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Abstract 

We address the problem of sorting n integers each in the range {l, ... ,m}, for m = nO(l), 
in parallel on the PRAM model of computation. We present a randomized algorithm that 
runs with very high probability in O(log njlog log n) time with a processor-time product of 
O(n loglogm) and O(n) space on the CRCW (COLLISION) PRAM [13]. The improvements 
that this algorithm makes over existing ones [5, 20, 27] include a weakening of the model 
of computation used and reducing the space requirement to O(n), without increasing the 
time needed or work done. For larger values of m our algorithm is better than existing 
algorithms in several other ways as well. We show that the algorithm can be analyzed using 
O(logO(l))-wise independence, which implies that the amount of true randomness needed is 
small. 

We also give an improved randomized algorithm for the the problem of chaining [22,29]. 
An interesting subroutine used is an algorithm for solving a class of processor allocation 
problems quickly. The algorithms for chaining and integer sorting both make use of efficient 
algorithms for the construction of the fast priority queue of van Emde Boas [35]. 
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1 Introduction and Previous Work 

The problem of integer sorting in parallel has received a lot of attention in recent years. 
This is a restricted version of sorting where the keys are integers that are known to lie within 
a range that is not too large compared to the size of the set to be sorted. This problem is 
apparently simpler than general (comparison-based) sorting, where the keys are not known 
to have any particular structure, and is a frequently occurring problem in sequential and 
parallel algorithm design. A special case called the polynomial integer sorting problem is of 
special interest: this is the problem of sorting n integers each in the range {O, ... , n°(1)}. 
This problem can be solved sequentially in linear time on a RAM using radix sorting [25], 
in contrast to the well-known f2( n log n) lower bound on comparison-based sorting. We are 
interested in studying this problem in the parallel setting. 

Our models of computation belong to the PRAM family, and we make the usual clas­
sification of PRAMs according to their concurrent-writing and reading abilities into the 
EREW, CREW and CRCW varieties (see, e.g., [16]). ,;{r~ follow current practice in saying 
that a parallel algorithm achieves optimal speedup if its processor-time product is within 
a constant factor of the best known sequential algorithm (for convenience, we say that a 
parallel algorithm that achieves optimal speedup is optimal). Since the best sequential algo­
rithm for any problem is trivially an optimal parallel algorithm, we are interested in parallel 
algorithms that optimally achieve a run time that is polylogarithmic in n. 

CRCW PRAMs are further classified according to the mode of write-conflict resolution. 
These include PRIORITY, in which the highest numbered processor succeeds in the event 
of a write conflict, ARBITRARY, in which an arbitrary processor succeeds in writing and 
COMMON, which permits a concurrent write only when the values being written are the 
same. We focus on an interesting model called COLLISION, introduced in [12J, which permits 
only detection of write conflicts. In this model, when a write conflict occurs, the contents of 
the memory location being written to are erased and a special collision symbol appears in 
that location instead (this is reminiscent ofthe conflict resolution scheme used by Ethernet). 
Fich et al. showed that COLLISION is strictly weaker than ARBITRARY, i.e., COLLISION 
cannot simulate ARBITRARY without loss of time or without increasing the number of 
processors [12, 13J. However, recent work has shown that even the seemingly weak property 
of collision detection, when used in conjunction with randomization, is quite powerful [7, 23J. 
As a side issue, our paper modifies some existing randomized sorting algorithms to work 
on COLLISION, with no degradation in performance, and so may be considered as providing 
more proof in that direction. 

Efforts at finding optimal parallel algorithms for sorting problems have met with mixed 
success. The general sorting problem for PRAMs has been fully solved: an optimal logarith­
mic time EREW PRAM algorithm was presented by Ajtai et al. and by Cole [1, 8J. Integer 
sorting has not proved as easy: the only optimal algorithm for integer sorting is a random­
ized one for special case of sorting n integers in the range {I, ... , n}, due to Rajasekaran 
and Reif [31J. This algorithm is not stable, i.e., the order of records with equal keys may 
not remain the same in the output as in the input, so this procedure cannot be used to 
solve the polynomial integer sorting problem by radix sorting. Recently, a fast o(1oglog n) 
time optimal algorithm for non-stably sorting integers in the range {I, ... , n} such that the 
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Author[s] Model Time Space 

Hagerup (87) PRIORITY o (log n) O(nl+c ) 

Bhatt et a1.(89) ARBITRARY e(~) 
- 101/;101/; n 

O( nl+c ) 

Matias and 
Vishkin (90) 

Rand. 
ARBITRARY 

o(log n) 
(expected) 

O(n) 

New Rand. 

COLLISION 
e(~)log log n 

(w.h.p.) 

O(n) 

Figure 1: CReW polynomial integer sorting algorithms. (All the above have PT 
o(n log log n). ) 

output is in the form of a linked list was described by Hagerup [21], but again, this has no 
implications for polynomial integer sorting. 

The best parallel algorithms known for solving the polynomial integer sorting problem 
have processor-time (PT) products of O( n log log n). Hagerup [20] achieved the above PT 
bound with a run time of o (log n). His algorithm runs on PRIORITY and uses O( nl+c

) 

space, for any fixed c > O. This was subsequently improved to O(logn/loglogn) time in [5J 
on the ARBITRARY model, using O( nl+c ) space again. Very recently, Matias and Vishkin 
[27], using an algorithm similar to that of Bhatt et al., achieved an expected 0 (log n) running 
time, O( n log log n) PT product and O( n) space on ARBITRARY. Our algorithm has the 
same PT bound and runs in O(1og n/loglog n) time with high probability on the COLLISIOK 
model, using O( n) space. Since integer sorting is harder than computing any symmetric 
function, the result of Beame and Hastad [3J shows that n(log n flog log n) is a lower bound 
on the (expected) run time of any (randomized) algorithm that uses a poly(n) number 
of processors and runs on PRIORITY. Figure 1 summarizes the known results on CReW 
polynomial integer sorting. 

Our approach is different from the existing algorithms. First we randomly sample the 
set of integers to be sorted, and sort the sample (which is small) using existing general 
sorting algorithms. Then we construct in parallel of a static data structure (i.e., one that 
allows queries only) on the sample that answers predecessor queries quickly, and collect 
together the elements in the original set that lie in between two consecutive elements in the 
sample. Sorting these collections turns out to be inexpensive since their size is small with 
high probability. A key point is that constructing static versions of sophisticated sequential 
data structures in parallel is relatively easy, and this allows us considerable flexibility. In 
what follows, an event that occurs "with high probability" occurs with probability 1- n- f3, 

for any pre-specified integer /3. If an algorithm consumes O(f(n)l of any resource (time, 
space, work etc.) with high probability, we say that it consumes O(f(n)) of that resource 
(the notation is from [3:1.]). We allow the constant in the big-oh to depend on /3, if necessary. 
Also, when we say CReW PRAM for the rest of this section, we mean anyone of PRIORITY, 
ARBITRARY and COLLISION (i.e., COMMON will be denoted separately). We now outline 
the improvements that our algorithm makes over existing ones. 

