example (F)) has not been stated before, but since Quine
([Qui46]) has proved the undecidability of the theory of concatenation this is not a
surprising result. Unification modulo associativity has been shown to be decidable
by Plotkin ([Plo72]). In contrast to the AC case, associativity without commu-
tativity is of unification type w (see [BHS86] for the classification of unification
problems), this coincides with the observation that our technique yields undecid-
ability of the X3 fragment in the AC case but X in the case of associativity.

The second field of application is the theory of ground terms equipped with some
ordering relation. The undecidability of the “theory of subterm relation” has been
shown in [Ven87] but without the extension to possibly infinite trees. Further-
more [Ven87] shows the decidability of the existential fragment. We mention this
application in order to illustrate the benefit gained from a systematic study of
reduction proofs.

The question of decidability of the theory of a total simplification ordering has
been posed in [Com88]. The decidability of the existential fragment of a total
lexicographic path ordering (lpo for short) is shown in [Com90b]. We prove in
Example (C) the undecidability of the X, fragment of a partial Ipo. Unfortunately
there still remain two big gaps between these results (see Section 5).

The undecidability of the £ fragment of complete number theory (Example (G))
is of course by no means a new result; it is presented here merely for demonstrating
some aspects of the method proposed. The undecidability of the ¥, fragment has
been shown in [Mat70].

The separation of Post’s Correspondence Problem into two datatypes induces the
structure of the paper: After a survey of the mathematical framework in Section 2



the simulation of the data type “strings” is discussed in Section 3. In the applica-
tions this part will always be the trivial one. Section 4 describes the construction
of the sentence solvablep while presenting two alternative methods for the rep-
resentation of construction sequences. In the first method sequences are viewed
as sets. This method is easier to use than the second one representing sequences
directely but is less powerful. On the other hand in some applications the sec-
ond method can yield a smaller number of quantifier alternations in the formula
solvablep.

2 Preliminaries

In this paper we consider unsorted first order logic where equality is not re-
quired. For the basic notions according syntax and semantics of first order logic
the reader is referred to textbooks on mathematical logic, for instance [End72].
We specify a predicate logic basis as a pair (P, F') where the set of function sym-
bols F is given in the form (f(n¢),g(ny),...) and the set of predicate symbols
P = (®(ng),®(ng),...). The numbers in parantheses are not part of the syn-
tax but indicate the arity of the symbols. If =(2) is present in P it is always
interpreted as equality. We will frequently use symbolic names for formulas, and
in defining one formula we will often refer to other formulas via their symbolic
“macro” names without giving an exact semantics of macro expansion for formu-
las. We only mention the following notions adopted from [CK73]:

w(zy,...,Z,) where w is a symbolic name for a formula stands for a formula the
free variables of which are (possibly as proper subset) among {z1,...,z,}. The
main purpose of this notion is to fix an order on the “formal parameters” of a
formula which simplifies notation with regard to instantiations. Once an order of
parameters is established we can define w(t,,...,t,) as the formula obtained by
simultanously replacing each “formal parameter” z; by the corresponding “actual
parameter” t;. It is understood that bounded variables in w are renamed in such
a way that no free variable of the ¢; is captured by a quantifier of w. We write
for elements 7y,...,7, from the universe of the model Z: T | w(ry,...,r,] iff wis
satisfied in Z by the assignement {z; — r,,...,2, « r,}. For the sake of conve-
nience we allow infix notion, for instance (z)w(y) instead of w(z,y). Furthermore,
in the examples, we will sometimes use tuples of variables instead of a single vari-
ables. In this case of course we have to replace the corresponding quantifiers by
quantifier strings of the same kind.

The set of formulas over a given basis is split up into fragments. According to
[Rog87] the number of quantor alternations of a formula in prenex normal form
([Gal886]) is “the number of pairs of adjacent but unlike quantifiers”. If this number
is n and the outermost quantifier is 3 (resp. V) the formula belongs to the ¥, ;-
(resp. II,4;-) fragment. ¥y = Il denotes the set of quantifier-free formulas. An



abitrary formula belongs to a certain fragment if it is logically equivalent to a
prenex normal form formula contained in this fragment.

Given a set ¥ of symbols £* denotes the set of finite and £t the set of finite
nonempty strings over ¥. < is the prefix ordering on strings. A Post Correspon-
dence Problem P over an alphabet T ([Pos46]) is given by a finite set of the form

{(pirq:) | 0 < i < mypi,q: € 1}

A P-construction sequence for (u,v) € £* x X* is a sequence ((u;,v;)) ,, With

j=1...
1. uj,v; € X* for all j

2. uy =v; =€

3. u, =uand v, =v

4, foreach1 < j < n—1thereisa 0 < i < m with u;;; = u;p; and vj4; = vjg;
where juxtaposition denotes the concatenation of strings.

