
Foundations of Canonical Update Support
for Closed Database Views †

Stephen J. Hegner
Department of Computer Science and Electrical Engineering

Votey Building
University of Vermont

Burlington, VT 05405 U.S.A.

Telephone: (802)656-3330
Internet: hegner@uvm.edu

UUCP: ..{!uunet}!uvm-gen!hegner

Abstract

A closed view of a database schema is one which is totally encapsulated. Insofar
as the user is concerned, the view is the database schema. The rest of the database
system is not visible through the view, and is is not required for complete use of the
view. Similarly, the updates which may be effected through the view have their scope
limited entirely to that view. In this paper, we lay the mathematical foundations
for the systematic support of such views. The proper context is shown to be that
of update translation under constant meet complement, a refinement of the constant
complement strategy of Bancilhon and Spyratos. The central complexity result for
relational schemata is that checking the legality of updates is “infinitely” simpler than
blindly checking that the new state is legal for the view schema, and in the particular
case that the base schema is constrained by functional dependencies, may always be
performed in constant time, even if the view schema is not finitely axiomatizable. We
further establish that, under very natural assumptions, update strategies for closed
views are unique.

This paper appeared in the Proceedings of the Third International Conference on Database
Theory (ICDT90), Paris, 12–14 December 1990, Springer-Verlag Lecture Notes in Computer
Science, Volume 470, pp. 422–436.

†The research reported herein was performed while the author was visiting the Department of Mathemat-
ics of the University of Oslo, Norway. He wishes to thank in particular the members of the Computational
Linguistics Group for their kind hospitality during his stay there.



0. Introduction
The capability to perform updates has always been an integral part of database systems,
although only recently has the problem begun to be addressed systematically [Abi88]. The
ability to perform updates through views — windows on the database which allow only
partial access — is also a useful service of a complete database system. It is the stated goal
of this research is to begin a development of a systematic theory of updates to views. Since
there has been a great quantity of published work on the topic of supporting view updates
in the past fifteen years, it is appropriate for us to begin by with a justification of why yet
another paper on view updates is appropriate, and, more generally, why a new theory of view
updates is needed.

Views may be (at least roughly) divided into two distinct classes. An open view is designed
by the user as a “window”, primarily for his own convenience. The user of such a view will
typically have knowledge of and privileges to the entire database schema, or at least a
substantial part of it. Proper use of such a view requires knowledge of the larger supporting
schema. A closed view, on the other hand, is provided by the system administration to
the user, the latter having no knowledge of the total system schema beyond that provided
through the view. In this case, insofar as possible, the view should appear and behave as
just another schema. Use of such a view must require no knowledge of the larger schema.

Most of the published work on the topic of supporting view updates is oriented towards
the support of open views. The earliest efforts to systematically address the problem included
that of Dayal and Bernstein [DB78, DB82] and Furtado et al [FSdS79]. Perhaps the most
visible proponent of update strategies for open views has been Keller [Kel82, Kel85, Kel84,
Kel87]. Other work along these lines include [MT85] and [Mas84]. Generally, these works
look at “most plausible” strategies for restricted cases, such as updating projections or join of
relations governed by functional dependencies. The resulting updates typically have effects
outside of the scope of the view, and indeed, the usual arguments for their appropriateness
depends upon the nature of these external effects. Open views are perhaps best supported
by a sort of “toolkit” which the user may employ to construct and customize a view, and
much of the work identified above could well provide the foundation for such a package.
Indeed, Keller [Kel85] has already made a proposal for such a package, and Medieros and
Tompa [MT85] have implemented a package to understand various update policies.

In contrast to such a “toolkit” approach for open views, we forward the thesis that for
closed views there is a core of systematic principles which is applicable, regardless of the
particular application. They must be adhered to in any design, and will hopefully lead to
algorithmic procedures (where possible) for the design of closed views with certain specified
properties. These principles must protect and support the interests of both the user and the
system. From the user’s perspective, a closed view should look like a complete schema, in
at least the following senses:

(u1) The definition of what constitutes an admissible update to the view must depend only
upon aspects of the total schema which are visible through the view. It must not depend
in any way upon any part of the state of the overall schema which is not visible through
the view.

1



(u2) The permissible updates should, insofar as possible, be axiomatizable and specifiable
in a manner similar to that employed in the base schema.

From the system’s perspective, a closed view must behave as an “isolated unit”, in at least
the following senses.

(s1) The effect of a view update must be limited to the view and its “logical consequences”
within the total schema. The user of the view must not be able to change information
in the database which is not visible through the view. In other words, the effects of the
view, as a modifiable entity, must be suitably encapsulated.

(s2) The way in which updates are reflected back into the total schema must be in a canonical
fashion, independent of arbitrary choices.

The central thrust of this paper is to provide a formalization of these four requirements. As
a starting point, we observe that in the literature, the sole body of work which addresses
update support in closed views, at least to some degree, is that based upon the constant-
complement strategy of Bancilhon and Spyratos [BS81b, BS81a]. This includes subsequent
work by Cosmadakis and Papadimitriou [CP84], Gottlob, Paolini, and Zicari [GPZ88], and
our own earlier work [Heg84]. Because we start by postulating properties of an update
strategy rather than by fixing a strategy itself, our approach does not presuppose constant-
complement update as a goal unto itself. However, we do conclude that it is a necessary
component of any good strategy, although not a sufficient one. We shall make more precise
the relationship between our work and these references as we proceed to identify the features
of our theory.

The paper is organized as follows. In Section 1, we provide more formal background
material for the discussion of our ideas, including a precise definition of an acceptable update
strategy for a closed view. We then address three key issues, each in its own section. In
Section 2, we examine the realizability of update strategies which satisfy conditions (u1)
and (s1). The key result shows closed strategies to be be equivalent to the “constant-
meet” strategy, which is a refinement of the constant-complement strategy of Bancilhon and
Spyratos. Our results, in the same spirit as those of Bancilhon and Spyratos, are completely
general and require no special structure on database schemata and views. In Section 3, we
confine our attention to the relational model in order to adequately address condition (u2)
above. That is, we study the axiomatizability of admissible updates, or, more precisely, the
complexity of the axioms which specify the legal updates to the view. In Section 4 we address
requirement (s2) by identifying uniqueness conditions under which the update translation
depends only upon the view, and not upon the selection of any other parameter. Finally,
the work reported here admittedly only scratches the surface. To identify first principles
without clouding the issues with more complex details, we work with a very simple model.
In Section 5, we identify the most important next directions, relative to the current thrust
of the general theory of database updates.