1. Polynomial integer sorting on the CRCW PRAM: Our algorithm runs on COLLISION, 
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a weaker model than the ARBITRARY model used by Bhatt et at. and Matias and Vishkin. 
The algorithms of Bhatt et at. and Matias and Vishkin repeatedly use the power of 
ARBITRARY to do exactly what was proved hard for COLLISION in [13], (i.e., the "repre­
sentative selection" problem), so weakening the model while preserving work done requires 
a different approach. As mentioned earlier, we also modify other existing algorithms to run 
on COLLISION, thus reinforcing belief in the "power of COLLISION". 

Our algorithm also uses O(n) space, which is an improvement over the O(nme ) space 
used by Bhatt et al., where m is the range of integers being sorted. The algorithm of Matias 
and Vishkin also achieves O(n) space, but it runs in O(logn) expected time: i.e., with prob­
ability 2-0 (<:» it uses f2(cdogn) time, as opposed to our high-probability sub-logarithmic 
running time. Matias and Vishkin achieve linearity of space by using perfect hashing, an 
idea that was independently discovered by us (the hashing subroutine in [27] is slower but 
more work-efficient than ours). Our algorithm also avoids the complex "monotonic" list 
ranking subroutine that is central to the speed of the algorithm of Bhatt et at.. 

We also mention here that Gil and Matias [17] and Matias and Vishkin [28] have recently 
found much faster expected time hashing subroutines that run in almost constant expected 
time. 

2. Arbitrary integer sorting on the CRCW PRAM: All the above mentioned algo­
rithms (ours included) can be extended to sort integers in the range {I, ... , m}, for any 
m, by increasing the PT product to O( n log log m) and increasing the running time by an 
additive factor of O(loglogm). The assumption made by all of these is that the proces­
sors can perform bitwise logical operations, addition and arbitrary left and right shifts of 
O(logm + logn) bit integers in unit time (we call this the basic RAM). When loglogm is 
both O(.yTOgn) as well as (1 +f2(I))loglogn, all these algorithms achieve optimal speedup 
since the best sequential RAM algorithm for this range of m is that of Kirkpatrick and Reisch 
[24] which runs in O(n(loglogm -loglogn)) time. The existing algorithms [5, 20, 27] are 
not optimal for larger values of m, however, since Fredman and Willard [15] recently gave 
an O( n.yTOgn) time RAM algorithm for this problem, for all values of m, assuming unit­
time multiplication is added to the instruction set of the basic RAM (giving the augmented 
RAM), as well as randomization for reducing space usage. By using their fusion tree data 
structure, our algorithm can be modified to achieve this bound on the augmented RAM and 
so is currently the only one to achieve optimality for all values of m. A simple change to 
our algorithm makes it run in the best-possible O(logn/loglogn) time on the ARBITRARY 
model using the basic RAM instruction set with a relatively small amount of extra work for 
all values of m, i.e., even when the additive factor of O(loglogm) dominates the running 
time (theorem 16). It is not clear how to modify the algorithm of Bhatt et at. to get similar 
results. 

From a practial point of view, the basic RAM instruction set no more "realistic" than the 
augmented RAM instruction set, since unit-time integer multiplication is usually available 
on real machines. In theoretical terms, there would be justification for considering an 
instruction set comprising only addition, comparison and bitwise logical operations, since 
all of these are AGo operations. The basic RAM includes as a constant-time operation 
at least one NGI operation, viz., the arbitrary shift, and so there seems no immediate 
reason not to permit multiplication as well on the grounds that it is a complex (i.e., NGI 
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Model Time Processors (P)jWork (PT)~l--..::....::...:.~ I Space I_----=-=---~.::..........::~___:..____::.....____!__~
 

Basic RAM Instructions 

ARBITRARY o Co--k"fo~ n 

Previous Best (Bhatt et. 

+ log log m) O(nm!) 

at [5]). 

PT = O(nloglogm) 

NEW: Theorems 15, 16 and 17. 

COLLISION 

COLLISION 

COMMON 

CREW 

[) (l~l~~n + log log m) 
[) (~+ Ioglogm,)

loldoll:n k 

[)(log n 10g(3) n) 

[)(log n log log n) 

O(n) 

O(nme ) 

O(n) 

O(n) 

PT = [)(nloglogm) 

P = n2 k 

PT = [) n ~ +loglogmlop; lop; n 

PT = [) n ~+loglogmIoz loa n 

Augmented RAM Instructions 

ARBITRARY 

Previous Best (Matias and Vishkin [27]). 
Expected o(log n) O(n) PT = O(nloglogm) 

NEW: Theorem 19 

COLLISION 

COMMON 

CREW 

[) (I}ofo 
n n) 

[) (log n log(3) n) 

[)(log n log log n) 

O(n) 

O(n) 

O(n) 

PT = [)(nmin{yTOgn,loglogm}) 

PT = [) n~lop; loz n 

PT = o n~loglO£n 

Figure 2: New general integer sorting algorithms. The integers are assumed to lie in the 
range {I, ... , m} 

operation). We also remind the reader that the word size required before Fredman and 
Willard's algorithm improves upon existing methods is very large, and since we use their 
data structure this is true of our algorithm as well. 

3. Arbitrary integer sorting on COMMON and the CREW PRAM: Our algorithm can 
be viewed as a randomized CREW PRAM reduction from the general (stable) integer 
sorting problem to the problem of (non-stably) sorting integers in the range {I, ... , n} that 
uses O(nmin{yTOgn,loglogm}), and so it may be helpful in solving the integer sorting 
problem on a CREW PRAM (or on the COMMON PRAM), where even less progress has 
been made to date. Existing poty(log(n)) time algorithms for integer sorting on the CREW 
PRAM or CRCW (COMMON) PRAM [26,32] have a PT bound of O(nlognjloglogn) and 
are not much better than general sorting algorithms. For example, an algorithm due to 
Rajasekaran and Sen [32] stably sorts integers in the range {I, ... , n} in 0 (log n log log n) 
time on a CREW PRAM and in o (log n log(3) n) time on COMMON, with the above PT 
product. Our algorithm can be used to extend these to super-polynomial ranges, with 
O(nmin{yTOgn,loglogm}) additional work. Table 1 summarizes the results on general 
integer sorting. 

Given an array of elements XI, ••• , X n , m of which are non-zero, the (unordered) chaining 
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problem is to chain all the non-zero elements into a linked list. If the order of the elements 
in the list is required to be the same as their order of occurrence in the original array, 
then we get the ordered chaining problem. To perform this task n processors, one for each 
element of the array, are given. One motivation for this problem is the following: database 
operations involve more than just finding all the records that satisfy a particular predicate: 
usually they have to be retrieved as well, in order to process them. In the parallel context, 
we might suppose that one processor is associated with each record, and when a query is 
presented, each processor determines whether the record it has matches the query predicate 
or not, following which the processors, in parallel, chain the records so found for further 
operations. This problem also has applications in parallel algorithms and appears as a 
subproblem in solving processor reallocation, merging of integers, subset compaction and 
integer sorting [5, 4, 18, 34]. This problem was studied by Hagerup and Nowak [22] and 
Ragde [29]. Ragde gives a COMMON algorithm for ordered chaining that runs in O(o(n)) 
time using n processors (where o(n) is a inverse of Ackermann's function). He posed the 
problem of whether or not algorithms for chaining can be found which run in constant time 
using a linear number of processors, and was able to show that whenever m < n1 / 4 - e', for 
some E > 0, unordered chaining can be done in constant time. We address this problem, 
and show that even for values of m which are very close to n, ordered chaining can be 
done in 0(1) time. More precisely, we show that whenever m < njlog(i) n, for any fixed 
i, ordered chaining can be done in 0(1) time using n COLLISION processors. The chaining 
algorithm uses a processor allocation routine that may be of interest in its own right. 

