Improving the Concurrency
of Integrity Checks and Write Operations

Stefan Bottcher !
IBM Deutschland GmbH
Scientific Center
Institute for Knowledge Based Systems
P.O.Box 80 08 80
D-7000 Stuttgart 80
West Germany

Abstract

Transaction synchronization and integrity control have the goal to preserve correctness
of the database. Transactions which intend to modify the database perform integrity
checks, which can be considered as a specific kind of read operations. These integrity
checks (like other read operations) have to be synchronized with write operations of
concurrent transactions. Since integrity checks often access large parts of the database,
the synchronization of integrity checks with write operations is a major bottle-neck of
transaction synchronization. We show that the synchronization of integrity checks with
write operations of concurrent transactions can be substantially improved so that it

allows for more parallelism.

The key idea of the improvement is that the scheduler uses the knowledge of whether or
not a read operation is used for integrity checking, and if so, then the scheduler allows
for more parallelism with write operations of concurrent transactions.

'Ithe improvement presented achieves a higher transaction concurrency and can be com-
bined with other integrity check optimization techniques. Furthermore, the improve-
mment is adaptable to various synchronization techniques, e.g. physical and predicative
!OCking and validation. A scheduler using the presented improvement for both pred-
Icative locking and predicative validation is implemented within the DBPL database

System which was developed at the University of Frankfurt.

"This work has been partially done at the University of Frankfurt and has been supported by the
Deatsche Forschungsgemeinschaft under Grant-No SCHM350/3-1.

260

1 Introduction

During the last decade optimization of transaction concurrency and optimization of in-
tegrity checking have been discussed independently of each other, eg.
[Bernstein ef al, 1987], [Papadimitriou, 1986] and [Simon and Valduriez, 1987],
[Nicolas, 1982}, [Bernstein and Blaustein, 1982]. While concurrency control strategies
aim at higher parallelism of transactions, integrity control optimization reduces the num-
ber of integrity checks of a single transaction or their query complexity. Nevertheless,
integrity checking still remains a major bottle-neck in database transaction processing.

In this paper, we argue that transaction concurrency can be substantially further im-
proved, if the scheduler uses the knowledg of whether or not a query is used for integrity
checking. For this purpose, we investigate for which pairs of write operations and in-
tegrity constraints synchronization is necessary and for which pairs it is not. We get
the result that less synchronization is needed for the synchronization of integrity checks
with write operations than for the synchronization of other read operations with write
operations. This will be the basis on which we improve the synchronization of integrity
checks with write operations. The presented optimization requires that the following
basic assumptions hold:

1. Every transaction that violates an integrity constraint is aborted.

2. Before a transaction writes into the database, i.e. before it makes the effect of
its write operations visible to other transactions, the transaction checks all its
integrity constraints and performs all its other read operations.

The presented optimization for the synchronization of integrity checks and write opera-
tions can be combined with the integrity control optimization methods proposed e.g. in
[Simon and Valduriez, 1987), [Nicolas, 1982] and [Bernstein and Blaustein, 1982]. Fur-
thermore, the presented optimization is applicable to various synchronization strate-
gies. For example, a scheduler using the presented optimization for two synchro-
nization strategies, predicative locking [Eswaran et al., 1976] and predicative validation
[Reimer, 1983], is implemented in the DBPL database system [Bottcher ef al., 1986],
[Boticher, 1989]. Nevertheless, the presented optimization is not only applicable to
predicative synchronization, but also to physical synchronization.

The rest of the paper is organized as follows. The next section presents some examples
motivating why integrity checks and write operations have to be synchronized and why
their synchronization should differ from the synchronization of other queries with write
operations. The third section presents the optimization result, namely, for which pairs
of operations consisting of an integrity check and a write operation the execution order
is relevant and for which pairs of operations it is irrelevant. It further outlines how this
optimization can be integrated into a scheduler based on two-phase locking.

261

2 Motivating examples

Section 2.1 presents an example in order to demonstrate that certain pairs of integrity
checks and write operations need not be synchronized with each other, and therefore the
synchronization of integrity checks with write operations can allow for more parallelism
than the synchronization of other read operations with write operations. In section
2.2 we modify the example and show that other pairs of integrity checks and write
operations have to be synchronized with each other.