We assume familiarity with the by now traditional notation and terminology of the re-
lational model, as may be found in [Mai83] and [PDGV89]. For Sections 3 and 4, we also
assume some basic familiarity with first-order logic, as may be found in [End72] or [Gal86].

2



Due to space limitations, it has been necessary to omit many details and essentially all
proofs. Complete reports containing a more detailed development, including proofs, will be
available.

1. Set-Based Schemata and Views
Basic Concepts

1.1 Set-Based schemata and views A set-based database schema D is entirely defined
by a set of legal databases (or legal states), which we denote by LDB(D).

Let D1 and D2 be set-based database schemata. A morphism f : D1 → D2 is just a
function f ′ : LDB(D1) → LDB(D2). The reason for this apparently redundant notation is
for compatibility with the relational framework to be introduced later.

Let D be a set-based database schema. A set-based view of D is a pair Γ = (V, γ) in
which V is a set-based database schema and γ : D → V is a set-based morphism with the
property that γ′ : LDB(D) → LDB(V) is surjective. The congruence Congr(Γ) of Γ (denoted
≡Γ in [BS81b]) is the equivalence relation on LDB(D) defined by (M1, M2) ∈ Congr(Γ) iff
γ′(M1) = γ′(M2).

Given set-based views Γ1 = (V1, γ1) and Γ2 = (V2, γ2), a view morphism f : Γ1 → Γ2

is a set-based database morphism f : V1 → V2 such that the following diagram commutes.

D

V1 V2





�

γ1 J
JĴ
γ2

f

1.2 Lemma Let D be a set-based database schema, and let Γ1 = (V1, γ1) and Γ2 =
(V2, γ2) be set-based views of D. Then there is at most one set-based view morphism Γ1 → Γ2.
This morphism exists iff Congr(Γ1) ⊆ Congr(Γ2). 2

1.3 View interpolation and equivalence The morphism guaranteed by the above
lemma is of sufficient importance to warrant a special notation. When it exists, we denote
the unique f which makes the above diagram commute by λ(Γ1, Γ2). This furthermore allows
us to regard Γ2 as a view of V1. We call this new view the relativization of Γ2 to Γ1 and
denote it by Λ(Γ1, Γ2) = (V2, λ(Γ1, Γ2)).

If Γ1 = (V1, γ1) and Γ2 = (V2, γ2) are set-based views such that there are morphisms
f : Γ1 → Γ2 and g : Γ2 → Γ1, then the above uniqueness result guarantees that g◦f : Γ1 → Γ1

and f ◦ g : Γ2 → Γ2 are identity morphisms. Thus, in the standard categorical sense [HS73,
5.13], f and g are isomorphisms. We say that Γ1 and Γ2 are (set-based) isomorphic in this
case. It is trivial to verify that Γ1 and Γ2 are isomorphic iff Congr(Γ1) = Congr(Γ2). We write
[Γ1] to denote the equivalence class of all views which are (set-based) isomorphic to Γ1. Upon
identifying isomorphic views, 1.2 guarantees that view morphism induces a partial order on
equivalence classes. As a convenient notation, we write [Γ2] ≤ [Γ1] just in case there is a

3



morphism f : Γ1 → Γ2. In an abstract decomposition theory, we do not distinguish between
equivalent views, and, as an abuse of notation, we also write Γ2 ≤ Γ1.

1.4 Single-relation schemata and projective views Although we do not formally
work with the relational model until Section 3, it is nonetheless useful to draw upon simple
examples before then. We therefore introduce some notation at this point. We assume
familiarity with the notion of a single-relation schema R[U ] with attribute set U , as may
be found in [Mai83] or [PDGV89]. Let D denote the schema with single relation R[U ],
constrained by some set of first-order dependencies Φ. Let U1 ⊆ U . Then DU1 denotes the
single-relation schema whose relation symbol is RU1 [U1], and whose constraints are those
projected from Φ onto the set U1. (In the examples we consider, these projected constraints
will always be first order.) πU1 : D → DU1 denotes the database mapping whose underlying
function is just the usual projection πU1

′ : LDB(D) → LDB(DU1), and ΠU1 denotes the view
(DU1 , πU1).

1.5 Example Let E denote the single relation schema of three attributes R[ABC], con-
strained by the join dependency 1 [AB, BC] and the functional dependency B → C. LDB(E)
is just the set of all databases which satisfy the join dependency 1 [AB,BC]. In ΠAB, EAB

is defined by the single relation symbol RAB[AB]; there are no nontrivial constraints on this
schema. The projective views ΠBC = (EBC , πBC) and ΠB = (EB, πB) are defined similarly,
noting that B → C is a constraint of EBC . We may regard these as set-based schemata and
views by “forgetting” the relational structure, and working with the underlying LDB(−)’s.
We clearly have that ΠB ≤ ΠAB and ΠB ≤ ΠAB. The morphism λ(ΓAB, ΓB) is just the
projection of RAB onto RB. In other words, in this instance 1.2 just says that we may factor
the projection πB on RABC through RAB.

Complements and Their Characterization

1.6 Notational convention Unless otherwise noted, throughout the rest of this section,
we let D denote an arbitrary set-based database schema and {Γ1, Γ2} a pair of set-based
views of D, with Γi = (Vi, γi).

1.7 The decomposition morphism and types of decompositions The product
schema V1 × V2 has LDB(V1 × V2) = LDB(V1) × LDB(V2). In other words, we just
take the cartesian product of the corresponding sets of legal states. The decomposition mor-
phism ∆〈{Γ1, Γ2}〉 : D → V1 × V2 has as underlying function ∆〈{Γ1, Γ2}〉′ : LDB(D) →
LDB(V1)× LDB(V2), given on elements by M 7→ (γ1

′(M), γ2
′(M)).

We say that {Γ1, Γ2} forms a subdirect complementary pair if the decomposition map
∆〈{Γ1, Γ2}〉 is injective, and Γ1 and Γ2 are then called subdirect complements of one an-
other. If the decomposition map is furthermore bijective, the pair {Γ1, Γ2} is called a direct
complementary pair, and Γ1 and Γ2 are called direct complements of one another.