2 Preliminaries 

2.1 Some Useful Subroutines 

The prefix sum problem is the following: given n integers XI, • • • , X n in an array, to evaluate 
all of the sums PSi = 2:~=1 xi, for 1 :S i :S n. Cole and Vishkin [9] prove that the prefix 
sum problem can be solved optimally in O(lognjloglogn) time on the COMMON model 
of computation. However, their result only needs the ability to compute the logical OR 
function in constant time. Since COLLISION permits this as well, we have the following 
lemma: 

Lemma 1 ([9], Theorem 2.2.2) The prefix sum computation of n integers, each of o(log n) 
bits, can be done in O(lognjloglogn) time on the COLLISION model of computation with 
optimal speedup. 

We can modify the following algorithm in [31] to run on the COLLISION model of com­
putation (the proof can be found in the appendix): 

Lemma 2 A set of n general keys can be sorted in O(log njlog log n) time using n(log nY 
COLLISION processors, for any constant e > 0, and O(n) space. 

It is shown in [6] that n log n COMMON processors can step-by-step simulate any com­
putation of n PRIORITY processors with 0(1) time per step slowdown. The simulation, 
however, increases the memory requirements by a factor of O(n). Thus we get: 
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Lemma 3 A set of n general keys can be sorted in O(log n/log log n) time using n(log n )I+~ 
COMMON processors, for any constant E > 0, and 0(n2 ) space. 

It is shown in [33] that the non-optimal sub-logarithmic time algorithm in [31] for the 
problem of sorting n integers in the range {I, ... , n} can be modified to achieve optimality 
with the same speed. Lemma 2 can be used to (easily) show that the model of computation 
can be weakened to COLLISION: 

Lemma 4 ([31], Theorem 4.2 and [33]) A set ofn integers in the range {1, ... ,n} can be 
sorted in O(1ogn/loglogn) time using n(loglogn)/logn processors on the COLLISION model 
of computation. 

The "leftmost one in memory" problem can be stated as follows: given n consecutive 
memory locations MI, ... , Mn , each containing a 0 or a 1, find the least index i such that 
M; = 1. Fich et al. [13] prove the following: 

Lemma 5 ([13], pp. 609-610) "Leftmost one in memory" problems can be solved in 0(1) 
time by n COLLISION processors, each associated with one memory location. 

Finally, we will use the following result due to Ragde related to the chaining prob­
lem. The original result used the ARBITRARY model of computation, but it is clear that 
COLLISION could be substituted to obtain the same result. 

Lemma 6 ([29], Theorem 1) Given n memory locations, MI, ... , Mn , and a number m, 
we can in constant time using n COLLISION processors, for any value of m, either conclude 
that there are more than m non-zero items in the memory location, or move the items into 
M 1 through M m 4 . 

2.2 Bounds on Tails of Distributions 

We now mention some well-known bounds on the tails of certain distributions. We say that 
X is B( n, p )-distributed if X is a binomially distributed variable with parameters nand p, 
i.e., X is the random variable that corresponds to the number of successes in n trials, each 
of which independently has probability of success p. Then: 

Lemma 7 (Chernoff bounds, [2]) Let X a random variable that is B(n, p )-distributed, and 
let LE(E, n,p)=Pr[X :::; (1 - E)np]. Then: 

(1) 

Similarly, ifGE(E,n,p)=Pr[X ~ (1 + E)np], then: 

(2) 
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Sometimes it is necessary to bound the number of successes in a collection of trials 
such that an upper bound on the probability of success in each trial holds irrespective of 
the outcome of the other trials. The following folklore lemma (mentioned in [30], e.g.), 
allows us to apply Chernoff bounds in these cases as well (a proof is included for the sake 
of completeness): 

Lemma 8 Let t I, ... , tn be a set of Bernoulli trials such that, for any k, 1 $ k $ n, and 
for all possible outcomes 01, . ; . ,Ok-I of trials t I, ... , tk-I, Pr[tk succeedsjoj , ... ,Ok-I] $ p. 
Then if X is the random variable that corresponds to the number of successes in these n 
trials and Y is a binomial random variable with parameters (n,p) then: 

Pr[X ~ r] $ Pr[Y ~ r], 0 $ r $ n. 

PROOF. The proof is by induction on n. Let Yi be a binomial variate with parameters (i, p) 
and let Xi denote the random variable that represents the number of successes in the first 
i trials t I, ... , ti. For the base case i = 1 it is obvious: .nat Pr[XI ~ k] $ Pr[YI ~ k], for 
any k. For i = m + 1, we have that, for all k ~ 1: 

Pr[Ym +I ~ k] Pr[Ym ~ k] +pPr[Ym = k - 1] 

(1 - p)Pr[Ym ~ k] + pPr[Ym ~ k - 1]. (3) 

Also, 

Pr[Xm +I ~ k] 
=Pr[Xm ~ k] + Pr[(Xm = k - 1) 1\ tm+I succeeds] 

= Pr[Xm ~ k] +Pr[Xm = k - l]Pr[tm+I succeeds IXm = k - 1] 

$ Pr[Xm ~ k] + pPr[Xm = k - 1] 

= (1- p)Pr[Xm ~ k] +pPr[Xm ~ k - 1] (4) 

Comparing (3) and (4) and using the inductive hypothesis, we have the proof. O 

For any random variable X let E[X] denote its expected, or mean value. If E[X] = u, 
then the kth central moment of X is defined to be T} = E[(X - p)k], for k even (Tk is also 
known as the variance of X). We now mention some well-known facts [11, 30]. 

Lemma 9 (kth moment inequality) Let X be a random variable and let p = E[X]. Then, 
for all t ~ 0 and k even: 

Pr[IX - pi > t 01] $ t~' 

Lemma 10 Let X = Ei=I Xi where the Xi are k-wise independent random variables, for 
even k. Then: 

n 

k '" kTX = LJ TX,' 
i=I 
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Corollary 11 Let X = 2:£=1 Xi where each Xi is 0 with probability q = 1 - p and 1 with 
probability p. Also, let the Xi'S be k-wise independent, for even k. Then: 

T~ = npq(pk-1 + l-l). 

PROOF. For each i, E[Xd = J.L = p. Also, 

Tt = E[(Xi - J.L)k] =ql + pl = pq(l-l + l-l). 

The corollary follows from lemma 10. 0 

3 Parallel Construction of a Fast Priority Queue 

This section reviews a variant of the priority queue described by van Emde Boas et al. [35J 
(abbreviated as the vEB data structure), and describes methods of constructing this data 
structure in parallel. 

3.1 A Fast Priority Queue 

The van Emde Boas data structure stores a set S ~ {1, ... , m}, (the elements in S are 
all distinct), such that predecessor queries can be answered in O(loglogm) time [35J. The 
vEB data structure for {1, ... , m}, m a power of 2, is a complete binary tree with depth 
log m, with all leaves at the same level. The edge leading to the left child of each internal 
node is labeled with a 0, and the one to the right node with a 1. Every leaf corresponds 
to the integer that is obtained by concatenating the bits obtained by traversing the path 
from the root to it (the edges incident upon the root are the MSB's). Every leaf node 
that corresponds to an integer in S is marked, and an internal node is marked iff one of its 
children is marked. Every internal node also contains the maximum and minimum element 
from S stored in the subtree rooted at it. The data structure is stored in an array A of size 
O( m) in the usual way, with the children of a node stored at A[iJ being located at A[2iJ 
and A[2i + 1J. In addition, all elements in S are linked together in an ordered list. 