In this case (u,v) is called P-constructable. P is solvable if there is an u € T+
such that (u,u) is P-constructable.

Equational problems emerged from the study of unification problems that can now
be considered as a special case of equational problems (see [Sie89] for a survey on
unification). For a set F of ranked function symbols let T(F) denote the set of
F-ground terms and T(F, X) the set of F-terms that contain variables from the
set X. T(F) and T(F, X) will also be considered as F-algebras where the symbols
from F are given their Herbrand interpretation ([Gal86]). The basis and the model
for equational problems are defined by an equational specification (F, E) in the
sense of [EM85], here restricted to the one-sorted case, that is F is a ranked set
of function symbols and E is a set of implicitly universally quantified equations
of F-terms. The only predicate symbol is the equality symbol, the set of function
symbols is given by the specification. [BS89] designate the following models of a
specification (F, E):

e the initial algebra is the quotient of the ground term algebra T(F) by the
congruence generated by E.

o the E-free algebra is the quotient of the term algebra T(F, X) by the con-
gruence generated by E where X is a not further specified infinite set of
variables.

A discussion of term algebras can be found in [EM85]. In this context [BS89] call
the II3 fragment special equational problems and the X, fragment special equational
problems without independent parameters.



The lezicographic path ordering on T(F) has been described in [Der87)% as a tool
for proving termination of term rewriting systems. For a given partial order® <p
on the set F of function symbols the lexicographic path ordering <|p, is recursively
defined by

t =g(t19" 'atn) jlpo f(sla"'asm) =3

iff t = s or one of the following holds

o t Xjpo 8; for some i
e g<r fand t; <jpo s for all j
e f =g and thereis a j < n with

—t;=s8;forall i< j
— tj <ipo 8j

— ti <ipo s forall i > ;3

where ¢ <)po y is an abbreviation for ¢ <jp0 y AT # y. =Xipo is a simplification
ordering ([Der87]), especially it is a partial order containing the subterm ordering.
=ipo is total iff the underlying precedence < is total.

In the context of ordering relations we will also consider algebras containing finite
and infinite trees. [Cou83] contains a treatement of infinite trees.

f™(t) means n applications of the unary function symbol f to the term ¢. Ith(s)
denotes the length of the sequence s. O designates the end of a proof, the end of
an example will be marked by ©.

3 Simulation of Strings

The first thing we need for the representation of the data type string is a coding
function

¢:{a,b}* - T

We will use the symbol ¢ also to denote the corresponding function ¢: {a,b}* x
{a,b}* — TI2. The operations that will be used in the simulation of Post’s Corre-
spondence Problem are the test for emptiness and for each single nonempty string
a unary function that appends this fixed string to its argument. For the sake of
generality this function will be represented as a formula instead of a term. More
precisely, we need:

o is-¢(x)

2referring to an unpublished paper of Kamin and Lévy.
3The definition in [Der87] (precedence) is slightly more general in using quasi-orderings.



o (y)u(z) for each v € {a,b}*

such that

[INJ] ¢ is injective

[EPS]  Forall r € T: T k= is-¢[r] iff r = (e)

[CON] Forall r € T, v € {a,b}t, w € {a,b}*: T |= [rlu[p(w)] iff 7 = $(wv)

In applications we have to specify both ¢ and the formulas is-¢ and v. This
procedure contains a certain redundancy, an alternative is to give a different set of
requirements on is-¢ and v such that the representation function can be derived
from the definition of these formulas:

¢(e) := the unique r with |= is-¢[r]
#(w) := the unique r with | [rlw[d(e)] (w #¢)

We do not follow this line since it seems to be more natural to define the repre-
sentation of strings explicitly. An advantage of this alternative way is that the
requirements substituting [INJ], [EPS] and [CON] state only properties of the the-
ory of the model instead of properties of the model itself. Anyway, with the next
requirement we have no hope of staying within the scope of first order logic as has
been explained in the introduction.

Definition 1 C is the relation on T defined by: = C y iff there is a v € {a,b}*
with T |= [y]u[z]. As usual C* denotes the reflezive transitive closure of C. Fur-
thermore C generalizes to pairs of objects by (z1,22) C (v1,¥2) iff 21 C y1 and
T2 C y2.

If », = ¢(w;) and r, = ¢(wz) then r; C r, expresses the prefix relationship
between w; and wy. However the definition is not restricted to representatives
of strings, we will need this definition and the pertaining requirement in its full
generality later. The formula finite characterizes the set of elements of the
universe where C is a Noetherian relation. This set has to contain at least (but
may not be equal to) the image of ¢.

[NOE]  There is no infinite descending C-chain (r;);>o in Z with 7 |= finite[ro).
[FIN]  For all w € {a,b}*: T |= finite[$(w)]

Example (1): The basis B contains at least the function symbols €(0),a(1), (1)
and the equality symbol =(2). Let T be the algebra of B-ground terms modulo
some set of equations that do not involve any of the symbols ¢, a,b.