In [Heg89], we have investigated extensively the properties of direct complementary pairs,
and, more generally, direct decompositions into any number of finite components. Such

4



decompositions are the natural ones to consider when studying the problem of decomposing
a schema for purposes of simplifying the logical and/or physical structure. However, it is
subdirect complements which arise naturally in the study of update strategies, and so we
focus upon their properties here.

We have borrowed the adjectives direct and subdirect from the field of universal algebra.
The interested reader is invited to compare our definitions with those of direct product and
subdirect product as given in [Gra68]. Note also that in [BS81a, BS81b], the term complement
is used to define what we call a subdirect complement.

1.8 The constrained product Let {Γ1, Γ2} be a subdirect complementary pair. The
schema whose set of legal states is {(M1,M2) ∈ LDB(V1) × LDB(V2) | (∃M ∈ LDB(D))
((γ1

′(M), γ2
′(M)) = (M1,M2))} is called the constrained product of Γ1 and Γ2, and is denoted

by V1 ⊗ V2. It is immediate that LDB(V1 ⊗ V2) = ∆〈{Γ1, Γ2}〉(LDB(D)). When we
restrict the codomain of ∆〈{Γ1, Γ2}〉 to V1 ⊗V2, we get the relativized decomposition map
γ1 ⊗ γ2 : LDB(D) → V1 ⊗V2. Clearly, if {Γ1, Γ2} forms a subdirect complementary pair,
then (γ1 ⊗ γ2)

′ is a bijection. In this case, the inverse (γ1 ⊗ γ2)
−1 : V1 ⊗V2 → D is called

the reconstruction map for {Γ1, Γ2}.
Strictly speaking, the notation V1 ⊗V2 is ambiguous, since the actual definition of this

schema depends upon the base schema D and the view mappings γ1 and γ2. However, to keep
from becoming buried in overly complex notation, we shall stick to this simpler notation,
and let the context clarify the details.

1.9 Example of subdirect decomposition We continue with the example begun in
1.5. The pair {ΠAB, ΠBC} forms a subdirect decomposition of E, but not a direct de-
composition. LDB(EAB ⊗ EBC) consists of exactly those pairs {(M,N) ∈ LDB(EAB) ×
LDB(EBC) | λ(ΠAB, ΠB)′(M) = λ(ΠBC , ΠB)′(N)}. In other words, the legal states are pre-
cisely those pairs whose B projections agree. The reconstruction map (πAB ⊗ πBC)′ is none
other than the join on AB and BC.

1.10 Fully commuting views and meet complements We say that {Γ1, Γ2} is a
fully commuting pair if Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1), with “◦” denoting
ordinary relational composition. A subdirectly complementary pair {Γ1, Γ2} which is fully
commuting is called a meet complementary pair, and Γ1 and Γ2 are called meet complements
of one another.

1.11 Example – not every subdirect complementary pair is fully commuting
The views ΠAB and ΠBC of 1.5 are fully commuting, as is easily verified. To provide an ex-
ample of noncommuting views, let F be the same as E of 1.5, save that we add the functional
dependency A → C to the schema. We still have the subdirect decomposition {ΠAB, ΠBC},
but now the congruences do not commute. Indeed, let M = {(a1, b1, c1), (a2, b2, c2)}, N =
{(a1, b1, c1), (a2, b2, c1)}, P = {(a1, b1, c1), (a1, b2, c1)}, with all values distinct. Then it is easy
to see that (M, N) ∈ Congr(ΠAB) and (N,P ) ∈ Congr(ΠBC), so that (M,P ) ∈ Congr(ΠAB)◦
Congr(ΠBC). On the other hand, suppose that (M,P ) ∈ Congr(ΠBC) ◦ Congr(ΠAB). Then

5



(P,M) ∈ Congr(ΠAB) ◦ Congr(ΠBC) as well, so there must be a Q such that (P, Q) ∈
Congr(ΠAB) and (Q,M) ∈ Congr(ΠBC). But then for (P, Q) to be in Congr(ΠAB) it must
be of the form {(a1, b1, x), (a1, b2, x)} for some x. Then, for (Q,M) to be in Congr(ΠAB), M
must be of the form {(y1, b1, x), (y2, b2, x)} for some y1, y2, x, which it is not. Thus these
views are not fully commuting.

The notion of a meet complement is not a particularly intuitive by itself. However,
it does have some rather nice characterizations in terms of certain types of independence-
characterizing general dependencies.

1.12 Generalized dependencies Let {Γ1, Γ2} be a subdirect complementary pair.

(a) The {Γ1, Γ2}-reconstruction dependency on V1 ⊗ V2, denoted ⊗[Γ1, Γ2], is satisfied iff
for any M1, N1 ∈ LDB(V1) and M2, N2 ∈ LDB(V2), if any three of the elements of
{(M1,M2), (M1, N2), (N1,M2), (N1, N2)} is in V1 ⊗V2, then so too is the fourth.

(b) Let Γ = (V, γ) be a set-based view of D, with Γ ≤ Γ1 and Γ ≤ Γ2. The Γ-independence
dependency on V1 ⊗V2, denoted ⊗Γ, is satisfied iff for any M1 ∈ LDB(V1) and M2 ∈
LDB(V2),

((M1,M2) ∈ LDB(V1 ⊗V2)) ⇔ (λ(Γ1, Γ)′(M1) = λ(Γ2, Γ)′(M2))

1.13 Theorem – characterization of meet complementary pairs Let {Γ1, Γ2} be
a subdirect complementary pair. Then the following conditions are equivalent.

(a) {Γ1, Γ2} is a meet-complementary pair.

(b) Congr(Γ1) ◦ Congr(Γ2) is an equivalence relation.

(c) V1 ⊗V2 satisfies ⊗[Γ1, Γ2].

(d) V1⊗V2 satisfies ⊗Γ, where Γ is the view (unique up to equivalence) whose congruence is
the smallest equivalence relation on LDB(D) containing both Congr(Γ1) and Congr(Γ2).
2

1.14 Meets and Γ-complements In view of (b) above, a meet-complementary pair
{Γ1, Γ2} uniquely defines (up to equivalence) a view Γ whose congruence is Congr(Γ1) ◦
Congr(Γ2). We call this view the meet of Γ1 and Γ2, and say that {Γ1, Γ2} is a Γ-complementary
pair, and Γ1 and Γ2 are called Γ-complements of one another. The motivation for this termi-
nology comes from the fact that the views of D may be endowed with a lattice-like structure,
in which Γ is the meet of Γ1 and Γ2. See [Heg89, 1.3.15] for a further discussion.