This data structure can be used to find Pred( x) and S ucc( x) in O(log log m) time by 
doing a binary search on the path from x to the root to find the first marked node along 
the path. Either the maximum value in the subtree rooted at this node will be Pred(x) 
or the minimum value in the subtree rooted at this node will be Succ( x). As the elements 
of S are linked together in a linked list, finding either the predecessor or the successor will 
enable us to get the other. 

Some vertices on a marked path from a leaf to a root are the left or right join vertices 
of that path. The left join vertices of a path p are all the vertices v such that p goes to the 
right child of v and the left child of v is marked (i.e., p is joined by another path from the 
left at v). The right join vertices of a path are defined similarly. The set of join vertices 
of a path is the union of the sets of its right and left join vertices. Let p be the path from 
xES to the root. The predecessor of x is the maximum element stored at the left child 
of the deepest left join vertex 1 along p. Also note that exactly all vertices from x to 1will 
have x as the minimum value in the subtree rooted at them. 
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3.2 Perfect Hashing 

In this section we will review the perfect hashing scheme proposed by Fredman et al. [14]. 
An vEB data structure for a set 5 ~ {I, ... , m} stored in an array of size O( m) may have 
many elements that are zero: only 0(151Iogm) locations will contain non-zero values. By 
storing the useful portions of the array in a hash table, such that the array index is used as 
a key to retrieve the value stored there, the space requirement can be considerably reduced. 
Dietzfelbinger et al. have used this idea in a sequential context [10]. 

Suppose that 5 ~ {I, ... , N}, and 151 = n. Let p be the smallest prime such that 
p > N and let s ;::: n. Fredman et al. consider the class of hash functions defined by 1tp ,s 

= {h;,s(x) = (kx mod p) mod s\1 :::; k :::; pl. They prove the following: 

Lemma 12 Let p and s be as above, and let wt be the number of times the value i is 

achieved by h~,s when restricted to 5, that is, wt = I{y E 5Ih~,s(Y) = i}l. Then 

1.	 With probability at least a half, a function h~,s chosen uniformly at random from 1tp ,s 

satisfies 2::=1(wt? < 5n. 

2.	 With probability at least a half, a function hk 2 2 chosen uniformly at random from p ; s
 
1tp,2s2 is injective on 5.
 

These facts are then used to obtain a linear space static data structure for answering 
membership queries about 5. A top-level hash function is chosen that satisfies condition 
1 above, which partitions 5 into at most s buckets. For each bucket containing m > 1 
elements, 2m 2 locations are allocated, and a second level hash function is chosen from 
1tp,2m2 which satisfies condition 2. Thus the composition of the top level function with the 
appropriate second level hash function is an injective mapping, and membership queries can 
be answered in 0(1) time. Note that the second level tables require a total of O(n) space, 
since the top-level function is chosen to satisfy condition 1 above. 

3.3 Constructing the vEB Data Structure in Parallel 

Theorem 13 An vEE data structure on 5 ~ {I, ... , m}, 151 = n can be constructed in: 

1.	 O(log n) time using njlog n EREW PRAM processors and O( n) space, assuming 5 
is given as a sorted array. 

2.	 O(lognjloglogn) time using nloglognjlogn COLLISION or COMMON processors and 
o(n) space, assuming 5 is given as a sorted array. 

3.	 0(1) time using nlogm COLLISION processors, using O(m) space, assuming only that 
the items are distinct and log m processors are associated with each. 

PROOF. The algorithms are as follows: 

ALGORITHM 1: The main idea here is that instead of writing information directly into 
the array that represents the data structure, the processors will determine what to write by 
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looking at the input and write (array index,value) pairs in an auxiliary array instead. Then 
these values are stored in a hash table using the array index as key. A "bucketing" technique 
is used to obtain optimality and space linearity. Without loss of generality we assume that 
m ~ n (since the elements of S are distinct). Also, we can assume that log log m = o(log n), 
since otherwise binary search will perform as well as the vEB data structure. 

Step 1: Let the given input be an array X with elements Xl, ... , X n • Let l = log m, 
r = 1l0g2 n and n' = lnjrJ. We will place only elements Y = Xr,X2n ... ,X n 'r = 
YI,' .. , Yn' in the vEB data structure. Finding the predecessor in X will consist of 
finding the predecessor in Y using the vEB data structure, followed by a binary 
search on a segment of X of length OCr), which takes O(max{loglogm,loglogn}) 
= O(log log m) time in all. 

Step 2: Let the binary representation of each Yi = bi,I ... bi,I' For each uc. let d; = 
max{jlbi,j =I- bi+1,j } . Then if the path from u. to the root is Vo, . . • , VI, then exactly 
the nodes Vo, ••• , Vdj will have Yi as the maximum value in their subtree. Similarly, 
each processor can determine the portion of the path along which the value assigned 
to it is the minimum value stored. We associate l processors with each element in Y, 
and determine the d, in O(loglogm) = O(logn) time using the obvious algorithm. 

Step 3: Let B be an array of size n'l. The l processors associated with Yi write the at 
most l pairs (/oe, Xi) such that in the actual vEB structure, location /oe would have 
contained Xi as the subtree maximum, into locations B[ilJ through B[(i + 1)/ - 1J. 
This can be done in O( 1) time, since the values d, are known from step 2. A similar 
procedure is followed for subtree minima. Let the set of pairs stored in B be E, and 
observe that lEI =O( n/log2 n). 

Step 4: Using the standard prefix sum algorithm (see, e.g., [16]), the processors com­
pact E into lEI consecutive locations in memory, in time O(logn). 

Step 5: Let p be the smallest prime such that p > m. The processors divide up into 
dllog n groups of P = 0(nj(logn)2) each. In parallel, the processors in each group 
choose a top-level hash function h independently at random from 'Hp ,2IEI' 

Step 6: Each group then checks to see if its choice satisfies condition 1 of lemma 12, 
i.e., that there are not too many collisions at the top level. This is done by first 
evaluating h at all the elements of E in 0(1) time. The values h(E) are sorted 
to determine the values Wi, 1 ~ i ~ 21EI, and a prefix sum computation is used 
to determine whether h satisfies condition 1. If good function(s) are found, an 
arbitrary one is chosen in o(log log n) time, and if not, the computation is aborted 
and restarted. 

Step 7: Using the prefix sum computed in step 6, it is easy to allocate O(Wilogn) 
processors to each bucket i, 1 ~ i ~ 2IE/, such that Wi ~ 2. We can also allocate 
0((Wi)210g n) space for each such i. Now for each such i, dzlogn different "second 
level" hash functions chosen independently unformly at random from 'H ,2(W i )2 areP
tried in parallel, trying to find one which is injective (checking for injectiveness is 
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again accomplished by sorting). If an injective function is not found for all such i, 
the computation is aborted and restarted. 

