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A b s t r a c t  

A parallel algorithm for finding the longest common subsequence of two strings is presented. 
Our algorithm is executed on r processors, with r equal to the total number of pairs of positions 
at which two symbols match. Given two strings of length m and n respectively, m _< n, with 
preprocessing allowed, our algorithm achieves O(logplog2n) time complexity where p is the longest 
common subsequence. Fast computing of Longest-Common-Subsequence is made possible due to 
the exploiting of the parallelism. 

I. I n t r o d u c t i o n  

A strin 9 is a sequence of symbols. The recognition of two information-bearing strings that 
are related, even though not identical, is requested very often in visual pattern matching, speech 
recognition, editing error correction, bird song classification, artificial intelligence, data retrieval 
and genetics [1]. 

Given a string, a subsequence of the string can be obtained from the string by deleting 
none or some symbols (not necessarily consecutive ones). If string C is a subsequence of both 
string A, and string B, then C is a common subsequence (CS) of A and B. String C is a 
longest common subsequence (LCS) of string A and B if C is a common subsequence of A and 
B with maximal length. For example, if "development" and "depend" are the two input strings, 
then "dee" is a CS of the strings, and "depen" is a LCS of them. The LCS problem was first 
studied in molecular biology where similar sequences in the analysis of amino acids and nucleic 
acid involve hundreds of symbols [2]. For example, ARV-2DNA, the human retrovirus associated 
with AIDS disease, consists of about 10,000 symbols. Manual analysis is not promising due to the 
massive time needed and .the limitation in the human recognition ability. A special application of 
the LCS problem is the pattern-matching problem, where a string A of m symbols is a substring of 
a string B of n symbols, m < n. In syntactic pattern recognition, a pattern is usually represented 
by a string, or a graph of pattern primitives. The processes on the strings are usually slow due 
to the large amount of data to be processed. Efficient algorithms need to be generated [3] for the 
pattern-matchlng recognition. 

The string-to-string correction (or string-editing) problem is a generalization of the LCS prob- 
lem. In the editing error analysis, one string is needed to be transformed/corrected to others, say, 
some given keywords. The "distance" of the edited string away from the given string can be a 
function of the cost of different operations such as deletion, insertion and substitution. Also, it 
can be a function of the possibilities of different characters to be mistyped/misspeUed for another. 
For example, because of the conventional keyboard arrangement, it may be far more likely that a 
character "j" be mistyped as an "h" than as a " r ' .  Thus preference should be given to correcting 
the word "jail" to "hail" rather than to "rail". 

Hirschberg [4] solved the LCS problem in quadratic time and linear space first, and proved 
with others that the bounds on the complexity of LCS problem is O(mn) for two strings with 
length m and n respectively if the comparisons of two symbols provides only "equal-not equal" 
information [5]. He later on developed two algorithms with time performance O(pn + nlogn) and 
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O(p(m + 1 - p)togn) respectively, where p is the longest common subsequence. Hunt presented an 
algorithm for this problem which needs O((r + n)logn) running time and O(r + n) space, where 
r is the total number of ordered pairs of positions at which the two sequences match [6]. In [7], 
Hsu and Du presented their new results for the LCS problem. With O(nlogn) preprocessing time, 
their algorithms improved the time complexity to O(pmlog(n /m)  + pro) and O(pmlog(n/p)  + pro) 
respectively. They also gave a method in [8] to compute a longest common subsequence for a set of 
strings. All the previous algorithms are sequential. Although some parallel arrays are proposed as 
the special-purpose hardware to perform sequence comparison, or to be programmed to solve more 
general problems, very few parallel algorithms have been designed for solving the LCS problem on 
parallel machines [9]. 

Our algorithm is based on the divide-and-conquer strategy which allows concurrency and hence 
improved efficiency. Better time performance has been achieved by exploiting the parallelism in 
the current work. With preprocessing allowed, our algorithm is run on r processors of CREW 
PRAM, and needs O(logplog2n) time, where r is the total number of pairs of positions at which 
two strings match, p is the longest common subsequence, and n is the length of the longer string 
out of the two. 