Deliberately confusing the characters a,b from the alphabet with the unary func-
tion symbols a,b we define

¢(00"’an) = 0‘,,("'((70(6))“')

is-e(z) = z=c¢
(y)ao Un(z) =Yy = an("'(UO(a:))"')
finite(z) := TRUE

The reader might easily check that these definitions fulfill the requirements. <

Example (2): The basis B contains at least the function symbols €(0), f(2) and
the equality symbol =(2). Analogously to Example (1) let Z denote the algebra
of B-ground terms modulo some set of equations that do not involve any of ¢, f.
With the following temporary definitions:

a(t) = flet)
b(t) = f(f(e€),t)

we can define

¢(00--+0,) = Tul-+-(Tole)) )
is-e¢(z) = z=¢
(¥)00---0n(z) = y=0n(-+(%0(z)) )
finite(z) := TRUE

The above definitions still constitute a correct representation of strings when we
enlarge the model 7 to the free algebra T'(F, X) modulo E. o

The next example shows a nontrivial finite formula.

Example (3): B contains at least the function symbols €(0),a(1),b(1) and the
predicate symbols =(2),<(2). Consider the algebra I of finite and infinite B-
ground terms where < is interpreted as the subterm relation.* We choose ¢,is-¢
and v as in Example (1). The set of finite objects consists now of the terms built
only with unary function symbols and containing the symbol e.

finite(z) = e<zAVz'e' <zD {a'=evI2"a' =a(z")Vva' =b(z")}

If the set of nonunary function symbols B’ C B is finite we can transform the
conclusion of the above implication into a II;-formula, thus saving one alternation
of quantifiers:

tinite(z) :=e <z AVa'a' <zD \\ Via'#[f(3) o
fEB'

4Note that the case of finite terms only is covered by Example (1).



4 Solutions of P

We are now ready to define the subformula one-step . The intented meaning
of gie-stepp(yl,'yg,y;;,y‘;) is: “The pair of strings represented by (y;,y2) is ob-
tained from the pair of strings represented by (ys,ys) by the application of one
P-construction step.” This is the only subformula that depends directly on the
Post Correspondence Problem P:

one-step,(v1,v2,¥3,94) = \/ ((31)pi(vs) A (y2)gi(va))

1=0,...,m

where P = {(pi,q:) |1 =0,...,m}.

4.1 Simulation of Sequences as Sets

In order to construct the sentence solvablep we have to formulate something
like “there is a P-construction sequence such that ---”. How can we express as a
formula the fact that something represents a P-construction sequence? The key
idea we are going to explore now is: Instead of talking directly about sequences we
may view a P-construction sequence as a set of pairs of strings. Since by definition
a P-construction sequence is strictly ordered by the prefix relation on (pairs of)
strings we are able to retain the sequence from the set.

With this idea we can now define the subformula constrp(z) meaning that z
represents a P-construction sequence. constrp uses the subformula (y;,y2)in(z)
reflecting the element relationship, the definition of which depends again on the
model under consideration. From now on let a fixed Post Correspondence Problem
P be given.

constrp(z) := Vyi1,y2.(y1,y2)in(z) D
{is=e(y1) A is-¢(y2)} Vv (2)
Jys,ya-(y3,y4)in(z) A cne-stepP(yl,yg,y3, Ya) (3)

Still leaving pending the definition of in we can now show

Lemma 1 For all r{,79,u,s € T with (ry,r3) C* (u,u) and
7 = finite[u]
T |= constrp[s]
T |= [r1,72]in(s]

If [INJ], [EPS], [CON] and [NOE] are fulfilled then (ry,72) € IM(¢) X IM(¢) and
the associated pair of strings ¢~ 1(ry,72) is P-constructable.



Proof: We fix u and s with the above properties. Because of [NOE] there can
not exist an infinite descending (w.r.t. C) chain of pairs (ry,72) C* (u,u). We can
therefore perform Noetherian induction on (ry,72).

If T |= is-¢€[r1] A is-€[ry] then [EPS] yields (7y,72) = ¢(€,€) and we are done.

Otherwise case (3) from the definition of constrp applies, so there exist r3, 4
with T |= [r3,74)in(s] and T |= one-stepp[rl,rg,r;,,u]. From the definition of
one-step , follows (r3,rq) C (r1,72) C* (u,u). The induction hypothesis yields

that (r3,r4) € IM(¢) x IM(¢) and ¢~!(r3,r4) is P-constructable, and because of
[CON] and the definition of one-step , the same holds for (ry,72). a

We are now ready to define solvablep.

solvablep := IJz,y.constrp(z)Afinite(y) A (y,y)in(x) A -is-e(y)
From the above lemma we get immediately

Corollary 1 If [INJ], [EPS], [CON] and [NOE] are fulfilled then

7 |= solvablep, = P is solvable

The reader should note that up to now we did not need any constraints on the
subformula in. We made use of the special properties of the model only in order
to fulfill the requirements in connection with the simulation of strings. Once the
representation of strings with the subformulas is-¢,v,finite is found we get the
first direction of our ”goal”-theorem (1) for free — that is without worrying about
the representation of sequences.