Analysis: Now we fix the constants d1 and d2 • If at the first stage we try d1 log n = ,8 log n 
different hash functions, then since each one independently has a probability 1/2 of being 
good, with probability at least 1 - n-{3 at least one good hash function will be found. At 
the second level, we try d210g n = (,8 + 1) log n different functions for each bucket, so that 
an injective second level hash function will be found for all buckets with probability at least 
1- n· n-(l+{3) = 1 - n-{3. 

ALGORITHM 2: For the COMMON model, we make the following modifications to 
algorithm 1. In step 2, we use the algorithm of lemma 5 to find the values di in 0(1) time. 
In step 4 and step 6 we use the fast prefix sum algorithm of lemma 1. For the COLLISION 

model, in addition to the above modifications, it is possible to simplify the algorithm a 
little: in step 6 we can use the optimal sub-logarithmic time algorithm of lemma 4 to count 
collisions and in step 7, checking to see if the hash function chosen is injective or not can be 
done trivially in 0(1) time. This enables us to reduce the value of r from 1l0g2 n tollog n 
in step 1. 

ALGORITHM 3: Here we assume that the log m processors associated with each element 
are numbered 1,2, ... ,logm. Let the given input be XI, ••• , Xn , Xi E {I, ... , m}, and let all 
the Xi'S be distinct. Let path, be the path from Xi to the root. 

Step 1: The logn processors associated with Xi mark all nodes along pailu . In con­
stant time the processors determine for each node along path, whether it is a join 
vertex or not. Using the "leftmost one in memory" algorithm, in constant time the 
log m processors determine the deepest left join and right join vertices along pailu, 

Step 2: In constant time the processors write the pair (i, Xi) as the subtree minimum 
(maximum) for all vertices below the the deepest left (right) join vertex. Finally, 
in constant time the processor associated with the deepest left (right) join vertex v 
looks at v's left (right) child and reads the pair (k, Xk) which is the subtree maximum 
(minimum) there and sets Pred(xd = k (SUCC(Xi) = k). 0 

Remark: Algorithm 3 uses ideas similar to the constant-time simulation of PRIORITY by 
COMMON given in [6]. 

4 Applications 

4.1 Integer Sorting 

We will now prove our results on integer sorting. Let PTeA, n), T( A, n) and S( A, n) be, 
respectively, the processor-time product, time and space required by any algorithm A that 
sorts integers in the range {I, ... , n} (not necessarily stably) and runs on on one of the 
CREW PRAM, COMMON and COLLISION models of computation. We show: 
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Theorem 14 Let A be as above and let A use p processors. Then there is an algorithm A' 
that uses the same number of processors as A, runs on the same model of computation as A 
and stably sorts integers in the range {I, ... ,m}, for any integer m, and has the following 
complexities: 

1.	 PT(A',n) = O(PT(A,n) + n log log m), 

2.	 T(A', n) = O(PT(A', n)/p + loglogm) and 

3.	 S(A', n) = S(A, n) +O(n). (S(A', n) = S(A, n) + O(n2 ) if A runs on COMMON.) 

PROOF. We assume the input is given in an array X[1..n]. The algorithm A' is as follows. 

Step 1: For each i in parallel, compute Y[i] = n(X[i] - 1) + i. The Y[i]'s are distinct 
and are in the range {I, ... , nm}. Let S be the set of values in the array Y. 

Step 2: Choose S' ~ S by placing xES independently in S' with probability log-3 n. 
If dl and d2 are chosen appropriately, we can ensure that with high probability: 

1.	 IS'I ~ dl n/log3 nand 
42.	 at most d210g n elements of S have a value that lies in between two consecutive 

elements of S'. 

Step 3: Using lemma 1 or the standard prefix sum algorithm, compact S' into an 
array. 

Step 4: Sort S' using Cole's merge sort [8], lemma 2 or lemma 3 depending on whether 
A runs on the CREW PRAM, COLLISION or COMMON models. 

Step 5: Construct a vEB data structure on S' using Algorithm 1 or 2, as appropriate, 
from theorem 13. 

Step 6: For each element of S, the processors determine its predecessor in S', as well 
as the rank of its predecessor in S'. 

Step 7: S' partitions S into IS'I+1 sub-collections in the following way: ifthe elements 
of S' are Zl, . . . , zls'l in sorted order, then the ith collection C; = {x E SIZi ~ X < 
Zi+l}, 0 ~ i ~ IS'I. Associate with each element x of S the index i such that x E Gi , 
and sort S using these indices as keys, using algorithm A. 

Step 8: Now sort the individual sub-collections Gi, using Cole's merge sort. 

Analysis: First we show that conditions 1 and 2 in step 2 are both true with high probability. 
The size of the set S' is a binomial variable with parameters (n, log-3 n). By a routine 
application of lemma 7 (Chernoff bounds for binomial distributions), we see that for any 

3constant e > 0, if d1 ~ 1 + e, the probability that IS'I > d1n/log n is no more than 
e-~2n/3Iog

3 
", which is sufficient for our purposes. Now we fix the value of d2 • Consider Sin 

sorted order. The probability that f consecutive elements of S are not in S' is (1-log-3 n)l, 
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and hence Pr[ICil > £] :S (1-log-3n)£. Let k = (f3 + 1)10g3 nln n. Using the standard 
inequality (1- 1jx)X < 1je we find that Pr[ICil > k] < n-(I3+l). Thus choosing d2 = 
(f3 + 1) In 2 we can ensure that no collection is larger than d2log

4 n with the required 
proba bili ty. 

Now we analyze the time required for the individual steps. We will do this by indicating 
the work and time requirements of each step, and appealing to Brent's theorem whenever 
necessary. 

Step 1: O(n) work, 0(1) time. 

Step 2: O(n) work, 0(1) time. 

Step 3: O(n) work, o(log njloglog n) time on COMMON and COLLISION, and O(logn) 
time on the CREW PRAM. 

Step 4: O(n) work, O(lognjloglogn) time on COMM~N and COLLISION, and O(logn) 
time on the CREW PRAM. 

Step 5: O(n) work, o(log njloglog n) time on COMMON and COLLISION, and O(logn) 
time on the CREW PRAM. 

Step 6: O(nloglogm) work, O(loglogm) time. 

Step 7: PT(A, n) work, T(A, n) time. 

Step 8: Let s = maxdICil}. The work done in this phase is at most O(I:i ICillogs) 
= O(nlogs) and the time requirement is O(1ogs). Since s = 0(1og4 n) w.h.p., the 
work done in this phase is O(nloglogn) and the time for this phase is O(1oglogn). 

Noting that T(A, n) = n(1og n) for the CREW PRAM and T(A, n) = n(lognjloglogn) 
for COLLISION and COMMON, we obtain the theorem. 0 

Remark: The above algorithm uses ideas that are reminiscent of ones in a randomized 
simulation of PRIORITY on a COLLISION-like model called COLLISION+ given in [7]. 

As a consequence of the above theorem and lemma 4, we get: 

Theorem 15 A set of n integers, each in the range {I, ... , m}, can be stably sorted in 
O(1ognjloglogn + loglogm) time with O(nloglogm) work, using O(n) space, on the 
COLLISION model of computation. 