In the next section, we give the preliminaries of the algorithm design. Our algorithm for 
finding LCS is presented in section III along with the analysis of the time performance of our 
solution. Section IV includes the discussion on preprocessing. Concluding remarks and related 
research problems are given in section V. 

I I .  P r e l i m i n a r i e s  

Let string A = ala2 ""  a i . . .  am and B = bibs..., bj . . .  b,~ be two input strings, and the length 
of the string I A [= m and I B I= n respectively. Assume m < n without loss of generality. Let 
L ( i , j )  be the length of the LCS of a l a 2 . - . a i  and bibs . . .b j  , and L( i , j )  can be determined as 
follows [4]: 
Compute L 

1. L(i,O) ~-- 0 for i = O, 1, . . . ,  m ; / *  Initialization */ 
2. L(0 , j )  ~- 0 for j = 0, 1, . . . ,  n; 
3. f o r i = l  t o m d o  

b e g i n  
4. for  j = l to n do  
5. i f a i  = bj t h e n  L ( i , j )  ~ L ( i -  1, j  - 1) + 1 
6. else L( i , j )  ~- m a x { L ( i , j  - 1),L(i - 1, j)} 

end  
An m × n matrix, L, is constructed for computing L( i , j )  [10] such that the entry of row i 

and column j indicates L( i , j ) .  The L( i , j ) ' s  are computed row by row with the above method and 
the length of LCS is given by L ( m , n )  when the computation is completed. Figure 1 shows an L 
matrix of an example with m = 6 and n = 9. Further observation is made to reduce the entries to 
be considered in the L matrix [7]. Since only matched symbols will constitute an LCS, L ( i , j )  is 
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selected (indicated by "*" in Fig. 1) only if al = bj. 
The selected entries (i , j)  are now referred to as "points", and the value of the corresponding 

L(i , j )  is called the class of that point, say p, denoted as class(p). The left most point of a row in 
a class is denoted as the break point if it is the top point of its column in the class (see the circled 
ones in Figure 2). The horizontal and vertical lines connecting the points in the same class form 
the outline of the class. Point q(iq,jq) is said to be dominated by point p(ip,jp) i f f  ip < iq and 
jp < jq. The definition of "dominate" is slightly different from the conventional one. 

Instead of considering class 1, then class 2, class 3, • . . . . .  , as is done sequentially in the previous 
results, our algorithm employs the divide-and-conquer strategy and runs faster. Assume that the 
total number of given points is r, then r processors will be operated under the PRAM model with 
each processor maintaining the record for one point. 

Divide the given set of points by a horizontal line into two halves, the lower half and the 
upper half, such that the points in the lower half have i values greater than that of the points 
in the upper half. Recursively solve the problem for each half concurrently, and then merge the 
subresults. Before the merge, each PE containing a point is aware of the class of that point in its 
own half. (For simplicity, we hereafter say that the point, instead of the PE containing the point, 
is aware of certain information.) After the merge, the class of the points in the upper half will 
remain the same as before, but the points in the lower half need to recompute their classes. 

Project the left most point of each class, say class k, in the upper half onto the horizontal 
dividing line. Denote the projection as joint (indicating by ~b in Fig. 3), and index it by k. Locate 
a dummy joint at the left boundary of the plane with index 0. 

For the example shown in Figure 3, the class outlines in the upper and lower halves before 
the merge are drawn in the solid lines. The indices of the joints projected from the upper half 
and the class number for the class outlines in the lower half are indicated. The dash lines show 
the new class outlines after the merge. Let a point f ( i f , j y )  be point s(is,js)'s father if point f 
dominates point s and class(f) = class(s) - 1. Point s(L, j , )  is the son of point f ( i f ,  jr). Initially, 
we choose for each point its father in the class above it and with j f  closest to j~ than any other 
points in class(f). Refer to Figure 3, point F ' s  sort is point S, and point S's father is point F.  
Note that one point may have more than one sons, but a son has only one father. Each arrow in 
Figure 3 points from a son to its father, and two trees are hence formed with joint 0 and joint 2 
as their roots respectively. We can find that after the merge, the class numbers of point A, B, 
and C are different from the ones before the merge. They are updated to those in the parentheses. 
This type of the update is due to the insertion of joint 1 and 2 with the smaller j than that of 
the points. Such kind of update will be taken care of by the "Update with Joint" included in the 
merge algorithm. 