In order to prove the opposite direction of (1) we now have to choose a rep-
resentation function for P-construction sequences and a corresponding formula
(y1,y2)in(z). M denotes the domain of the representation function ¥: M — I:

M = {(ui,vi)i=1.n | wi,vi € {a,b}",n >2,
U; AU41,V; 4 vi+1,(u1,v1) = (f’f)}

Our last requirement relates the representation function ¢ with the subformula in
that is supposed to express the element relationship:

[IN] For all s € M: T |= [ry,72]in[y(s)] iff there exits j € {1,...,Ith(s)} with
(r1,m2) = ¢(s(7))

Lemma 2 If [EPS], [CON/, [FIN], [IN] are fulfilled then

P is solvable = T |=solvablep

The next theorem summarizes the method as it stands now:

10



Theorem 1 Let B be a predicate logic basis and T a model for B. If we can find
representation functions ¢, ¥ and formulas is-¢,v,finite,in such that [INJ],
[EPS], [CON], [FIN], [NOE] and [IN] are fulfilled then the first order theory of T

1s undectdable.

Now we can complete the examples started in Section 3:

Example (A): Consider equational problems for the equational specification
(Fa,AC(+)) where F, := (€(0),a(1),b(2), f(2),+(2)) and AC(+) denotes the

axioms of associativity and commutativity for +:

r+y = y+z
(z+y)+z = z2+(y+2)

We take the representation of strings fromn Example (1). It is easy to see that with
the following definitions [IN] is fulfilled in the initial and in the free algebra:

¢((ui’ vi)i=1""’") = f(¢(ul)’ ¢(Ul )) s Rt o f(¢(un)’¢(vn))
(y1,92)in(z) = 3Fz'.z = f(y1,92) +2'

Theorem 2 The (X3 fragment of the) first order theory of a ground term algebra
(resp. term algebra) modulo associativity and commutativity is undecidable.

We can improve this result by restricting the base to Fy4: := (€(0), f(2),+(2)) and
P4 := (=(2)). With the representation of strings as in example (2) and %, in as
above we obtain undecidability of the first order theory of T(F4')/ac(+) and of

&

T(Fa, X)/ ac(+)-
Example (B): Example (A) can be varied by enlarging the set of equations. If
we add one further axiom for the idempotency of +:

T+ = T
we can use exactly the same setting to show

Theorem 3 The (X3 fragment of the) first order theory of a ground term alge-
bra (resp. term algebra) modulo associativity,commutativity and idempotency is
undecidable. %

Example (C): Let F¢ := (¢(0),a(1),b(1),e(1),1(1), h(3)) and Pc := (=(2), <(2)).
I¢ is the ground term algebra T(F¢) where < is interpreted as the lexicographic
path ordering <),, generated by the following precedence on Fc:

l

€<Fa<pb<ph<p{ e

11



I
al(‘) ¢(un—1)

a™ " (e) ¢(u1)

Figure 1: The term 6((u;)i=1...n) representing the sequence (u;)i=1..n

e and ! are uncomparable in the order <p.

¢,is-¢,finite and v can be copied from example (1). A P construction sequence
will be represented by two lists of labeleld strings, one for the first component and
one for the second. The labels associate the corresponding components of a pair,
moreover they will be essential for the formulation of the membership relation.

We associate to each nonempty sequence s = (u;)i=1,...,» the term §(s) as shown
in Figure 1 and choose

Y((wi, vi)i=1,...n) := (6((wi)i=1,....n), 6((Vi)i=1,...,n))

In order to formulate the subformula in we use the following temporary definition:

(y)in(z)at(z) = h(l(2),e(y),e) <z A (4)
Vy'.h(l(2),e(y'),e) <z Dy’ <y (5)

Finally we define
(y1,92)in(z1,22) = Jz.(yi)in(z1)at(z) A (y2)in(z2)at(z)
The proof of [IN] is given in Appendix (A.1).

Theorem 4 The (£, fragment of the) first order theory of a partial lexicographic
path ordering is undecidable.

The separation of the P-construction sequence into two lists is not essential for the
proof. In fact an analogous proof where the P-construction sequence is represented

12



by one list of pairs of strings is also possible (by changing the arity of h to 4). The
price of this variant is the need for another maximal function symbol uncomparable
to e and [, thereby leading to a “less total” ordering. In this alternative proof the
labels {(a’(€)) can not be omitted, they are necessary for the maximality condition
in the definition of in.