2.1 A first example

The example contains two transactions, T1 and T2, writing on two relations, R1
and R2 respectively, and the following integrity constraint (all examples are written
in the tuple relational calculus of DBPL |[Eckhardt ef al., 1985], [Schmidt et ol., 1988],
[Schmidt and Matthes, 1990)):

IC1 “For every element el in relation R1 and for every element e2 in relation R2 the
attribute value al of el is different {from the attribute value a2 of e2”:

ALL el IN R1 ALL €2 IN R2 (el.al # e2.a2) .

Transaction T1 wants to insert a tuple t1 into the relation R1. Therefore T1 has to
check whether the integrity constraint will hold for the new element t1. Hence, the
integrity check can be simplified to:

IC1’ ALL €2 IN R2 (tl.al # €2.a2) .

Transaction T2 deletes an element from R2 after transaction T1 executed its integrity
check. In this case, the execution order of the integrity check of T1 and the delete
operation of T2 is irrelevant (w.r.t. serializability). We distinguish two cases in order

to give the reason:

If the integrity check was successful, i.e. if transaction T1 evaluated the integrity check
of IC1’ to true, then the integrity check will remain {rue after transaction T2 deletes an
element from R2. Hence, in this case the result of the integrity check is not influenced
by the succeeding write operation. Therefore, the scheduler can allow for the write
operation at any time after the integrity check. Furthermore, the scheduler can allow
for the write operation at any time before the integrity check, because this corresponds
with the execution order of both operations in an equivalent serial history (c.f. the
proposition ir section 3.2). Hence, in this case the execution order of both operations

is irrelevant.

On the other hand, if the integrity check of tramsaction T1 is not successful, then
T1 is aborted (this was our basic assumption 1 in the first section), and again, the

262

execution order of both operations is irrelevant (w.r.t. serializability). This is because
serializability only depends on the order of operations of committed transactions (see
e.g. |Bernstein et al., 1987]). Hence, in both cases the order of the integrity check and
the write operation is irrelevant.

Note however, that this is different if we have a boolean query and a write operation
instead of an integrity check and a write operation. The execution order of a boolean
query of transaction T1

BQ1 ALL €2 IN R2 (tl.al # e2.a2)

and a succeeding delete operation of transaction T2 (deleting an element from R2)
is relevant. The reason is as follows. The query result may be false before the delete
operationis executed and may be changed to irue by the delete operation. If no integrity
constraint is violated, both transactions are committed. Therefore, the execution order
of both operations is relevant, if transaction T1 submits a boolean query, which is not
an integrity check.

To summarize: The execution order of both operations is relevant, if the query of
transaction T1is not an integrity check. However, the execution order of both operations
i1s irrelevant, if the scheduler knows that the query of T1 is an integrity check. Thus,
a scheduler can allow for more parallelism for the synchronization of integrity checks
with write operations than for the synchronization of other (boolean) queries with write
operations.

2.2 Modifying the first example

In the last example, a delete operation on relation R2 either changes the truth value
of the integrity constraint (i.e. the result of the integrity check) from false to true or
does not change the truth value of the integrity constraint. But this delete operation

can never change the truth value of the integrity constraint from true to false (c.f. the
lemma in section 3.1).

On the other hand, if we substitute the integrity constraint in the first example with a
referential integrity constraint

IC2 “For every element el in relation R1 there exists an element e2 in relation R2 so
that the attribute value al of el is equal to the attribute value a2 of e2”:

ALL el IN R1 SOME €2 IN R2 (el.al = e2.a2)

then a delete operation on R2 can never change the truth value of this integrity con-
straint from false to {rue. But the delete operation may change the truth value of the
integnty constraint from true to false. That is the reason why an integrity check of the

263

referential constraint IC2 has to be synchronized with the delete operation on relation
R2.

Note that the truth value of the integrity constraint IC1 can never be changed from true
to false by a delete operation on R2, whereas the truth value of the integrity constraint
IC2 can be changed from irue to false by a delete operation on R2. That is the reason
why the integrity check of constraint IC1 needs not be synchronized with the delete
operation, whereas the integrity check of constraint IC2 has to be synchronized with
the delete operation.

Now let us modify both examples in order to get two further examples. We replace the
delete operation of transaction T2 with an insert operation of transaction T2 inserting

an element into the relation R2.