Another ad vantage of our algorithm is that even when log njlog log n = o(log log m), our 
algorithm can be sped up to run in O(1ognjloglogn) time at the expense of extra work. 
More precisely: 

Theorem 16 Let k = floglogmloglognjlognl be greater than 1. Then, n integers, each 
in the range {l, ... ,m}, can be stably sorted in O(1ognjloglogn) time using 0(2kn) pro­
cessors, using O( n) space, on the COLLISION model of computation. 
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PROOF. Firstly, note that when k > 1, the algorithm of theorem 15 uses n processors. 
Suppose we are given 2k n processors. Then, by using 2k-ary search along the path to the 
root instead of binary search to find predecessors using the vEB data structure, we can 
perform step 6 of theorem 14 in O(log2k(logm)) time, which is O(logn/loglogn) time. 
Thus this algorithm is non-optimal by a factor of O(2k /k). Also, when 2k = n(loge n), for 
any pre-specified e, it is more economical to use the general sorting algorithm of lemma 2. 
o 

Finally, we obtain, using Rajasekaran and Sen's integer sorting algorithms [32] as a 
subroutine, instead of lemma 4 (for the COMMON result we use Cole's merge sort instead 
of lemma 3 to keep the space linear): 

Theorem 17 A set of n integers, each in the range {I, ... , m}, can be stably sorted with 

o(nmaxLo~~;n,loglogm}) work and O(lognlog(3)n) time on COMMON, or with the 

same work in O(lognloglogn) time on the CREW PRAM. Both these algorithms use 
linear space. 

4.2 Additional Remarks on Integer Sorting 

Integer Sorting on the Augmented RAM 

We first note that our integer sorting algorithm uses a word size of 0 (log m + log n) and is 
thus conservative, i.e., it does not abuse the unit-cost criterion by generating large operands. 
Our algorithm uses the basic RAM set of operations everywhere except that for performing 
hashing in theorem 13, arbitrary multiplication and mod operations are used. For algorithm 
1 in theorem 13 (for the CREW PRAM), these operations are completely unnecessary. We 
can associate 0 (log m) processors with each key to be hashed, and this will enable us to do 
both the above operations in o(log log m) = O(log n) time using basic RAM instructions. 
For algorithm 2 in theorem 13, however, the above approach increases the run time by an 
additive O(loglogm) factor. Note that in step 1 (which has an apparent multiplication) 
we could instead use Y[i] = (X[i] - 1)2llognl + i, which would serve just as well, and needs 
only a shift to compute. This makes no end difference to theorem 15, but for theorem 16 we 
need the use of the augmented RAM if hashing is to be employed. By eliminating hashing, 
we obtain the same bounds on the basic RAM, but at an increase in the space utilization to 
O(nme

) for any pre-specified constant c. Note that there is no need to initialize the memory, 
since the well-known trick used to avoid initializing memory in the sequential setting can 
also be used here. 

With the augmented RAM instruction set, however, we can actually improve upon 
theorem 16, by constructing the fusion tree data structure of Fredman and Willard [15] 
rather than a vEB data structure in step 5 of theorem 14. The fusion tree is a data 
structure for a RAM that stores a set S ~ {1, ... ,m}, lSI = n, such that predecessor 
queries can be answered in O(min{y'lOg'7i",loglogm}) time. Their data structure uses O(n) 
space and assumes an augmented RAM with word size O(logm). We note the following, 
which only uses the fact that the sequential construction of the (static) fusion tree is easily 
parallelizable, if S is given as a sorted array: 
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Fact 18 If 5 is given as a sorted array, the fusion tree data structure can be constructed 
optimally in parallel in o(log njlog log n) time on either COMMON or COLLISION and in 
O(logn) time on a CREW PRAM, with the augmented instruction set. 

Thus, by using the above fact in place of steps 5 and 6 of theorem 14, we obtain, using 
either lemma 4 or Rajasekaran and Sen's integer sorting algorithms [32] as a subroutine: 

Theorem 19 A set of n integers, each in the range {I, ... , m}, can be stably sorted with 
O(ny'TOgn) work in O(lognjloglogn) time on COLLISION, O(nlognjloglogn) work and 
o(log n log(3) n) time on COMMON, or with the same work in O(lognloglogn) time on the 
CREW PRAM. All the above algorithms use the augmented RAM set of instructions and 
use linear space 

Reducing the Amount of Randomness Used 

In this section we note that we can analyse the running time of our integer sorting algo­
rithm using only logO(I) n-wise independent random variables. First we consider step 2 of 
theorem 14. Let k = d2log

4 n, for some constant dl . For each XES, we select a random 
number in the range {I, ... , log3 n}, uniformly from a k-wise independent distribution, and 
place xES' if the number chosen is 1. We would like to show that with high probability: 

2.	 at most k elements of 5 have a value that lies in between two consecutive elements of 
5'. 

The second part follows as before. We consider 5 in sorted order. The probability that E 
4consecutive elements of 5 are not in 5' is (1 - log-3 n)l, for any E ~ d2log n. Therefore, 

for all i, Pr[ICil > k] < e-d2 ]og n , which is less than n-(,6+1) if d2 is large enough. Thus, 
with probability at least 1- n-,6, all the Ci's are small. Now we show that 5' is not large 
either. From corollary 11, we find that 

kr;;;-: = [_n_pq(pk- l +qk-l)] 11k 
V	 IS'I log3 n I 

where p = log-3 nand q = 1- p. Since p ~ q < 1, we find that \/TI~'I is 1± 0(1), depending 
upon the value of k above. We thus get that, for any fixed c, (3 > 0, the following is true 
for sufficiently large n: 

" (2 +c)n] (log3 n) k -,6Pr[IS I> 3 < <n .
log n n 

For the perfect hashing phase in the construction of the EKZ data structure, we can 
again dearly make do with at most o(log n )-wise independence. It therefore follows that 
we can execute the algorithm using at most O(log5 n) truly random bits and still obtain 
the same performance. 
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4.3 The Chaining Problem 

Now we turn to the chaining problem. Recall that the parameters here are n, the size of 
the array and m the number of non-zero elements in the array. Since constructing an EKZ 
data structure on a set S also permits us to chain the elements of S together, we obtain as 
an immediate corollary of theorem 13: 

Corollary 20 Ordered chaining can be done in O( 1) time using m log n processors on the 
COLLISION model of computation, provided there are log n processors numbered 1 through 
log n at each non-zero location. 

Though the number of processors used is O(n) whenever m = O(njlog n), this algorithm 
cannot be said to solve the chaining problem, since it makes the strong assumption that each 
non-zero element has log n associated auxiliary processors that are consecutively numbered 
as well. However, using this algorithm as a subroutine, we are able to get processor­
and time-efficient algorithms for the chaining problem. To do so we have to solve the 
processor allocation problem. Let the set of indices associated with non-zero elements be 
NZ (/NZl = m). 

Let log(i) n be the ith iterate of the log function (i.e., 10g(O) n = n, and for i > 0, 
log(i) n =log(log(i-l) n)). For the problem of ordered chaining we show the following: 

Theorem 21 Ordered chaining can be done in 0(1) time using n COLLISION processors 
provided m < nj(log(t) n)6, for any fixed t > O. 