1.15 Example We continue with the examples of 1.5 and 1.11. The dependency
⊗[ΠAB, ΠBC ] says that if we have three particular models in EAB⊗EBC , then we can always
build a fourth using a join-like operation. As a concrete example, let M1 = {(a1, b1), (a2, b2)},
N1 = {(a1, b1), (a1, b2)}, M2 = {(b1, c1), (b2, c1)}, and N2 = {(b1, c1), (b2, c2)}. Then, if any
three of the pairs in {(M1,M2), (M1, N2), (N1,M2), (N1, N2)} is in LDB(EAB ⊗ EBC) the

6



fourth is also. However, if we consider FAB ⊗ FBC as arising from the schema F which
enforces the dependency A → C as well, then we have (M1,M2), (M1, N2), (N1,M2) ∈
LDB(FAB ⊗ FBC), but not (N1, N2), since A → C will be violated in this case. Thus
⊗[ΠAB, ΠBC ] does not hold on FAB ⊗ FBC .

It is easy to see that the meet of {Γ1, Γ2} for E is just ΠB. Thus, the dependency
⊗[ΠAB, ΠBC ] just says that any pair (M1,M2) ∈ LDB(EAB)×LDB(EBC) which agree on the
meet view ΠB is in LDB(EAB ⊗ EBC).

2. Updates in the Set-Based Case
Update Families and Update Strategies

2.1 Notational convention We continue to let D be an arbitrary set-based database
schema, with Γ1 = (V1, γ1) and Γ2 = (V2, γ2) arbitrary set-based views of D.

2.2 Simple update families A simple update family for D is a subset UD ⊆ LDB(D)×
LDB(D) which is reflexive and transitive. (M1,M2) ∈ UD just means that the update which
changes the state of D from M1 to M2 is allowed. Reflexivity assures that all identity updates
are allowed, and transitivity ensures that updates may be composed. Note that a simple
update family need not be complete in the sense of [BS81b], since we do not postulate that
updates be reversible (symmetry of UD.)

Of course, in current research in the study of database transactions, the set UD is specified
by some sort of transaction language, such as TL, detTL, and their relatives [AV90]. However,
at this point, it would not serve our purpose to incorporate such a language into our model,
since we are interested in general admissibility of updates, irrespective of the characteristics of
specific transaction languages. Once these principles have been established, further structure
may be imposed to study the impact of these differences.

2.3 Update strategies for views Let UD and UV1
be simple update families for D

and V1, respectively. An update strategy for UV1
with respect to UD is a rule which tells us

how to translate each update of V1 given in UV1
into an update of D. The analog of such

a rule is called a translator in [BS81b]; we employ an equivalent representation which is a
variant of that introduced in [Heg84]. Formally, an update strategy for UV1

with respect to
UD is a partial function ρ : LDB(D) × LDB(V1) → LDB(D) satisfying conditions (upt1) –
(upt4) below. The semantics are described as follows. Let M be the current state of the base
schema D; the current state of V1 must then be γ′1(M). Suppose that the desired update is
(γ′1(M), N) ∈ UV1

. ρ(M, N) gives us the new state of D, so that (M, ρ(M, N)) ∈ UD is the
translation of (γ′(M), N) ∈ UV1

.

(upt1) For any M ∈ LDB(D) and N ∈ LDB(V1), whenever ρ(M, N) is defined, γ′(ρ(M,N)) =
N . In other words, the translation must be to a state in LDB(D) which maps to N .

(upt2) For any M, P ∈ LDB(D) and N ∈ LDB(V1), ρ(M,N) = P implies (M,P ) ∈ UD. In
other words, the translation must be a legal update of D.

7



(upt3) For each (M, N) ∈ UV1
, there are P, Q ∈ LDB(D) such that γ1

′(P ) = M , γ1
′(Q) =

N , and ρ(P,N) = Q. In other words, each update in UV1
must be realizable relative

to some state of the base schema.

(upt4) For any M ∈ LDB(D) and N ∈ LDB(V1), whenever ρ(M, N) is defined, (γ1
′(M), N) ∈

UV1
. In other words, ρ may support only updates which are in UV1

. If the other
three conditions are satisfied, we can always force this condition by suitably restricting
the domain of definition of ρ.

2.4 Simplifying convention To keep the notation within reasonable bounds, from here
on we shall assume that the base schema D always has enough updates; that is, we shall
assume that UD = LDB(D)× LDB(D). In this case, condition (upt2) will automatically be
satisfied. This is not a serious limitation, because in the more general case, we can simply
proceed as though UD = LDB(D)× LDB(D) were true, and then check to see if in fact the
true UD in fact has the update transition to support the required view update.

2.5 The constant complement strategy Let us assume that {Γ1, Γ2} forms a subdi-
rect complementary pair. Define the partial function UpdStr〈Γ1, Γ2〉 : LDB(D)×LDB(V1) →
LDB(D) by

UpdStr〈Γ1, Γ2〉(M,N) =

{
∆〈{Γ1, Γ2}〉′−1

(N, γ2
′(M)) if (N, γ2

′(M)) ∈ LDB(V1 ⊗V2);
undefined otherwise.

We call UpdStr〈Γ1, Γ2〉 the full strategy with constant subdirect complement Γ2. Of course, this
is nothing more than constant complement translation in the sense of Bancilhon and Spyratos
[BS81b]. We define U〈Γ1, Γ2〉 to be precisely the domain of definition of UpdStr〈Γ1, Γ2〉.

2.6 Functoriality and implicit reversibility Let us now introduce two “niceness”
properties on update strategies. First of all, if we compose two updates to the view, the
translation should be the composition of the individual translations. Additionally, the iden-
tity update to the view should translate to the identity update on the base schema. Formally,
an update strategy ρ for a simple update family UV1

for V1 is said to be functorial if it
satisfies the following two conditions.

(f1) For any M ∈ LDB(D), ρ(M,γ′(M)) is defined and equals M .

(f2) For any M1 ∈ LDB(D), N1, N2 ∈ LDB(V1), if both ρ(M1, N1) and ρ(ρ(M1, N1), N2))
are defined, then ρ(M1, N2) is defined and equals ρ(ρ(M1, N1), N2)).