In this case the insert operation either does not change the truth value of the integrity
constraint IC1 or it changes the truth value of the integnity constraint IC1 from true to
false. However, the insert operation can never change the truth value of the integrity
constraint IC1 from false to true (c.f. the lemma in section 3.1).

Again, the truth value of the integrity constraint IC2 is modified vice versa by the insert
operation. In this case the insert operation inserting an element into relation R2 either
does not change the truth value of the integrity constraint IC2 or it changes the truth
value of this integrity constraint from false to {rue. However, the insert operation can
never change the truth value of the integrity constraint IC2 from true to false.

The following table summarizes how the truth value of both integrity constraints may
be changed by succeeding insert or delete operations. (Remember: Transaction T1 has
to perform the integrity check IC1’, because it wants to insert a tuple into relation R1.2
The important aspect here is whether or not an integrity check of one transaction has
to be synchronized with a write of another transaction.)

Possible modifications of the integrity checks’ truth values by snc-
ceeding write operations of other transactions on relation R2

delete operation insert operation
constraint IC1 ﬂ from false to true from {rue to false
constraint IC2 " from true to false from false to true

Hence, whether or not the truth value of an integrity constraint can be changed from
true to false by a succeeding write operation depends on both the quantification of the
modified relation R2 in the integrity constraint (ALL or SOME quantification) and the

01 course, if transaction T1 would perform a delete operation on R1 instead of an insert operation,
it would not have to check any of the integrity constraints at all (c.f. c.g. [Simon and Valduries, 1987]).
This kind of optimization is also implemented in the DBPL database system [Bottcher, 1989], but it is
not the topic of this paper.

264

kind of the write operation (insert or delete) modifying this relation (c.f. the lemma in
section 3.1).

Whenever a succeeding write operation can change the truth value of an integrity check
of a concurrent transaction from true to false, both operations have to be synchronized
in order to prevent the write operation from violating the integrity check. However, both
operations need not be synchronized, if the succeeding write operation can only change
the truth value of the integrity check from false to true, because a tramsaction which
evaluates an integrity check to false is aborted (according to basic assumption 1 outlined
in the first section), and the execution order of operations of aborted transactions is
irrelevant (e.g. [Bernstein et al., 1987]). This is summarized in the following table.

The following modifications of the integrity checks’ truth values
by succeeding write operations on R2 have to be synchronized:

delete operation insert operation
constraint IC1 | — from true to false
constraint IC2 " from true to false —

“—" means that in these cases synchronization is not necessary.

However, this is different for other boolean queries and succeeding write operations.
Other boolean queries have to be synchronized with write operations, because the trans-

action executing the query may be committed independent of the truth value of the
boolean query.

To summarize: We have given four examples in order to show two things: First, in-
tegrity checks have to be synchronized with write operations. Second, the synchro-
nization of integrity checks and write operations can allow for more parallelism than
the synchronization of other boolean queries and write operations. Whether or not the
synchronization optimization can be applied to an integrity check and a write operation

depends on the kind of the write operation and on the quantification of the modified
relation in the integrity constraint.

Traditional integrity check optimization methods (e.g. [Simon and Valduries, 1987])
look only at single transactions and reduce their query complexity (e.g. by checking
IC1’ instead of IC1) or their number of integrity checks. In this paper, however, we de-
scribe how transaction concurrency can be improved (for the remaining integrity checks
and write operations of concurrent transactions). Therefore, the suggested conmcur-

rency improvement can be combined with the traditional integrity check optimization
methods.

265

3 The optimization

In order to generalize from the specific formulas and operations given in the examples
above, section 3.1 presents a further differentiation of read and write operations. This
will be the basis on which section 3.2 summarizes the generalized optimization approach.
Furthermore, section 3.3 outlines how this generalized optimization is integrated into a
scheduler based on two-phase locking.

3.1 Further differentiation of read and write operations

In this subsection, we characterize the difference between the two integrity constraints
regarding to the modification of their truth values by succeeding write operations. We
call the occurrence of the relation R2 within the integrily constraint IC2 positive,
wheteas the occurrence of R2 within the integrity constraint IC1 is called negative.
More generally, depending on the quantification of a relation variable occurring in a
formula { written in tuple relational calculus, we distinguish positive and negative oc-

currences of the relation variable.