PROOF. The proof is inductive. For the base case t = 1 we will solve the allocation problem 
by grouping the given processors into G = njlog n groups of size log n, and then creating a 
mapping A : NZ ~ {1, ... , G}, such that for each 9 E G, at most two distinct i E N Z will 
have A( i) = g. The mapping will be constructed in two phases: the first will be randomized 
and the next, deterministic. In the first step, all non-zero elements will be assigned to 
a group at random, and those that get hold of 'a unique group will allocate that group 
to themselves. A substantial number of non-zero elements will remain unallocated, but 
the remainder will be "uniformly scattered" in the input array. In particular, it will be 
the case that with very high probability, every sufficiently large chunk of the input array 
will contain only a "polynomially sparse" number of unsatisfied non-zero elements. The 
compaction algorithm of lemma 6 can now be used to locally solve the allocation problem. 

Step 1: Each processor p E NZchooses a random integer g(p) from {i, ... ,njlogn}. 
Let U be the set of processors with unique integers g(p),i.e., U= {p E NZ](Vp' E 

NZ\ {p}) g(p) :/; g(p')}. Every p E U sets A(p) = g(p). Let NZ1 = NZ\ U. 

Step 2: Now divide the input array into contiguous chunks of size s = log" n, with 
the ith chunk C( i) consisting of the indices si + 1, ... , s( i + 1), for 1 $ i $ njs. 
Let NZ1 (i) = NZ1 n C( i). For each i, s processors attempt to compress NZt. (i) into 
locations si + 1, ... , si + sjlog n using the algorithm of lemma 6. This will work iff 
C(i) is sparse, i.e., (INZ1(i )J)4 < sjlogn. 

16
 



Thus in each chunk C(j) that is sparse, every p E NZ1(j) is assigned a unique integer 
gl(P) in the range {l, ... , ... ,s/logn}, and sets A(p) = sj/logn+ gl(P). We will 
show that with high probability all the chunks C(j) are sparse. 

Step 3: For each p E NZ, the log n processors A(p) are used to solve the ordered 
chaining problem using corollary 20. 

Analysis: Since each index in NZis in NZ1 with probability at most log-5 n independently of 
all other indices, lemma 8 implies that INZ1(i)1 is upperbounded by a random variable that 
is binomially distributed with parameters (s,log-5 n). Lemma 7 now states that INZ1(i)1 > 
d1log n with probability at most 2-d2 !og n = n-d2 for any prespecified number d2 , if d1 is 
large enough. This implies that all chunks will be sparse with the required probability, if 
d2 is large enough. 

For the inductive step we assume that the proposition is true for t = 1, ... , r. During 
steps 1 and 2, an attempt is made to allocate !l(log(r+l) n) processors with each index in NZ, 
in a manner similar to steps 1 and 2 in the base case. Then the input array is divided 'into 
segments, and the ordered chaining problem is solved locally within these segments; Then 
representatives are chosen from within each segment. With high probability, the number of 
representatives will be small enough so that a recursive call can be made to the algorithm 
of the inductive hypothesis. We divide the n processors into G = n] log(r+l) n groups of 
log(r+l) n each. 

Step 1: Each processor p E NZchooses a random integer g(p) from {I, ... , n/log(r+l) n}. 
Let U be the set of processors with unique integers g(p): each p E U sets A(p) = g(p). 
Let NZ1 = NZ\ U. 

Step 2: The input array is divided into contiguous chunks C( i) of size s = (log(r+l) n)6 
and we let NZ1(i) = NZ1nC(i) as before. Using s processors, for each i, an attempt 
is made to compress NZ1(i) into locations si + 1, ... , si + s/log(r+l) n by running 
the algorithm of lemma 6. This will work iff C(j) is sparse, i.e., iff INZ1(jW < 
s/log(r+l) n. Let S = {jIC(j) is sparse}. Thus for every j E S, every p E NZ1(j) is 
assigned a unique integer gl (p) in the range {I, ... , s/log(r+l) n}, and sets A(p) = 
sj /log(r+l) n + gl(P). Let N~ = NZ1 \ UjEsNZ1(j). 

Step 3: Now we divide the input array into contiguous segments S( i), 1 ~ i ~ 

n/(log(r) n)7 of size (log(r) nf. Call a segment SCi) allocated if SCi) n NZ2 = 0, and 
non-allocated otherwise. For any S( i), let T( i) = B( i) n NZ be the set of non-zero 
elements within S( i). Let A be the set of indices that represent allocated segments 
and NA the set of indices representing non-allocated segments. By the definition of 
A, we know that for each i E A, each p E T(i) has !l(log(r+l) n) processors allocated 
to it, and so we can use the algorithm of corollary 20 to link each element in T( i) to 
its successor in T( i). After this is done, the first and last elements from T( i), i E A, 
are chosen to be representatives for that segment. Let the set of all representatives 
be R. 

Step 4: Note that IRI ~ 2n/(log(r) nf. We will show that IN~I = o(n/(log(r) n)13) 
with very high probability. Since INAI ~ IN~I, this implies that I UiENA T(i)1 
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is o(n/(logr n)7) and hence a recursive call suffices to chain the elements of R U 

(UiENAT(i)) together in order. A little care must be taken in the recursive call not 
to reset successors for non-zero elements whose successors are already known from a 
previous higher-level invocation, and corollary 20 can easily be modified to handle 
this. (Otherwise, the representatives may end up not pointing to their successors 
after this recursive call.) 

Analysis: Consider each chunk C( i), which has at most s = (log(r+l) n)6 non-zero elements 
in it initially. The probability that each p E NZ is also in NZI is at most (log(r+l) n)-S, 
and so the probability that INZI (i)1 > dllog(r+l) n is at most 2-d2 1og<r+l) n = (log(r) n )-d2 , 

for any d2, if d, is large enough. Thus, for any chunk i, Pr[i rf. S] :s (log(r) n)-d2 , which 
implies I{ili rf. S}I < n/(log(r) n)14 with the required probability, if d2 is large enough, and 
thus INZ2 ! is o(n/(log(r) n)13) with high probability. 0 

Corollary 22 Unordered chaining can be done in 0(1) time using n COLLISION processors, 
provided m < n/log(i) n, for any fixed i. 

We would like to point out here that the technique above can be used to solve a gen­
eralized version of the chaining problem. Define the c-color chaining problem to be the 
following: suppose we are given an array of values Xl," ., X n , such that some array elements 
have a value in the range {l, ... ,e}, and the rest are uncolored. Let Sk, k E {l, ... ,e}, 
be the set of array indices i such that Xi = k. The e-color chaining problem is then to 
output e linked lists 11 , ••• ,lc such that lj contains all the elements in Si exactly once. This 
generalization has a natural interpretation in the context of database operations: it enables 
us find all the records that match a particular predicate and then subclassify them based 
on a secondary field as well, and is at the heart of the stable integer sorting problem. The 
algorithm for the "base" case of theorem 21 above can clearly be used to solve the e-color 
chaining problem as well, and thus we can solve the c-color chaining problem in 0(1) time 
whenever Li'=l ISi\ < n/(log n )6. (The induction step cannot be made to work because at 
the end of step 3, we will have to choose representatives from each segment for each color, 
and thus the set of representatives may not be small enough for the recursive call to work.) 
However, by a simple modification, we can improve this slightly: 

Theorem 23 The c-color chaining problem ean be solved in 0(1) time with using n COL­

LISION processors whenever Li'=l ISil < n/(logn)l+~ for any constant e > O. 