We remark that the same construction — with an appropriate modification of the
technical lemma in Section A.1 — can be used to show that the ¥, fragment of
the first order theory of a recursive path ordering([Der82]) is undecidable. o

Counting the quantifiers involved in the above construction we find that the for-
mula solvablep is at least in the X3 fragment. This is an inherent drawback of
this method since solvablep follows the pattern

Js---V(s1,82) € 3---I(s3,84) Es---

In general the formula in is the most “expensive” one (in terms of alternations of
quantifiers). We will always try to find a formula in in ¥,, if we do not succeed
we get undecidability only for a fragment larger than Xj.

4.2 Direct Simulation of Sequences

In some applications it is possible to overcome this limitation by using a direct
simulation technique for sequences. In this case we have to perform three different
operations on the data type sequence, and we have to work a little bit harder
to regulate the correlation of the pertaining formulas. We will come back to a
comparison of these two methods at the end of this section.

The formulas that are to be designed for the model under consideration are
e nonempty(z)
® (y1,y2,2')sub-of(z)
* (y1,y2)head-of(z)

The intended meaning of the first formula should be clear, (y;,y2,2’)sub-of(z) is
supposed to express that the sequence with first element (y;,y,) and tail z’ is a
suffix of the sequence z, and (y;,y2)head-of(z) is intended to express that (y;,y2)
is the head of the sequence z.

The analogous definition of constrp is now

constrp(x) := Vy1,y2,2 .(¥1,¥2,2')sub-of(z) D
{is-€(y1) N is=e(y2)} Vv
{nonempty(z') A Vy3,ys.(y3,ys)head-of(2') D one-step,(y1,¥2,¥3, ¥a)}

13



and finally the formula solvablep reads

solvablep := Jz,y.constrp(z) A (y, y)head-of(z) A finite(y) A ~is-€(y)

In contrast to section 4.1 where we obtained the first direction of (1) just from
the representation of strings we now have to state additional requirements on the
newly introduced formulas:

[NH] 7 |= Vz.nonempty(z) O 3y1,y2-(y1,y2)head-of (z)
[H>) T = Vz,y1,y2-(y1,y2)head-of(x) D Iz’.(y1, y2, =’ )sub-of(z)

[HSH] T = Vz,z’,y1,92, Y3, Y4-(¥1, Y2, 2" )sub-of () A (y3,ys)head-of(z’) D
3z".(y3,ysa, 2" )sub-of(x)

At this point the reader might remark that we could have used [NH] as definition
of nonempty by turning the implication sign into an equivalence. In this case
only the requirement [HS] and [HSH] remain relating head-of to sub-of. We do
not choose this approach in order to avoid the introduction of extra quantifiers.
Example (D) shows how a model specific argument leads to the elimination of an
unwanted existential quantifier in the definition of nonempty.

With the help of these properties we can now prove a lemma analogous to Lemma 1:

Lemma 38 For all ry,r2,u,s,8' € T with (ry,72) C* (u,u) and
7 = finite[u]
T |= constrp[s]
I k= [r1,72, 5'|sub-of[s]

If [INJ], [EPS], [CON], [NOE], [NH] and [HSH] are fulfilled then (r1,72) € IM(¢) x
IM(¢) and ¢~1(ry,72) is P-constructable.

Proof: As in the proof of Lemma 1 we proceed by Noetherian induction on
(r1,72).

If 7 |= is-¢[r1] A is—¢€[r2] we know from [EPS] that (r1,72) = ¢(e, €).

Otherwise 7 |= nonempty([s], so we get from [NH] that there are r3,r4 € T with

T | [r3,r4)head-of[s]. The second case from the definition of constrp applies
and we get T |= one-step ,[r1,72, 73,74, this implies (r3,74) T (r1,72) C* (u,u).
Because of [HSH] there is a 8" € T with T |= [r3, r4, 8”]sub-0f([s], so we can apply
the induction hypothesis to (r3,r4). With [CON] and the definition of one-step,

the proof is completed. 0O

Corollary 2 If [INJ], [EPS], [CON], [NOE], [NH], [HSH] and [HS] are fulfilled

then

T |=solvablep, = P is solvable
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In a first attempt we could require as in Section 4.1 a coding function mapping the
set M into Z. This will suffice in some examples, but we can be more liberal and
allow for each sequence s a “private” coding function for the set of the subsequences
of s:

ye [[(o,...,ith(s)} - T)

SEM
The subformulas nonempty, sub-of and head-of have to work properly for the
codings of subsequences:

For all s € M, n < lth(s):
[NIL] 7 = nonempty[¢(s)(n)] iff n #0
[HEA] I |= [r1,r2]head-of[¢(s)(n)] iff n > 1 and (ry,72) = ¢(s(n))
[SUB] T [ [r1,r2,t]sub-of[¢(s)(Ith(s))] iff there is i € {1,...,Ith(s)} with
(r1,72) = ¢(5(3)) and t = Y(s)(: - 1)
Lemma 4 If [EPS], [CON], [FIN], [NIL], [HEA] and [SUB]/ are fulfilled then
P is solvable = T |=solvablep

Theorem 5 gives the complete method developed in this section:

Theorem 5 Let B be a predicate logic basis and T a model for B. If we can find
representations ¢, ¢ and formulas is-¢, v, finite, head-of and sub-of such that
[INJ], [EPS], [CON], [NOE], [NH], [HS], [HSH], [FIN], [NIL], [HEA] and [SUB]
are fulfilled, then the first order theory of T is undecidable.