Definition

A positive occurrence of a relation variable R in a formula { written in tuple
relational calculus is either a SOME quantified occurrence of R occurring in
the scope of an even number of NOTs or an ALL quantified occurrence of
R occurring in the scope of an odd number of NOTs. Similarly, a negative
occurrence of a relation variable R in a formula f written in tuple relational
calculus is either an ALL quantified occurrence of R occurring in the scope
of an even number of NOT's or a SOME quantified occurrence of R occurring
in the scope of an odd number of NOTs.

For example, the relation variable R2 occurs negative in integrity constraint IC1, but
positive in constraint IC2, and it also occurs positive in the following constraint

IC3 ALL el IN R1(NOT ALL 2 IN R2 (NOT (el.al = e2.a2))}
which is logically equivalent to constraint I1C2.

According to a relation R, we divide the read operations on R into the following three
groups:
icB*(f) : integrity checks with R occurring only positive within the formula {
ic®(f) : integrity checks with R occurring only negative within the formula f
r™(f) : any other read operation with R occurring within the formula f

266

Similarly, we divide the write operations on R into the following three groups:

wlt . inserts into R

wi= : deletes from R
wi™ : any other write operation on R

The following lemma formalizes the observation that a true formula { will remain true
after the execution of an insert operation wf* inserting elements into some relation
R, if R occurs only positive in {. Similarly, a true formula { will remain true after the
execution of a delete operation w®~ deleting elements from a relation R, if R occurs only
negative in f. For a proof of the following lemma see e.g. [Simon and Valduriez, 1987].

Lemma

Let f; and f; be formulas and let ic?*(f;) and ic®~(f;) be integrity checks
so that the relation R occurs only positive in f; and R occurs only negative
in f;. Further, let s be an arbitrary database state, w* a write operation
inserting elements into R and w™~ a write operation deleting elements from
R. Finally, let w®*(s) (and w®~(s) respectively) denote the database state
reached after applying the operation w®* (w#~) to the database state s,
and let I(ic(f),s) be the truth value received for the integrity check ic(f)
submitted to the database state s. Then the following holds:

1. I I(icR*(fy),8) = true , them I(ic®*(f;),wR*(s)) = true .
2. I I(ic®~(f),5) = true , then I(ic®(f;),w™~(s)) = true .

Whereas a number of researchers (e.g. [Simon and Valduries, 1987], [Nicolas, 1982],
[Bernstein and Blaustein, 1982]) have outlined that successful integrity checks can not
be violated by special kinds of succeeding write operations, the important new aspect of
this paper is to use this knowledge in order to improve the synchronization of integrity
checks and write operations. We will discuss this aspect in the next subsection.

3.2 Generalization of the optimization idea

Senalizability proofs for a history synchronized by two-phase locking or by validation
(e.g. [Bernstein et al., 1987], [Boticher, 1989]) do construct an equivalent serial history
as follows. Increasing transaction numbers are assigned to the transactions according to
the time they execute a specific operation. For an arbitrary history produced by a sched-
uler based on two-phase locking or validation, we can choose the following operation
of each transaction as specific operation in order to determine the transaction number.
The specific operation of a transaction is the first write operation, if the transaction
writes into the database, and the last operation of the transaction otherwise.

267

The serializability proofs furthermore show that the following holds for every history.
If two operations ol of transaction T1 and o2 of transaction T2 are in conflict (i.e. if
their execution order is relevant), and both transactions commit, and the transaction
number of T1 is less than the transaction number of T2, then ol preceeds o2 in the
given history.

Having shown this, the serializability proofs conclude that the equivalent seral history
is the sequence of committed transactions ordered by their transaction numbers.

Therefore, the following proposition directly follows from the serializability proofs given
e.g. in [Bernstein et al., 1987):

Proposition

Assume that transaction numbers are assigned to the transactions as men-
tioned above. Then a history is serializable, if for all pairs of operations ol
of T'1 and 02 of T2 the following holds: If the transaction number of T1 is
less than the transaction number of T2, then ol preceeds o2.

This proposition means that serializability can only be violated, if there is a pair of
operations ol of T1 and 02 of T2 so that the transaction number of T1 is less than the

transaction number of T2 and o2 preceeds ol.