We note that functoriality is implicit in the definition of a translation of Bancilhon and
Spyratos [BS81b, Def. 3.3].

The condition of implicit reversibility stipulates that, after an update, if we know the new
state of the base schema D and the old state of the view schema V1 (as well as the update
strategy), that should be enough to recover the old state of D. In other words, no update
to V1 should change the state of D in a way which is not totally encoded in the state of V1.
Formally, ρ is implicitly reversible if

8



(ir) For any M1,M2 ∈ LDB(D), N ∈ LDB(V1), if both ρ(M1, N) and ρ(M2, N) are defined
with ρ(M1, N) = ρ(M2, N) and γ′(M1) = γ′(M2), then M1 = M2.

Our motivation for requiring implicit reversibility is to recapture condition (s1). Intuitively,
if an update strategy is not implicitly reversible, then some update can alter the state of D
in such a way that we cannot observe through knowledge of the change in view state alone.
Conversely, if it is implicitly reversible, then nothing which is not determined completely by
the view state can change through a view update.

Because a constant complement strategy in the sense of Bancilhon and Spyratos is defined
to be complete [BS81b, Def. 3.2], it is not only implicitly reversible, but in fact explicitly so.

We may now state the classic result of Bancilhon and Spyratos [BS81b, Sec. 7], recast
within our notational framework.

2.7 Theorem – realizability of update strategies via constant complement Let
UV1

be a simple update family for V1, and let ρ be an update strategy on Γ1 for UV1
. Then

there exists a subdirect complement Γ2 of Γ1 such that ρ ⊆ UpdStr〈Γ1, Γ2〉 if and only if ρ is
functorial and implicitly reversible. If UV1

is furthermore symmetric, then we may choose
Γ2 such that ρ = UpdStr〈Γ1, Γ2〉. 2

2.8 Uniform updatability and closed update strategies A major shortcoming of
condition (upt3) is that it is existential – whether or not we can actually realize an update
(M,N) ∈ UV1

depends upon the particular state of D. In a closed view, this state is not
known to the user, and so, in general, a constant-complement update strategy will violate
condition (u1). To rectify this, we postulate the stronger condition of uniformity, which
stipulates that we can always realize the update (M,N) ∈ UV1

. Formally, we say that ρ is
uniform if the following condition is satisfied.

(un) For any (M, N) ∈ UV1
and P ∈ LDB(D) with γ1

′(P ) = M , ρ(P, N) is defined. In
other words, all of the updates in UV1

are supported, regardless of the state of D.

We call an update strategy ρ which is uniform a closed update strategy. Before establishing
the formal properties of such a strategy, we show by example that not all update strategies
are uniform.

2.9 Example – non-uniform updatability We return to the context established in
1.11. Specifically, the base schema is F. Let M = {(a1, b1, c1), (a2, b2, c2)} and P =
{(a1, b1, c1), (a2, b2, c1)}, as in 1.11. Then, in either case, the state of the view schema FAB

is {(a1, b1), (a2, b2)}. Suppose that we want to update that state to {(a1, b1), (a1, b2)}. If the
state of the schema is is M , then this update is not possible with constant complement ΠBC ,
as the functional dependency A → C will be violated. On the other hand, if the state of
F is P , then the update is quite possible with this constant complement; the new state is
N = {(a1, b1, c1), (a1, b2, c1)}. Thus, whether or not we can effect this update with constant
complement ΠBC depends upon the specific state of FBC , so the corresponding strategy

9



cannot be uniform. Note that if the base schema were instead E, so that we are not required
to enforce the dependency A → C, then updating with constant ΠBC is uniform.

It turns out that adding to the constant complement strategy the stipulation that the
complement be a meet complement is exactly what is needed to ensure a closed update
strategy. More precisely, we have the following refinement of 2.7.

2.10 Theorem – characterization of uniform updatability Let UV1
be a simple

update family for V1, and let ρ be an update strategy on Γ1 for UV1
. Then there exists

a meet complement Γ2 of Γ1 such that ρ ⊆ UpdStr〈Γ1, Γ2〉 iff ρ is functorial, implicitly
reversible, and uniform, i.e., iff ρ is a closed update strategy. Furthermore, as in 2.7, if
UV1

is symmetric, then we may choose Γ2 such that ρ = UpdStr〈Γ1, Γ2〉, and, in this case,
UV1

= {(M, N) ∈ LDB(V1) | λ(Γ1, Γ)′(M) = λ(Γ1, Γ)′(N)}, where Γ is the meet of Γ1 and
Γ2. In other words, the allowed updates are precisely those which keep Γ constant. 2

2.11 Remarks on the literature Work on the problem of characterizing meet-like con-
ditions in terms of commuting congruences in the setting of universal algebra goes back to
at least [Fle55]. In the database context, Bancilhon and Spyratos addressed the issue of
determining the conditions under which update admissibility is independent of the com-
plement state in their VLDB paper on independence [BS81a]. While their presentation is
sketchy, they do recapture some of the ideas we have presented here with their notion of
weak independence. However, they seem to have been unaware of the commuting congru-
ences characterization, and to have missed the key point that the meet is uniquely defined
by the complementary views, if it exists. In our own earlier paper [Heg84], we worked with
the special case of Γ-complements in which Γ is the trivial view whose schema has exactly
one legal state, so that the complements are direct. This made for interesting theory, but
it is far too constraining to support realistic updates. Finally, Gottlob, Paolini, and Zicari
[GPZ88] generalize the notion of constant-complement update to decreasing-complement up-
date. While this generalization does not preserve the notion of implicit reversibility, the
relationship between our work and theirs nonetheless warrants further study.

3. The Logical Structure of Subdirect Decomposition
We now turn our attention ensuring condition (s2). To obtain meaningful results, we must
look beyond the simple set-based context and work with a data model which admits abstract
axiomatization. The natural choice is the relational model.

The General Relational Case

3.1 Relational schemata and views We have already used simple relational schemata
and views in several examples. However, for a more systematic investigation using the special
properties of the relational model, we must establish some additional notation. A relational
schema D consists of a finite set of relation symbols Rel(D), each such R ∈ Rel(D) with

10



a unique positive arity (number of columns) Ar(R), as well as a set of constraints Con(D).
Unless further stipulations are made, constraints are taken to be arbitrary sentences in the
first-order language defined by Rel(D). LDB(D) denotes the set of all legal databases of D;
that is, the models of Con(D), while DB(D) denotes the set of all databases (structures) in
the language of D, whether or not they are models of Con(D). Given a set of constraints
Φ with the property that Con(D) |= ϕ for each ϕ ∈ Φ, we write Mod(Φ) to denote the set
of all elements of DB(D) which satisfy each element of Φ (i.e., the models of Φ). A set of
constraints Φ with the property that Mod(Φ) = Con(D) is called a basis for Con(D).