Example (D): Let us now see how the undecidability result for the theory of
subterm ordering from [Ven87] fits into our framework:

Let Fp := (¢(0),a(1),b(1), f(3)) and Pp := (=(2),<(2)). Ip is the algebra of Fp-
ground terms where < is interpreted as the subterm relation. The representation
of strings has been given in Example (1). We choose %(s)(¢) as shown in Figure 2
if 2 > 1, ¥(8)(0) = ¢, and define the remaining formulas:

(y17y2)w(l') = 31',“1: - f(ylay2)zl)
(y1,y2,2)sub-of(z) := [(y1,92,2) <=
wemPtY(z) = Hyl,yg,:c'.m = f(yla Y2, Il)

We can save one alternation of quantifiers in solvablep by transforming nonempty
into a II; formula®.

nonempty(z) := =z #eAVz'.z #a(z')Az #bz)

5In ground term algebras over a finite alphabet it is always possible to transform a purely
equational formula into a II; (or ;) formula, see [CL89].



d(ui) ¢(v;) /

¢(ui-1) ¢(vi1) ) T~
S

$(u1) ¢(v1) €

Figure 2: The term ¥((u;,v;);=1...n)() representing the subsequence (u;,v;);=1..
of the sequence (u;,v;)j=1..n for 1 <i<n

Theorem 8 ([Ven87]) The (X,-fragment of the) first order theory of the subterm
ordering is undecidable. o

Example (E): We can modify the above example by enlarging the model to the
algebra of finite and infinite ground terms. We can use exactly the same proof as
above but with the finite formula as in Example (3) to show

Theorem 7 The (X, fragment of the) first order theory of the subterm ordering
in the algebra of finite and infinite trees in undecidable. o

Example (F): If we drop commutativity from example (A) we can now show
undecidability even of the ¥, fragment:

Consider the equational specification (Fg, A(+)) where Fr = (€(0), f(2), +(2))
and A(+) denotes the axiom of associativity for +:

(e+y)+z = z+(y+2)

For the initial algebra we take the representation of strings from Example (2) and
¥ similar to Example (A):

P((wiyvi)iz1,.,m)(J) = [(P(u;),8(v;)) + -+ f(@(ur), é(v1)) +€ (5 21)
P((ui, vi)i=1,..,m)(0) = €

3z’ e = f(yr,y2) +2'

z= f(y1,y2) +a' VI2"z =" + f(y1,2) + &’

= zFeAVyL Yz F fly, ) AT F ety

(¥1,y2)head-of(z

)

)
(y1,Y2,z’)sub-of(z)
nonempty(z)

.
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Here the formula nonempty is again obtained by a quantifier elimination analogous
to Example (D).

Theorem 8 The (L2 fragment of the) theory of a ground term algebra modulo
associativity s undecidable. o

In the examples (D) to (F) we gave uniform codings for the sequences. The last
example (G) shows the use of “private” coding functions for the subsequences of
a given sequence. As mentioned in the introduction this is an artificial example
that serves just for the purpose of demonstrating the usage of our method in its
full generality.

Example (G): Let Fg := (0(0),1(0),+(2),*(2)) and Pg := (=(2),<(2)). Our
interpretation Zg is the model of natural numbers. In order to define the repre-
sentation of strings we introduce two abreviations:

a(t) = t+t
b(t) = t+t+1

It i1s easy to see that the following representation of strings fulfills the require-
ments since there is an obvious correspondence between strings and the binary
representation of natural numbers.