On the other hand, we can find in Figure 3 that point D changed its class number to 5 (marked 
by an asterisk) after the merge. A dashed arrow points from D to C which is a point in another 
tree such that C dominates D and with the maximal class number. Since B has a new class number 
4, D updated its class number to 5. Such kind of update is referred to as "Update between Trees" 
which is included in the merge algorithm. 

,r'vrrffi  
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In a word, the merge step includes two phases in which the class of a point will be updated. 
When executing the first phase of the update, "Update with Joint", each point in the lower half is 
to find its father in the class above it. A point in class 1 is to find its father among the joints. A 
tree is hence formed by connecting consecutive fathers and sons, as is indicated by directed bold 
lines in Figure 3. A joint is the root of a tree, and is to notify its descendants of its index. A point 
receiving information from its ancestor can decide its new class by computing its depth from the 
root. 

The second phase of the merge step, "Update between Trees". is conducted in a binary tree 
fashion, that is, in iteration i, 2 ~ trees should be merged together. Denote the left 2 i-1 trees to be 
merged as left trees, and the right 2 i-1 trees as right trees. Each point, say p(ip,jp), is to find in 
the right trees the point t(i t , j t)  such that point t dominates point p and class(t) is the maximum. 
If class(t) + 1 > class(p), then class(p) should be updatedAo class(t) + 1. Otherwise, it remains 
the same. If there are in total p trees in the lower half of the plane, then logp iterations are needed 
to complete the "Update between Trees". 

The notification of the root of the tree to its descendants is performed in a "data compres- 
sion" fashion. First, a point communicates with its son, and then with its son's son, that is the 
grandson, and then its grandsons's grandson, and so on. Following is the approach to complete 
the propagation. 
Propagation 

Figure 4 shows a propagation along a tree of 8 nodes, with the root indexed by 2. First, the 
root transferred its index, 2, to its son, and the son updated its class by increasing 1 on the received 
data, i.e. 2 + 1 = 3. Then, the root and its son transferred their, classes, 2 and 3 respectively, to 
their grandsons. Their grandsons updated their classes by increasing 2 on the received data, i.e. 
2 + 2 = 4 and 3 + 2 = 5 respectively. Finally, the root, and its son, and their grandsons transferred 
their classes to their grandson's grandsons respectively. Their grandson's grandsons updated their 
classes by increasing 4 on the received data. This type of propagation is referred to as Propagation 
I. Another type of propagation, Propagation 2, differs from it in that there may be multiple sources 
from which datum are propagated. In addition, a PE compares the received data with the one it 
contains before determining whether accepts the data or not. 

In the detailed algorithm, instead of considering that the ancestors transfer the data to the 
descendants, we let the descendants to make requests of the data from the ancestors. Suppose 
originally, each point keeps the address of the PE maintaining its father. When making the request 
of the data from the father, the address of the PE maintaining the father's father can also be 
obtained. Now since each point has the address of the PE mairltaining its grandfather, it is not 
difficult to obtain the address of the PE maintaining its grandfather's grandfather by similarly 
performing the described operation. For both of the two types of propagation, logp iterations are 
needed to complete the propagation along a tree of depth p. 
Premaz 