One point which does require some clarification is the definition of domains for the
columns of the relations. We have advocated elsewhere [Heg89] the use of Boolean algebra
of types, in lieu of the more traditional disjoint domains. In general, our results apply in this
more general setting. However, to avoid introducing the rather copious additional necessary
to support this extended framework, we shall simply work with the more traditional and
familiar one here. In any case, the extensions necessary are largely notational, and do not
provide any essential new insights within this context.

A relational view is a set-based view, but with additional structure. Precisely, a relational
view of the relational schema D is a pair Γ = (V, γ) in which V is also a relational schema
and γ : D → V is a relational database mapping whose underlying mapping γ′ : LDB(D) →
LDB(V) is surjective. This differs from the set-based definition of 1.1 in that we now work
with relational morphisms. Specifically, the relational morphism γ : D → V associates with
each R ∈ Rel(V) a first-order formula Def(γ, R) in the language of the schema D with (by
convention) exactly the variables in {v1, . . . vAr(R)} free. The instance of R defined by the
formula (or query) R(v1, . . . , vAr(R)) ⇔ Def(γ, R), gives rise to γ′ in the natural fashion.
(See [JAK82] for more on this idea.) In general, given a function γ′ : LDB(D) → LDB(V),
there are many different choices of {Def(γ, R) | R ∈ Rel(D)} which define it. We call such
representations equivalent.

Because we are dealing with the subject of update checking, we must be able to work with
states which do not satisfy all of the integrity constraints. Specifically, the set of formulas
{Def(γ, R) | R ∈ Rel(D)} also gives rise to a function γ∗ : DB(D) → DB(V). We use the
same formulas in {Def(γ,R) | R ∈ Rel(D)} to define the function on the larger domain.

3.2 Example Just to make sure that there is no confusion, let us solidify these defini-
tions with the example of 1.5. We have Rel(E) = {R}, Con(E) = {1 [AB,BC], B → C}
Rel(EBC) = {RAB}, Con(EBC) = {B → C}, and Def(πBC , R) is the formula (∃z)(R(z, v1, v2)).
An equivalent morphism is given by f , with Def(f, RBC) the formula (∃z)(∀x, y, z, u, w)
(R(x, y, z)∧R(u, y, w) ⇒ (z = w))∧R(z, v1, v2)). It just embeds B → C into the view defini-
tion; this makes no difference on legal databases, so f ′ = πBC

′. However, f ∗ 6= π∗BC . Indeed,
if M ∈ DB(E) is any database which does not satisfy B → C, then f ∗(M) is the empty
relation, while π∗BC(M) is the usual BC projection.

3.3 Notational convention Unless otherwise noted, for the rest of this subsection, we
assume that D is an arbitrary relational schema, and that Γ1 = (V1, γ1), Γ2 = (V2, γ2),
and Γ = (V, γ) are relational views of D.

11



3.4 Lemma – lifting of 1.2 to the relational case The statement of 1.2 continues
to hold in the relational setting. Specifically, we may replace each occurrence of “set-based”
with “relational”, and retain a valid statement. In particular, if Congr(Γ1) ⊆ Congr(Γ2), the
view Λ(Γ1, Γ2) = (V2, λ(Γ1, Γ2)) is well defined as a relational view of V1.

Proof outline: This is relatively straightforward application of Beth’s definability the-
orem for first-order logic [Gal86, 6.6.2]. 2

3.5 The update admissibility problem and relative axiomatization Let {Γ1, Γ2}
be a Γ-complementary pair. The 〈Γ1, Γ〉-update-admissibility problem is that of deciding, for
a given (M, N) ∈ LDB(V1) × DB(V1) with λ(Γ1, Γ)∗(M) = λ(Γ1, Γ)∗(N), whether or not
(M,N) ∈ U〈Γ1, Γ2〉. Clearly, this amounts to deciding whether or not N ∈ LDB(V1). But
since we must verify that λ(Γ1, Γ)∗(M) = λ(Γ1, Γ)∗(N) anyway, it behoves us to utilize this
information when checking whether N ∈ LDB(V1). In terms of constraints, we say that a
set Φ of constraints on V1 with Con(V1) |= Φ is a Γ-relative axiomatization of V1 if every
M ∈ DB(V1) which is in Mod(Φ) with λ(Γ1, Γ)∗(M) ∈ LDB(V) is in fact in LDB(V1). In
other words, if we know that M maps to a legal state of V, then to see if it is in LDB(V1), it
suffices to verify that it is a model of Φ. (Note that equivalent representations of the same
view may have different relative axiomatizations, as this definition depends upon λ(Γ1, Γ)∗

and not just λ(Γ1, Γ)′.)

3.6 Theorem – checking update admissibility Assume that D is finitely axioma-
tizable, and that {Γ1, Γ2} is a Γ-complementary pair. Then both V1 and V2 have finite
Γ-relative axiomatizations. Thus, in particular, let M ∈ LDB(V1) and let N ∈ DB(V2) with
the property that λ(Γ1, Γ)∗(M) = λ(Γ2, Γ)∗(N). Then there is a finite set of constraints Φ1

such that (M, N) ∈ U〈Γ1, Γ2〉 is true iff N ∈ Mod(Φ1). 2

3.7 Example We illustrate just how much this can simplify things via a specific exam-
ple. Let G denote the single-relation schema R[ABCDE], constrained by the dependencies
Con(G) = {A → D, BC → D,CD → A,A → E, 1 [ABCD,ABCE]}. It can be shown
that the projective view ΠABCE is not finitely axiomatizable. Yet {ΠABCE, ΠABCD} forms a
meet complementary pair with meet ΠABC . The ΠABC-relative axiomatization of ΠABCE is
just {A → C}. In other words, to solve the 〈Γ1, Γ〉-update-admissibility problem, instead of
having to check an infinite set of axioms, we need check only a single functional dependency.