Furthermore, if 02 is a write operation and ol is a read operation and o2 preceeds ol,
then basic assumption 2 of the first section requires that the specific operation of T2
preceeds the specific operation of T1, and therefore the transaction number of T2 is less
than the transaction number of T1. That is why you can interpret the proposition as:

Serializability of a history can not be violated by such conflicts where a write

operation preceeds a read operation.

We now outline the general idea of the optimization.

Let us look at an arbitrary history (produced by a scheduler based on two-phase locking
or validation) and two operations of different transactions occurring in this history,
where one operation is an integrity check ic®* (and ic®~ respectively) and the otherisa
write operation wt (w®~). Then the basic optimization idea can be staled as follows:

The serializability of the history is independent of the order of the integrity check
and the write operation (see the theorem below). Therefore, the integrity check
and the write operation need not be synchronized with each other.

268
Theorem

The serializability of histories is independent of the order between ic?* oper-
ations and w™* operations of concurrent transactions and is independent of
the order between ic®~ operations and wf~ operations of concurrent trans-
actions.

The complete proof as given in [Boticher, 1989] needs a lot of formal definitions. Instead,
we give a sketch of the proof idea in the appendix.

The advantage of this approach is the following. Since pairs of write operations and
integrity checks as mentioned above need not be synchronized, a scheduler can allow for
more parallelism. For example, a scheduler based on two-phase locking needs not delay
a transaction because of conflicts between these operations. Furthermore, a scheduler
based on predicative validation needs not restart a transaction because of conflicts
between these operations.

Since integrity checks often access a large part of the database, conflicts between in-
tegrity checks and write operations occur rather frequently. Furthermore, integrity
checks are expensive (c.f. [Simon and Valduriez, 1987]). Therefore, the approach pre-
sented in this paper optimizes a major synchronization bottle-neck.

The following subsection describes how to apply this synchronization optimization to a
scheduler based on two-phase locking. However, the optimization is applicable to other
synchronization strategies as well, e.g. to predicative validation [Bottcher, 1989).

3.3 A lock protocol for improved synchronization

In this subsection we define a lock protocol which uses the advantages of the improved
synchronization. It separates the synchronization of integrity checks with write op-
erations from the synchronization of other read operations with write operations. A

special instance of this lock protocol is implemented within the scheduler of the DBPL
database system [Bottcher, 1989).

A history H is called legal, if every transaction uses the following (improved) lock pro-
tocol. Every transaction requires a sufficient lock on R before it performs an operation
on R, and it releases the lock at the end of transaction.

The improved scheduler distinguishes six types of locks (icR*+-lock, icP-lock, rf*-lock,
wh*-Jock, w®-lock, wR*-lock) for the six types of operations (ic®*t, icR—, f, wht,
wh= | whie), Furthermore, any write lock on a part of the database is sufficient for
any read operation on this part of the database, and a general write lock (wh=-lock) is
sufficient for insert and delete operations, and a general read lock (z®*-lock) is sufficient

for any read operation or integrity check. Hence, the following table summarises which
locks are sufficient for which kinds of operations:

269

operation | each of the following locks is suﬂicient for the opetation
icBH(D) [ic®*lock , t®*lock , wh+dock , wh=-lock , w™"-lock
icB=(f) |icR-lock , r®*-lock , w®*-lock , wR-lock , w*-lock
t?({) rf*lock , wlt lock , wh-lock , wh"-lock
whit wi*lock w *_lock

wh Ri=Jock , wi*-lock

wits R *.lock

The scheduler only grants a lock required by a transaction, if no other transaction
keeps an incompatible lock on an overlapping part of the database. The following lock
compatibility table summarizes which pairs of locks on the same relation are compatible

(comp.) and which are not compatible (not comp.).

icP+dock ic®-lock r®*lock |w®tdock wRlock wR”-lock
ic®*lock | comp. comp. comp. comp. rot comp. not comp.
icf~-lock | comp. comp. comp. not comp. comp. not comp.
r®*.lock | comp. comp. comp. not comp. not comp. notcomp.
w'*t_lock | comp. not comp. not comp. | not comp. mnot comp. notcomp.
wi~_lock | not comp. comp. not comp. | not comp. not comp. not comp.
wi*_lock | not comp. not comp. not comp. | not comp. not comp. not comp.