Let Co, Cz,-- -, C,, be the n data items in a list, M(k) = rnax~=o(C~), for k = 0, 1, . . . ,  n - 1. 
We have M(0) = Co, and M(k)  = max[M(k - 1), Ck], for k = 0, 1, .. . ,  n - 1. Distribute the data 
on n PE's, the above recursive comparison can be performed as shown in Figure 5 for an example 
of n = 8. In the first step, each C~ maintained in PE(i) is compared with Ci+l, with the result 
ma~:[Ci,Ci+l] stored in PE(i + 1), for i = 0, 1, . . . ,  6. In step 2, the intermediate result in PE(i) 
is compared with the one in PE(i + 2), for i = 0, 1, • .. ,  5. In the final step, the intermediate 
result in PE(i) is compared with the one in PE(i + 4), for i = 0, 1, • .., 3. Consequently, PE(k) 
wilt have M(k)  as the final result, for k = 1, 2, - . - ,  n - 1. O(logn) steps are needed for n data 
items in the given list. 

I I I .  T h e  a l g o r i t h m  and  the  t ime  complexi ty  

Before the execution of our algorithm, we assume the completion of some preprocessing, so 
that the r points ( i , j )  have been identified such that ai in A matches bj in B. The details of the 
preprocessing will be described in the next section. 
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Distribute the r points on r processors so that each processor contains one point. Based on 
the divide-and-conquer approach, we suppose that the class of each point in the upper or lower 
half has been identified before the merge. 

Each PE which maintains a left most point of a class in the upper half now maintains a joint,  
that  is, a point with the same j value but with the i v~ue equal to that of the dividing line. The 
class of the point is considered as the index of the joint. 

The merge algorithm can be described as follows. 
Algorithm L CS 

1. Sort the points on each class outline by j independently and concurrently. 
/* Update with Joint */ 

2. Each point in the lower half finds its father in the class above it; for those points in class 
1, each finds its father among the joints. Trees are formed. Set flag(joint) to be 1, and 
class(joint) to be the index of the joint. 

3. Perform Propagation 1 (class) on each tree. 
/* Update between Trees */ 
do  log(p + 1) times (with p = max(class(joint)) 

b e g i n  
4. Sort all the points in a tree by their j values. 
5. Perform Premaz(elass, Me, Id) in each tree. 
6. Each point p(ip,jp) finds in the right trees the point t(i,,j,) such that j ,  < jp and closest to jp.  

Obtain Me(t) and Id(t) from point t, and record them as tempt(p) = Me(t), temp2(p) = Id( t ) .  
7. d i / (p )  = tempi (p)  - class(p).  
8. i f  d i / (p)  > dif(father(p)) t h e n  set flag(p) = 1 and Perform Propagation 2 (di/). 
9. c lass(p)  = class(p) + dif(p)  + 1. 

10. i f  di f (p)  > di/(father(p)) t h e n  father(p) = temp2(p); 
e n d  

e n d / *  Algorithm LCS */ 

The subroutine Propagation is presented below. 

Algorithm Propagation 1 (class) 
1. Each point p performs addr = father(p). 

for  i = 1 to  logp do  (with p being the maximum depth of the tree) 
b e g i n  

2. Each point makes a request from PE(addr). 
i f  flag(addr) = 1 t h e n  
b e g i n  

3. tamp(p) = elass(addr);  
4. class(p) = temp(p) + 2i-1; 
5. flag(p) = 1. 

end  
6. addr = addr(addr) 
end  

e n d / *  Algorithm Propagation 1 */ 

Algorithm "Propagation g (value) is similar to Propagation 1 (class) but with Step 3 and 4 
modified as follows. 
3'. temp(p) = value(addr); 
4'. i f  temp(p) > value(p) t h e n  value(p) = temp(p); 

Following is the algorithm Premaz. 

Algorithm Pvemaz (class, Me, Id) 
1. Each BE(i) performs Me(i) = class(i). 
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for k = 0, to  logk - 1, do  
beg in  

2. All the PE(i) 's  route Me(i) and i to PE(i  + 2k). All the PE(i) 's  record the received data in 
tempi(i) and tern1~( i) respectively. 

3. PE(i) 's  with i > 2 ~ - 1 perform 
i f  tempi(i) > Me(i), then 
begin 

4. Me(i) = tempi(i); 
5. Xd(i) = temp~(i).  

end  
end 

e n d / *  Algorithm Premaz */ 
We now prove that Algorithm LCS can find the correct class number for each point. 