Updates on Projections of a Single Relation

We now focus our attention on the special case that the base schema D is a single-relation
schema constrained by rather simple dependencies, and all views are projections. Within
this context, we are able to establish some very strong results.

3.8 Notation and the context We now let D be the schema whose single relation
symbol is R[U ]. Recall that an typed equality generating dependency (TEGD) [Fag82] (also

12



called a generalized functional dependency [Mai83, 14.7], [FV86]) is a sentence of the form

(
m∧

i=1

R(xi1, . . . , xin)) ⇒ (xj`
= xk`

)

On the left-hand side, some of the xα’s may be the same, provided they are in the same
column of R. A functional dependency (FD) is just a TEGD with m = 2. The order of
a TEGD ϕ is the number of tuples we must check at a time to verify satisfaction. More
precisely, the order of ϕ is the least number p such that for any M ∈ DB(D), if each N ⊆ M
containing at most p tuples is in LDB(D), then so too is M . An FD has order two.

Now let W ⊆ U . We say that the TEGD ϕ (on R[U ]) embeds in W if there is a TEGD
ψ on R[W ] such that for any M ∈ DB(D), M ∈ Mod({ϕ}) iff π∗W (M) ∈ Mod({ψ}). If
U1, U2 ⊆ U and Ψ is a set of TEGD’s on R[U ], then an embedded cover of Ψ into {U1, U2} is
a set Φ of TEGD’s on R[U ] such that Mod(Ψ) = Mod(Φ) and each ϕ ∈ Φ embeds in either
U1 or U2. Clearly, this generalizes the notion of an embedded cover for a set of FD’s [BH81].

3.9 Lemma Let D be the single relation schema R[U ], constrained by a set of TEGD’s
plus a single join dependency 1 [U1, U2]. Let Z be a subset of either U1 or else of U2. Then
there is a (possibly infinite) set of TEGD’s Φ such that ((RZ [Z], Φ), πZ) is a view of D.

Proof outline: Follows directly from [Fag82, 6.1]. 2

Our main characterization theorem for meet complementary pairs is the following.

3.10 Theorem Suppose that D is the single-relation schema R[U ], and is constrained by
a (finite) set Ψ of TEGD’s of some finite order m, plus the join dependency 1 [U1, U2]. Then
{ΠU1 , ΠU2} forms a meet complementary pair with meet ΠU1∩U2 iff there is an embedded cover
of Ψ into {U1, U2}. In case this embedded cover does exist, it may be taken to be composed
entirely of TEGD’s of order m. In particular, if m = 2, all of the TEGD’s involved reduce
to FD’s, so the test becomes one of deciding the existence of an embedded FD cover. 2

3.11 Corollary Suppose that D is the single-relation schema R[U ], and is constrained
by a (finite) set Ψ of FD’s plus the join dependency 1 [U1, U2]. Then

(a) There is a polynomial-time algorithm (polynomial in the size of Ψ plus the size of U)
to decide whether or not {ΠU1 , ΠU2} is a meet complementary pair with meet ΠU1∩U2.

(b) Let {ΠU1 , ΠU2} be a meet complementary pair with meet ΠU1∩U2, and let Ω be an
embedded cover for Ψ. Define the following quantities:

(i) K = the number of FD’s in Ω which embed in U1 but not in U1 ∩ U2.

(ii) T (n) = the time required to retrieve a single tuple satisfying a partial match
specification (with fields either fixed or totally unspecified) in a relation of n
tuples.

(iii) For (M, N) ∈ DB(V1) × DB(V1), define InsertSize(M,N) to be the number of
tuples in N \M .

13



Then there is an algorithm for solving the 〈ΠU1 , ΠU1∩U2〉-update-admissibility problem
which has worst-case time complexity of O(K · T (InsertSize(M, N)) for any given
(M, N) ∈ LDB(V1)× DB(V1) (with λ(ΠU1 , ΠU1∩U2)

∗(M) = λ(ΠU1 , ΠU1∩U2)
∗(N)).

Proof outline: Beeri and Honeyman [BH81] have given a polynomial time algorithm
to decide whether or not a set of projections has an embedded cover, which, in view of the
above theorem, gives us the algorithm for (a). For (b), we note that it suffices to check the
validity of the updates against a set of FD’s. This can be performed in time proportional to
the size of the update, as argued in [GW86]. 2

Let us remark in particular that in the case that we have an associative memory for the
database which can do partial match retrieval of a single tuple in constant time (in the sense
of [GW86]), then the time complexity of a single insertion or replacement is O(K), which is
independent of the database size. Deletions are free in this context in any case.

3.12 Example – the meet need not be defined by column intersection In the
above results, we have been careful to stipulate that the meet be defined by the intersection
of the columns. This is not a vacuous stipulation. Indeed, let D have the single relation
symbol R[ABC] and be constrained by {A → C, C → A,B → AC}. Consider the views
ΠAB and ΠBC , which clearly form a subdirect complementary pair. Their meet may be
characterized by the view Γ = (V, γ) with V the single-relational schema S[BB], and with
Def(γ, S) = (∃x, y)(R(x, v1, y)∧R(x, v2, y)). There are no constraints on V. Clearly Γ 6∼= ΠB,
so the meet is not defined by column intersection.

3.13 Remarks on the literature Cosmadakis and Papadimitriou [CP84] have con-
ducted an extensive investigation into updating projections of single-relation schemata us-
ing the constant-complement strategy, focusing on insertions. The algorithms which they
present show substantially higher complexity than ours. The differences are principally due
to the fact that they did not confine their attention to meet complementary pairs, as we have.
Indeed, the marked complexity differences provide further support for the practical aspects
of closed update strategies. A more careful comparison of these approaches is warranted,
but must be deferred to another paper.

4. Uniqueness and Canonicity of Update Strategies
In the introduction, we proposed in condition (s2) that an update reflection strategy should
be independent of arbitrary choices. In the general case, examples show that this is not
possible. However, upon restricting our attention to the ∃+∧-views, which include all ex-
pressions built up from the basic operations of projection, restriction, and join, we are able
to establish strong uniqueness and optimality results.