The difference between this lock compatibility matrix and a lock compatibility matrx
distinguishing only between read locks and write locks can be summarized as follows:

icB+.lock icf -lock r®*-lock read-lock
wit. lock | comp. not comp. not comp.
wi=_lock | not comp. comp. not comp. write-lock not comp.
wi*_lock | not comp. not comp. not comp.

While read locks and write locks on the same relation are not compatible in general,
they are compatible in the special cases summarized in the left table. If the scheduler

uses these kinds of locks instead of an ordinary lock protocol distinguishing only between
read and write locks, then it can increase concurrency, because it a.llows for concurrency
of icR* operations with w®* operations and for concurrency of ic R~ operations with

wi= operations.

The following theorem states the correctness of this lock protocol which allows for

increased concurrency.

Theorem

Every legal history H is serialisable.

270

The full proof of this theorem is given in [Bottcher, 1989]. It is similar to ot?\er seri-
alizability proofs for histories of transactions synchronized by two-phase locking (e.g.
in [Bernstein et al., 1987]). The difference between this serializability proof and other
serializability proofs (i.e. in [Bernstein ef al., 1987]) can be summarized as follows:

Proof outline:

Let Ti and Tj be two committed transactions in a given history, and let ic;®* b_e
an integrity check of transaction Tj and w;™* a write operation of transaction jI'l.
On the one hand, we do not need to synchronize ic;®* operations with succeeding
w; 't operations for the following reason. Since Tj commits, the integrity check
yields the truth value true in the database state s where it is checked. From
the lemma in section 3.1 we know that ic;®* operations can not be violated by
a succeeding w;** operation. Hence, we conclude that the ic;R* operation of
transaction Tj needs not be synchronized with a succeeding w;®+ operation of a
concurrent transaction Ti. For the same reason, we do not need to synchronize

ic;%~ operations of Tj with succeeding w;®~ operations of Ti.

On the other hand, if a write operation w;®* of Ti preceeds an integrity check
(ic;** oric;®~) of Ty, then this corresponds to the transaction order of the equiv-

alent serial history in which the transaction Ti preceeds the transaction Tj (c.f.
the proposition in section 3.2). O

More details of the serializability proofs can be found in [Bernstein et al., 1987] or
[Bottcher, 1989).

4 Summary and Conclusion

Integrity checking is a major bottle-neck of transaction processing. We showed that the
synchronization of integrity checks with write operations can be substantially improved,
because the synchronization of integrity checks with write operations allows for more
parallelism than the synchronization of other read operations with write operations. In
order to increase parallelism, the scheduler has to use the knowledge of whether or not
a read operation is used for an integrity check. The main result is that serializability
can be achieved without synchronizing insert operations on a relation R with integrity
checks in which R occurs only positive and without synchronizing delete operations on
a relation R with integrity checks in which R occurs only negative.

The improvement presented has been combined with other optimizations which reduce
the number or the query complexity of integrity checks [Bottcher, 1989).

We furthermore presented an extended lock protocol extending two-phase locking with
the presented optimization. This lock protocol has been implemented within the pred-
icative scheduler of the DBPL database system [Bbttcher et al., 1986], [Bottcher, 1989].

271

However, the optimization is not only applicable to two-phase locking, but also to other
synchronization strategies, e.g. predicative validation.

Furthermore, the presented improvement is not restricted to relational database systems,
but can also be applied to database systems supporting a more general data model, e.g.
to database systems supporting attribute inheritance [Bdttcher, 1990].

Since the synchronization of integrity checks with write operations of concurrent trans-
actions is a major bottle-neck of transaction synchronization, the proposed optimization
seems to be an important improvement of transaction synchronization.

Acknowledgement

I would like to thank J.W. Schmidt and the DBPL group who developed the pro-
gramming language DBPL and the DBPL database system into which the described
techniques could be easily integrated.

References

[Bernstein and Blaustein, 1982] P.A. Bernstein and B. Blaustein. Fast methods for test-
ing quantified relational calculus assertions. In Proceedings of the ACM SIGMOD

International Conference, 1982.

[Bernstein et al., 1987] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[Boticher, 1989] S. Béttcher. Pradikative Selektion als Grundlage fir Transakiionssyn-
chronisation und Datenintegritit. PhD thesis, FB Informatik, Univ. Frankfurt,

1989.