$oo---on) = Tu(---T0(1))-+)

is-¢(z) = z =1
(¥)oo - on(x) = y=75("0o(x)) )
finite(z) := TRUE

We use Godel’s 3-predicate to represent sequences in the domain of natural num-
bers. The existence of the representation i is a consequence of the fundamental
property of the (-predicate. The definition of 3 and the pertaining theorem are
restated in appendix A.2.

nonempty(c,d,n) := n>1
(yl)yZ)M(cadvn) = ﬂ(c>d)n+nayl)/\ﬂ(c$d7n+n+11y2)
(y1,y2,(c’,d’,n'))sub-0f(c,d,n) = ' =cAd =dAn'<n

/\(yl ) yZ)M'O_f(C,, dl) TL’)

As a result we obtain the undecidability of the ¥, fragment of complete number
theory. The reader should note that IM(¢) = Z \ {0} — especially the images of ¢
and ¥ are not disjoint. o

In this section we have finished the presentation of the two methods for proving the
undecidability of the first order theory of a model. The first method is appropriate

17



for models that miss a concept of ordering (for instance term algebras modulo
associativity and commutativity), while the second is applicable to models where
some kind of ordering is present. In view of the fact that the second method can
yield undecidability of a more simple fragment than the first one, the question
arises why we did not use the second method for proving undecidability of the
theory of a partial recursive path ordering in order to find a formula solvablep
in a smaller fragment than ¥4.

The reason is that we can benefit from the simpler quantification structure of
solvablep in the second method only if we succeed in finding simple formulas
nonempty, sub-of and head-of fulfilling the requirements. More precisely, we
get a formula solvablep in X3 iff nonempty is in Il U ¥; and both sub-of and
head-of are in II; U ¥o, provided that is-e¢, v and finite do not induce any
further alternation of quantifiers. This is usually the case, in all applications
we found the expensive operations belong to the datatype set, resp. sequence.
Using representations of sequences in the spirit of Example (C) one could try to
define sub-of with the help of a maximality condition as it has been done in the

definition of in, but we did not succeed in finding a formula sub-of € II; U ¥,
fullfilling [HSH].

5 Conclusions

We have presented two methods for proving the undecidability of the first order
theory of a model. In order to apply one of these methods to a given model we have
to find appropriate representations of the data types “string” and “sequence” and
formulas expressing the operations on these data types. The two main theorems
(Theorem 1 and Theorem 5) state that the proof of undecidability is completed
if the pertaining set of requirements is fulfilled. We would like to point out some
statements that at a first glance one might expect to be essential for a reduction
proof but that in fact are not. With the presentation of this list we claim that
applications benefit from a systematic study of reduction proofs since it localizes
the crucial points where the special properties of a model are involved.

e A general binary concatenation operation is not necessary. The reader might
try to find such a formula in the case of representation of strings by unary
function symbols (Example (1)).

e The codings of strings and sequences may be not disjoint. This has been
used in Example (G).

e Formulas characterizing the images of the representations ¢ and 3 are not
needed. In particular, it is not necessary to express that the elements of
some set (sequence) are indeed pairs of strings.

18



¢ One should not worry about an exzplicit characterization of the finiteness of
sequences in terms of first order logic.

In the undecidability proof of [Ven87] there exist subformulas in his construction
that ezplicitly specify the shape of the objects that are intended to express P-
construction sequences. In the approach presented here this is not necessary, we
therefore yield a simpler formula solvablep.

There is a potentially useful extension to the method that was not carried out
since there are no applications at hand. Strings have been coded in the universe of
the model by a representation function, instead we could associate an equivalence
class of the universe to each string. This implies the need for further restrictions
that guarantee the congruence property of the operations on strings.

The starting point of the method proposed is the undecidability of Post’s Corre-
spondence Problem. Of course there are many other undecidable problems that
might serve for reduction to the decision problem of a theory (see [Dav77]). One
may, for instance, take the uniform halting problem for Turing machines and per-
form a reduction proof in the above style: A Turing machine halts iff there is a
finite sequence of configurations such that the first and the last one are in some
special form and such that each adjacent pair is related by some “local transfor-
mation”. A configuration can be interpreted as a pair of strings (the part of the
tape to the left, resp. to the right of the head). Hence the data types involved here
are the same. Our choice of Post’s Correspondence Problem is somewhat arbitrary
but leads to a technically simpler proof.

Another popular candidate for reduction is complete number theory. One may use
the result of [Mat70] on the unsolvability of Hilberts Tenth Problem and reduce
the ¥,-fragment hoping to obtain a formula solvablep in a pretty small frag-
ment. In fact [Qui46] gives a reduction of complete number theory to the theory
of concatenation of strings over the alphabet {a,b}. The number n is coded by
the string consisting of n a’s, such that addition of numbers corresponds to the
concatenation of strings. Multiplication is expressed with the help of lists that can
be viewed as computation sequences for an iterative version of the multiplication
algorithm. So it seems that this approach yields equally small fragments as ours,
but the special point in Quine’s proof is that a general concatenation operation is
available in the logic, such that no quantifiers are needed for expressing addition.
In most of the applications presented here we have just some kind of successor
function given, in this case we need a list construction for expressing the addition
operation. In order to optimize the alternations of quantifiers the iterative pro-
cesses of addition and multiplication has to be performed in one list apparatus,
thus yielding a more complex reduction proof.