PROOF. As before, we combine processors into groups of size log n each. If each p E NZ 
attempts to grab one of these groups at random, then the probability of failure will be at 
most (log n )-~. This means that the number of non-allocated elements will be attenuated 
by a factor of O((logn)-~), and it is easy to see that after 0(1) such stages, the number of 
unallocated non-zero elements will be less than n/(logn)6 with very high probability, and 
the processor allocation algorithm of theorem 21 can be applied. For non-constant e the 
run time is approximately 0 (log( 1/ e)).0 

We note that the above processor allocation problem can be restated in a more general 
manner. Suppose we have an array of size n, and there are m "active" locations in the array, 
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with one processor associated with each such location (this is referred to as the allocated 
PRAM in the literature). Furthermore, there is one processor associated with each (active 
or inactive) location in the array. Now, suppose that we want to allocate to each active 
processor k other processors to help it in some computation. More precisely suppose each 
active processor has a distinguished set of k consecutive memory locations. We would like, at 
the end of the allocation algorithm, that each active processor's locations contain k processor 
ids, such that no processor id appears in more than 0(1) such locations. Clearly, we need 
n = Q(mk), and we can always arrange it so that the advantage a = n/mk is at least 4, just 
by creating multiple copies of the available processors. Let ¢(n,k) = min{illog(i)n:$ k}. 
We can prove the following easily from the above discussion: 

Lemma 24 The above problem can be solved in o(log(log k/log a)+¢( n, k)) time on COLLISION. 

Remarks: Theorem 21 implies that ordered chaining can be done with high probability in 
O(log* n) time using O( n) processors for all values of m, which is inferior to Ragde's result, 
and thus it is still an open question whether the chainin; problem can be solved in constant 
time for all values of m. Also, since our algorithms are randomized, they cannot easily 
determine when an unexpectedly high number of non-zero elements appear in the input, 
since an aborted computation could also be the result of an unfavorable sequence of coin 
tosses. 

Also, the probability that the chaining algorithm terminates within the stated time 
bounds can be improved to 1 - 2-n 19 for any constant /3 < 1/4 - E. This can be done 
as follows: all except the "base case" algorithm actually have success probability of the 
required order of magnitude. To improve the base case, after step 2, we observe that at 
most n f3 elements will remain with probability 1- 2-n 19 

, and we allocate processors to these 
by compressing the remaining non-zero elements into the first n/log n locations of the array. 
The significance of being able increase the probability this way is that the multiplicative 
constant within the i5 need not depend on /3. 

Conclusions and Open Problems 

To conclude, we state our main results once again. We have described a randomized 
algorithm that sorts n integers in the range {1, ... ,m}, m = nOel), that runs in time 
o(log n/loglog n) time with high probability, using O( n) space and O(n log log n) work. The 
model of computation used is the CRCW (COLLISION) PRAM. This algorithm runs as fast 
as (or faster than) the best currently known algorithms [5, 20, 27] and does no more work, 
while using only linear space and running on a weaker model of parallel computation. The 
same holds forintermediate values of m (log log m = (1 +Q(n)) and log log m = 0 (y10g n), 
and for still larger values, a modification of our algorithm is the only optimal one until now. 
The approach also gives improved algorithms for (large) integer sorting on the CREW and 
COMMON models. Another virtue of our algorithm is that it is somewhat simpler than 
existing ones. Finally, we note that the model of computation may be weakened to the 
TOLERANT CRCW PRAM [19], which has an even weaker collision-detection mechanism, 
whereby concurrent writes to a location do not change the value of that location. (This was 
also suggested to us by Torben Hagerup.) 
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This paper does not resolve the main open problem of sorting n integers in a range 
polynomial in n optimally in poly(log n), though it achieves optimal speedup for a larger 
range of m than existing algorithms. It would be interesting to see if a deterministic 
algorithm with the same time complexity can be constructed for the COLLISION model, 
and some hope may be found from the remarks at the end of section 4.1, which suggest 
that the amount of randomness needed by the algorithms is small. It appears difficult to 
weaken the model of computation any further, and in particular to achieve O(nloglogn) 
processor-time product and O(1ogn) running time on the COMMON model of computation. 

In the case of the chaining problem, we have addressed the open question that Ragde [29] 
posed, namely whether or not chaining can be done in constant time with a linear number of 
processors. Ragde gave a partial answer to this question: our paper gives a much improved, 
but still partial, answer to it. In addition, our algorithms are easily modified to solve a 
generalized version of the chaining problem. A complete solution to Ragde's open problem 
still has to be found. 
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A General Sort on COLLISION 

We now prove lemma 2. All the steps in the original algorithm can be trivially modified to 
work on COLLISION except the algorithm for the following "estimation" problem: 

Lemma 25 Let S =: {I, ... , n} be a set of indices and let each element of S belong to 
exactly one of yTi groups Gl, ... ,G..;n, such that maxdlGij} 5 yTilogn, and such that 
in constant time, for each index in S we can determine the group it belongs to. Then we 

can compute numbers Nt, ... ,N..;n such that L:~ N, =: O(n), and such that with high 

probability, N, 2: IGil for each i E {1, ... ,vn}, in O(lognjloglogn) time using n(1ogn)g 
COLLISION processors, for any constant E. 

PROOF. The algorithm is a modification of the original one. We use a common array B of 
size njlog n, partitioned into yTi contiguous groups BI, . . . , B..;n of size yTijlog n each. For 
each location 1 E B, we also have an array Al of size (logn)l+g. . 

Step 1: n jlog2 n processors in parallel each choose a random index from {I, ... , n}. 

Step 2: For each index i so chosen, let g(i) be such that i E Gg(i)' The processors 
compute, for each i, L; which is the number of elements from G, which are chosen 
in step 1. In [31] it is shown that setting N, =: d2 10g2 n m ax (1 , L i) for some suf­
ficiently large constant d2 suffices. This is done in the following manner: each of 
the njlog2 n processors with index i chooses a random location within Bg(i)' Let 
Sj be the set of processors that chooses location j in the array B. Clearly, Lj =: 

L:kEB) ISkl· In [31] the ISjls are computed by showing that, with high probabil­
ity, maxdlSjl} =: O(1ognjloglogn), and then by sequentially computing, using the 
properties of ARBITRARY, the exact value of ISjl. An alternative method is for each 
of the processors in Sj allocate itself a unique location the array Aj, and then us­
ing (logn)l+g processors, one for each location in Aj, to compute the numbers ISj/ 
in O(1oglog n) further time. The allocation of indices can be done in the follow­
ing way: each processor in Sj chooses a location at random in Aj. Processors that 
succeed in choosing a location not chosen by any other, allocate that location to 
themselves. Similarly, for s more stages, each 'unallocated' processor attempts to 
randomly choose a location that has neither been previously allocated nor has been 
chosen by some other processor in the same stage: if it succeeds, it allocates that 
location to itself and does nothing for the remainder of the stages. The probability 
of failure of any processor in any stage is at most (log n )-g, which implies that if 
8 =: d1log njloglog n, for some sufficiently large constant dI, then with sufficiently 
high probability all the elements of Sj will have succeeded in finding assignments. 

Step 3: A prefix sum computation on the values ISjl is then performed to compute 
the quantities Li, and N, is set to d2 10g2nmax(I,Li)' 

The analysis is as in [31] and will not be repeated here. 0 
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