[Béttcher, 1990] S. Bottcher. Attribute inheritance implemented on top of a relational
database system. In M. Liu, editor, Proc. §* International Conference on Dala

Engineering, Los Angeles, California, USA, 1990.

[Bottcher et al., 1986] S. Béttcher, M. Jarke, and J.W. Schmidt. Adaptive predicate
managers in database systems. In Proceedings of the I 2% International Conference
on Very Large Data Bases, Kyoto, Japan, 1986.

[Eckhardt et al., 1985] H. Eckhardt, J. Edelmann, J. Koch, M. Mall, and J. W. Schmidt.
Draft Report on the Database Programming Language DBPL. DBPL-Memo 091-85,

Univ. Frankfurt, 1985.

[Eswaran et al., 1976] K.P. Eswaran, J.N. Gray, R.A. Lorie, and LL. Traiger. The
notions of consistency and predicate locks in a database system. Communications

“of the ACM, 19(11), 1976.

272

[Nicolas, 1982] J.M. Nicolas. Logic for improving integrity checking in relational data
bases. Acta Informatica, 18:227-253, 1982.

[Papadimitriou, 1986] C.H. Papadimitriou. The Theory of Database Concurrency Con-
trol. Computer Science Press, Rockville, 1986.

[Reimer, 1983] M. Reimer. Solving the phantom problem by predicative optimistic
concurrency control. In Proceedings of the §* International Conference on Very
Large Data Bases, Firence, Italy, 1983.

[Schmidt and Matthes, 1990] J.W. Schmidt and F. Matthes. DBPL Language and Sys-
tem Manual. In. Document, Univ. Hamburg, 1990.

[Schmidt et al., 1988] J.W. Schmidt, H. Eckhardt, and F. Matthes. DBPL Report.
DBPL-Memo 111-88, Univ. Frankfurt, 1988.

[Simon and Valduriez, 1987] E. Simon and P. Valduriez. Design and Analysis of a Re-
lational Integrity Subsystem. Technical Report Number DB 015-87, MCC, 1987.

Appendix

In this appendix, we sketch the idea of the proof of the theorem of section 3.2, since the
complete proof as given in [Bottcher, 1989] needs a lot of formal definitions.

Theorem

The serializability of histories is independent of the order between icR* op-
erations and w?** operations of concurrent transactions and independent of

the order between ic®~ operations and w?- operations of concurrent trans-
actions.

Sketch of the proof idea:

We show the proof idea for an integrity check ic®* and a write operation wi*.
The proof for pairs of ic®~ and wh- operations can be given correspondingly.

We distinguish two cases in order to show that the serializability of the history is
independent of the order of the integrity check and the write operation.

On the one hand, the basic assumption 2 outlined in the first section guarantees

that the integrity check ic®* of transaction T1 preceeds the specific operation sol
of transaction T1

ic®* < sol

273

and that the specific operation so2 of transaction T2 preceeds or is equal to the
write operation w** of T2

so2 < wit |

Hence, if the write operation wit of T2 preceeds the integrity check ic®* of T1

wR:+ < iCR+ ,

then we have

s02 < wit <ic®t < sol,

j.e. so2 (the specific operation of T2) preceeds sol (the specific operation of
T1). Therefore, the order of the write operation and the integrity check is as
required by the construction of an equivalent serial history: the order corresponds
to the transaction order of an equivalent serial history in which the transaction
executing the write operation preceeds the transaction executing the integrity
check. The proposition in section 3.2 states that this pair of operations can not
violate serializability.

On the other hand, if the integrity check preceeds the write operation, we distin-
guish two cases: If the integrity check is successful, then the following holds: Since
successful integrity checks of the type ic®*(f) can not be violated by succeeding
wi+ gperations, the execution order of icR*(f) and succeeding w** operations is
irrelevant. However, if the integrity check is not successful, then its transaction is
aborted (basic assumption 1 of the first section guarantees this), and therefore the

execution order of both operations is irrelevant (serializability only depends on the
execution order of operations of committed transactions [Bernstein e al., 1987)).

For the same reason the execution order of ic®~(f) and succeeding wi~ operations
is irrelevant.

Since the execution order of both operations is either the order required by the
corresponding equivalent serial history or the execution order of both operations
is irrelevant, these operations need not be synchronized.

0

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15