In the introduction we mentioned some decidability results related to our applica-
tions, but there are still some gaps between these results and ours. We conclude
with some open problems:
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e The decidability of the X;-fragment of the theory of ground term algebra
modulo associativity and commutativity has been proved in [Com88]. While
we have shown the undecidability of the ¥3-fragment the ¥-case is still
unsolved. Furthermore we may consider special sets of function symbols.
[Com88] remarks that the case of one AC function symbol and one constant
is equivalent to Presburger arithmetic and therefore decidable. Unsolved
cases are one AC function symbol plus a finite set of constants (called the
“theory of finitely generated multisets” in [Com90a]) and the case of one AC
function symbol, one unary function symbol plus one constant.

e [Com90b] shows the decidability of the X,-fragment of a total lexicographic
path ordering, but the same question for the partial case remains open.
On the other hand we have shown the undecidability of the ¥4-fragment of
the theory of partial lexicographic path ordering. We gave the proof for a
precedence that is “as total as possible” but did not succeed in applying
the technique to the total case. The reason is that at least two uncompa-
rable function symbols are needed in order to distinguish between the two
components of a pair. A proof of undecidability in the style presented here
seems only to be possible beyond a purely symbolic level of representation,
as illustrated in Example (G).

I am grateful to Jacques Loeckx and Stephan Uhrig for comments on a draft of
this paper.
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A Appendix

A.1 Proof of [IN] for Example (C)

In the exact definition of 6 we have to generalize to sequences starting with an
arbitrary index & > 1:

if k>n

) Sn) = { BU(a*1(€)), e(¢(un)), 8((wim1)imkr1.m))  otherwise

In order to prove [IN] we need the following lemma:
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Lemma 6 Let s = (u;)i=1... be a nonempty increasing sequence over {a,b}*.
Then for all t,to € T({¢,a,b}) the following two statements are equivalent:

1. T = [t])in[é(s)]at(to]
2. there exzists j € {1,...,n} withtog =a™ I(e) and t = u;

Proof: First we state a simple fact about the lexicographic ordering <), gener-
ated by an ordering <p on F:

(*) Ift; =<ipo t2 then for each operator symbol f occurring in ¢, there is a symbol
g in tg such that f <p g.

Now let A(l(to),e(t),€) =ipo 6((%:)i=k..n). According to the definition of an lpo
there are four possibilities:

—

. h(l(to), €(t),€) Zipo I(a*7(€)) or A(I(to),e(t),€) Zipo €(un)
. h(l(to),e(t),€) Ripo 6((%iz1)izk+1...n)
. I(to) = l(a*(€)) and e(t) =Zipo €(un)

. I(tO) *lpo l(ak(f)) and e(t) '<lpo 6((7Li)i=k...n)

|3V

w

'S

Because of (*) possibility (1) can be dropped immediately. For the same reason
(4) is only possible if e(t) <\po €(u;) for some j € {k,...,n}. With an inductive
argument in case (2) and applying again (*) we get especially for k = 1:

(**) If h(l(to),e(t),€) Zipo 6((ui)i=1...n) then there are i,i’ with 1 < i’ <i<n
such that to <1p0 a™7*(€) and t <0 usr.

(1) = (2): Let 7 |= (t)in(8(s))at(to). From (**) we know that there exist z,2’
with

tO jlpo a'n_i(f)

i jlpo Uy

and 1 < 7' <17 < n. Since there is no nonconstant smaller than a, {; must be of
the form a™~7(€) with ¢ < 7 < n. We therefore conclude

t jlpo Uy jlpo Uy jlpo uj
On the other hand we know from the construction of §(s) that

h(l(an—j(e)), e(uj )’ 6) jlpo 6(3)
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and (5) yields u; <5, ¢. From the antisymmetry of <j,, we get t = u;.
(2) = (1): (4) follows immediately from the definition of 6(s). So let

h(l(@™(€)), e(t"), €) Zipo 6(s)
Because of (**) there are 7,7’ with 1 < ¢ < i < n and

a™(e) Zipo @™ ()

t' jlpo Uy
This is only possible if 7 > i and we obtain

’ ’
t 5lpo U, :<.lpo Uq jlpo Uuj =t

A.2 Godels 3-Predicate

The 3 predicate was introduced in [God31]. A proof of the theorem we restate
below can also be found in textbooks on mathematical logic, for instance [End72].

Bz, z2,l,x) =31 =q¢g*(1+({+1)*z2)+zAc<1+(I+1)*z;

Theorem 9 ([God31]) For each sequence ao,...,a, of natural numbers there exist
¢,d such that for allt < n:

¢ E Ble,d,i,z] & z=a;

We can now choose the representation ¢ of Example (G):

Y((uiy vi)iz1,...,m)(7)

where c,d are the values corresponding to the sequence

(0a07 ¢(u1)a ¢(’01), ce- a¢(um)s ¢(vm))

I

(c,d,2%j+1)
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