L e m m a  1: 
If a point q is dominated by a point p, then class(q) > class(p). 
This is from line 5 in Compute L, and the definition of "dominate". 
Obviously, if P{p~} is a set of the points such that pc dominates point q, then class(q) > 

maz[class(pi)], Vi E {ilpl dominates q}. 

L e m m a  2: 
A point q in class k is dominated by at least one point in class k - 1. 
This is true because if no point in class k - 1 dominates point q, then point q could have been 

in class k - 1 instead of class k, contradiction. 

L e m m a  8: 
The class outlines are numbered by consecutive integers. 
This is from line 5 and line 6 in Compute L. 

L e m m a  4: 
Let P{p~} be the set of all the points pc dominating point q, then class(q) < maz[class(pi)] + 

2, Vi E {itpi dominates q}. 
P roof :  

Let max[class(pc)] = M. From Lemma 1, if class(q) > M + 2, then q does not dominate any 
point on the class outline of M + 2. Then, either (i) q is on the class outline of M + 2, or (ii) q is 
dominated by a point, say q', on this outline. 

According to Lemma 2, there is at least one point in class M + 1 which either dominates point 
q for case (i), or dominates point q' for case (ii) and hence dominates point q. Since M is the 
maximum class number of the points dominating point q, the above described point in class M + 1 
contradicts the assumption. 
T h e o r e m  1: 

Let P{pi} be the set of all the points pi dominating point q, then 
class(q) = rnax[class(pl)] + 1,Vi E {ilpi dominates q}. 

From Lemma 1, we have class(q) > max[class(pi)]. From Lemma 4, we have class(q) < 
maz[class(pi)] +2. Since the class numbers are integers (Lemma 3), so class(q) = maz[class(pi)] + 
1,Vi E {itpl dominates q}. 

L e m m a  5: 
The left tree(s) and the right tree(s) formed in Algorithm LCS do not intersect. 

P roof :  
In the execution of Algorithm LCS, suppose f s  is an edge of a tree generated in Step 2 of 

Algorithm LCS, and point f is the father of point s. Suppose t-p is an edge of another tree, with 
point t being the father of point p. 

If / 'p intersects the edge f--s, then there must be jt  > j f  and jp < j , ,  as is the case shown in 
Figure 6(@ The other cases shown in Figure 6(b), (c) and (d) are not realistic because t can not 
be point p's farther with jt  > jp. Investigate the class numbers of point p and point t for the case 
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in Figure 6(a). Following are the three possibilities: 
(i) class(p) = class(s). 

Then class(f) = class(t) = class(s) - 1. Point s should have chosen point t as its father 
since jt  is closer to ja. Otherwise it contradicts the way that the tree is generated as is 
indicated in Step 2 of Algorithm LCS. 

(ii) class(p) > class(s). 
Then class(t) >_ class(s). According to Lemma 1, point t does not dominate point s. This 

contradicts the existence of the ease in Figure 6(a). 
(iii) class(p) < class(s). 

Then class(p) <_ class(y). According to Lemma 1, point f does not dominate point p. 
This contradicts the existence of the ease in Figure 6(a). 
Thus, any two edges with one in a tree and the other in another tree can not intersect, therefore 

the trees formed in Step 2 of Algorithm LCS do not intersect. Since the initially generated trees 
do not intersect, the left trees and the right trees formed by merging some of them, as is done in 
the later steps of Algorithm LCS, do not intersect neither. 

L e m m a  6: 
The point t found in the right trees by point p in Step 6 of Algorithm LCS dominates point p. 

P r o o f :  
Since jt < jp, so t must locate in area A or ares  B (see Figure 7(a). If t is located in area A, 

then t dominates p. 
If t is located in area B, and t is in a right tree, then we have t on the left of p, and the root 

of the tree that t is in on the right of the root of the tree that p is in, then there must be some 
edge in one tree which intersects the edge in another tree, this contradicts Lemma 5. So, point t 
found in Step 6 can not be in area B. It must be in area A and thus dominates point p. 

T h e o r e m  2: 
Algorithm LCS finds for point q the point pm among all the points pi's such that Pi dominates 

q and class(pro) = maz[class(p~)l,Vi ~ (lip ~ dominates q}. Thus class(q) is correctly computed as 
class(q) = maz[class(pi)] + 1,Vi E { ilpidortfinates q}. 
P r o o f :  
(i) In the execution of "Update with Joint", each point in class 1 in the lower half found the point 

p,~ in the upper half such that  pm dominates q and class(pro) is the maximum. 
From Step 2 in Algorithm LCS, each point in class 1 found its father among the joints. Ac- 

cording to the definition of father,  the joint chosen to be point q(iq, jq)'S father, say f( iy,  jy), 
must dominate point q and have jy  closest to jq. Since joint ( f  + 1) has J(f+l) > Jq (otherwise 
q would have chosen joint ( f  + 1) as its father), and a joint is projected from the left most 
point in its class, all the points within class ( f  + 1) must lie on the right of point q, and thus 
f must be the maximum class number of those points dominating point q. 

(ii) In the execution of "Update between Trees", each point q with class(q) > 1 in the lower half 
found the point p,~ such that class(p,~) is the maximum among the points which dominate 
point q. 

From Lemma 6, the point t found in Step 6 of Algorithm LCS by p dominates point p. 
Any point t '  in the same tree that t is in and with jr' < jt should dominate p either. After 
executing Step 5 in Algorithm LCS, the maximum class number of point t and all the points 
t '  is known, as Me(t). By step 7, Me(t) = class(p) + dlf(p). Thus if the condition in step 8 
does not hold, after step 9, point p will have updated its class number as Mc(t) + 1 where t 
is recognized as the point in the right tree with maximum class number dominating p. If the 
condition in step 8 holds, then class(p) + di f ( father(p))  > class(p) + dif(p). That means 
class( fa ther(p))+l+di f ( fa ther(p))  > M¢(t), and father(p) will have a greater class number, 
than t, assuming updated in the above way. In this case, p updates its class number based on 
its father's new class number, as class(p) + diy(p) + 1 with class(p) = class(father(p)) + 1 
as was before and dif(p) = di f ( father(p))  after performing Propagation 2 (dif). According 
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to Theorem 1, the class of p is correctly computed. 
Executing on r processors, with r equal to the total number of pairs of positions at which 

two symbols match, our algorithm is with the time complexity analyzed as follows. The maximal 
number of points on a outline is m + n, with n > m. Hence the sorting in step 1 takes O(logn) time 
[11]. Step 2 involves a binary search on the class outline, hence O(togn) is required in the worst 
case. Propagation includes O(logpl) iterations in ~step 3 and for the worst case in step 8, if pl is 
the total  number of classes in the lower half to be merged. Step 4 to step 10 need to be repeated 
log(p2 + 1) times with P2 equal to the total number of classes in the upper half to be merged. In 
Step 4, sorting of k points in the trees requires O(logk) time. Premaz involved in Step 5 needs 
logk steps to find the desired maximal data for the k given data items. A point is to search in Step 
6 for the point with the smaller and closest j in the right trees, which needs O(logk) time given 
k points in the trees. For each of these steps, k = n is the worst case, thus O(logn) will be the 
time bound. Step 7, 9 and 10 involve constant time computation only. The whole merge algorithm 
needs to be executed O(logn) times to complete the divide-and-conquer operation, thus, the total 
time needed is O(logplog2n) with p being the longest common subsequence. 

IV. Discussion of p r e p r o c e s s i n g  

At the beginning of the algorithm presented in the previous section, we assumed that all the 
pairs of the positions on which the two strings match have been determined. This is completed by 
preprocessing which we have not discussed yet. Given two strings with length ra and n respectively, 
let the pair ( i , j )  indicate the match of two symbols at position i in string A and position j in string 
B. To find (i , j)  pairs, we need m processors to maintain symbols in A and n for B. Distribute 
the symbds  on the m + n PE's,  with one symbol per PE. Assume that  the symbols have some 
order. Each PE containing a symbol in A generates a record with two fields: < i,order > and 
those containing a symbol in B generate records < j, order >'s.  i, j indicate the position of the 
symbol in string A and B respectively, order indicates the order of the symbol contained in the 
PE. Following are the operations to be performed in the preprocessing. 
Preprocessing 
(1) Sort the m symbols in A by order on m PE's.  Ties are broken by i. 
(2) Select the distinct symbols each with a smallest rank in the sorted sequence to form a "con- 

centrated sequence" (see Figure 8 as a reference). Assume that there are in total t distinct 
symbols. 

(3) Each PE maintaining a symbol in B performs a binary search on the t records to find an order 
which matches the order maintained in its record for a point. 

(4) Compute for the two adjacent distinct symbols in the concentrated sequence generated in step 
(2), the difference of their ranks in the sequence generated in step (1). Each symbol in string 
B now knows the total number of the positions in A at which the symbol can be found. 

(5) Perform a parallel prefix computation, each symbol in B, say in position j ,  obtains the total  
number, say cj, of matches found for all the symbols prior to it. Prepare r PE's  to execute the 
Algorithm LCS if r matches are found in total. Each PE maintaining a symbol in B notifies 
the cj th PE among r PE's  the position j in B, the symbol it is assigned and the position of 
the symbol in the sorted sequence of B. 

(6) By reverse tracing (say ia --+ i2 ---, il  in Fig. 8), each of the r Pg ' s  can get the information 
about the position i in A at which the symbol lies. 
We next compute the running time to accomplish the preprocessing. In step ( t ) ,  sorting m 

elements on m processors needs O(logm) time. Step (2) requires O(logm) time in the worst case. 
The binary search performed on m items in step (3) is running on O(logm) time. Step (4) needs 
only constant time. In step (5), the parallel prefix computation is performed on n PE's  each 
containing a symbol in string B. The time complexity of parallel prefix computing for n da ta  items 
is O(logn) [12], therefore the time needed in step (6) is no greater than O(logn). 

Thus, distributing the symbols on m + n processors, the preprocessing time to find the matches 
for two strings with length m and n is bounded by O(logm + logn), including the assigning of the 
matched pairs to r PE's to execute the LCS algorithm.. 
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V. Conclusion and related research 
A parallel algorithm for computing the longest common string has been presented. The de- 

scribed algorithm suggested the employment of a divide-and-conquer approach which exploited the 
concurrency in solving LCS problems and hence achieved efficient results, compared with existing 
algorithms of which most are sequential. 

A related research problem which can be solved is the maxima problem occurred very often 
in computational geometry. Given a set S of n points in the plane, a point p in S is a mazimal 
element (or, briefly mazima) of S if there does not exist q other than p in S such that xq > ~p 
and yq > yp. As an example, the maxima of a given set of points shown in Figure 9 have been 
connected by dash lines. In addition, excluding the maxima on the dash lines, we can find the 
second layer maxima and so on. This problem can be solved by extending the algorithm presented 
in the earlier sections. 

Let the four extreme points N, S, E and W define the four 
quadrants, assign different signs + and - to the coordinates of 
the points. It can be observed that the problem of determining 
the maxima in a quadrant is similar to the problem of deter- 
mining the points with smallest class number in the L matrix. 
Furthermore, the layers of maxima can be found in parallel, 
based on the approach of divide-and-conquer, and the methods 
we provided in the LCS algorithm design. Distributing n points 
on n PE's with one point per PE, the layers of the maxima in 
a given set can be determined in O(logplogZn) time, where p 
is the number of the layers. We believe that the importance of 
the generated idea lies not only in the solutions of these prob- 
lems, but also in that they provided valuable insight into the 
difficulty of parallelism exploiting. 
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