14



Optimality with Respect to a Fixed Meet

4.1 ∃+∧-views We say that a first-order formula ϕ is an ∃+∧-formula if it is of the form
(Q)(α1∧ . . . ∧αm), with Q a (possibly empty) sequence of existential quantifiers, and each
αi a positive literal. The relational view Γ = (V, γ) of D is called an ∃+∧-view if, for
each R ∈ Rel(V), the interpretation formula Def(γ, R) is an ∃+∧-formula in which every vi,
1 ≤ i ≤ Ar(R), occurs in some αi. (Recall that the full definition of R is R(v1, . . . , vAr(R)) ⇔
Def(γ,R).) Our ∃+∧-views are essentially the so-called conjunctive queries of Chandra and
Merlin [CM76]. Note that any composition of the projection, restriction, and join operators
yields an ∃+∧-view.

We say that two relational views Γ1 and Γ2 are ∃+∧-isomorphic, and write Γ1
∼=[∃+∧] Γ2,

if they are isomorphic in the ordinary relational sense, and, in addition, we may represent
both Λ(Γ1, Γ2) and Λ(Γ2, Γ1) as ∃+∧ views. This notion of isomorphism is strictly stronger
than usual first-order logical isomorphism, as illustrated in the next example.

4.2 Example Let D be the relational schema with two unary relational symbols R[A]
and S[A], with no constraints other than that the two relations share the same domain.
Let ΣR denote the view which preserves R[A] identically but discards S[A], and define ΣS

similarly. Define ΣT = (S, σ) to be the view whose schema S contains the single relation
symbol T [A] with defining formula Def(σ, T ) = (R(v1)∨S(v1))∧(¬(R(v1)∧S(v1))). In other
words, T is the symmetric difference of R and S. Intuitively, ΣR and ΣS, which are ∃+∧-
views, provide “direct” views of the schema D, while ΣT , which is not a ∃+∧-view, provides
a “convoluted” one.

Now it is not difficult to see that both {ΣR, ΣS} and {ΣR, ΣT} are direct complementary
pairs (and so, a fortiori, a meet complementary pair with the meet the trivial one-state view
Γ⊥(D) [Heg89, 1.1.1]). Yet ΣS and ΣT are clearly not isomorphic. We seek to identify the
formal way in which ΣS a “better” complement than ΣT . If we form the view ΣR⊗ΣT (use
the obvious extension of 1.8 to the relational case) of D with relation symbols R and T ,
then ΣR⊗ΣT is isomorphic to the identity view Γ>(D) in the usual sense, but it is not ∃+∧-
isomorphic to it, as there is no way to compute the state of T without using negation and
disjunction. Indeed, upon restricting our attention to ∃+∧-isomorphisms, we can conclude
that subdirect complements with respect to a given meet are unique. This stands in stark
contrast to the fact that in the more general case, subdirect complements are never unique,
except in trivial cases [BS81b, 4.4].

4.3 Proposition – uniqueness of ∃+∧-complements Let {Γ1, Γ2} and {Γ1, Γ3} be Γ-
complementary pairs of ∃+∧-views. Then Γ2

∼=[∃+∧] Γ3. In other words, Γ-complements are
unique when we restrict our attention to ∃+∧-views. 2

Even if we do not fix the meet, ∃+∧-complements must provide the same update trans-
lation when they overlap.

4.4 Corollary Let {Γ1, Γ2} and {Γ1, Γ3} be meet complementary pairs of ∃+∧-views
(with possibly different meets). Then, for any (M, N) ∈ LDB(D) × LDB(V1), if both

15



UpdStr〈Γ1, Γ2〉(M,N) and UpdStr〈Γ1, Γ3〉(M,N) are defined, they are equal. In other words,
there is only one way to translate a given update with respect to a meet ∃+∧-complement;
the specific choice of complement does not affect the translation. 2

Save though updates translated through ∃+∧-complements are unique, one may still ask
if there are “better” ways. If we measure the goodness of an update strategy by the amount
of changes that it makes to the base schema, then 4.6 below establishes that the canonical
update strategy is optimal.

4.5 Canonical triples and update optimality Let Γ1 be an ∃+∧-view of D, and let
(M,N, P ) ∈ LDB(D) × LDB(V1) × LDB(D). We say that (M, N,P ) is a legal triple for Γ1

if γ1
′(P ) = N , and that it is a canonical triple for Γ1 if P = UpdStr〈Γ1, Γ2〉 for some Γ2

which is a meet complement of Γ1, as well as a ∃+∧-view. In view of the above corollary, if
(M,N, P ) and (M,N,Q) are each canonical triples, then P = Q.

Let us call a legal triple (M, N, P ) for Γ1 optimal if for any other legal triple (M, N, Q)
and any ∃+∧-view Ω = (W, ω) of D, if ω′(M) = ω′(Q), then ω′(M) = ω′(P ) as well. In
other words, through the eyes of arbitrary ∃+∧-views, P is “closer” to M than any other
element of LDB(D) which maps to N .

4.6 Theorem – optimality and canonicity are equivalent Let Γ1 be a
∃+∧-view and let (M, N, P ) be a legal triple for Γ1. Then (M, N, P ) is optimal iff it is
canonical. 2

Global optimality

As a final step to the optimal closed update strategy, it is natural to ask, given a ∃+∧-view
Γ1, if there is a “best” meet ∃+∧-complement Γ2 for which UpdStr〈Γ1, Γ2〉 recaptures all
canonical updates. The answer is unfortunately negative, as illustrated by the following
example.

4.7 Example Let D denote the single-relation schema of three attributes R[ABC], con-
strained by the FD’s A → B, A → C, B → C, and C → B. In other words, A is a key,
and B and C determine each other. We consider the three views ΠAB, ΠBC , and ΠAC ,
each with their embedded dependencies. It is easy to see that both ΠAB and ΠAC are meet
∃+∧-complements of ΠBC , yet there is no meet complement which contains both. Therefore,
we cannot recapture all canonical updates within a single setting.

5. The Next Step
In this work, we have laid down firm mathematical principles for the support of updates
in closed user views. To avoid unnecessary complications in formulating first principles,
we have assumed a completely abstract formulation of potential updates, in the form of
simple update families. However, in actual database systems, potential updates are typically

16



expressed in terms of a transaction language. The obvious next step of our research will add
structure to the simple update families by explicitly assuming that the possible updates are
expressed by a transaction language, such as members of the TL or detTL families [AV90]. An
update strategy then becomes a program transformer, rather than just an abstract mapping.
We seek to determine the degree to which the simplicity of updatability which we have
established in the abstract setting lifts to this more structured context. In particular, we are
interested in establishing algorithmically specifiable connections between view updates and
their translations. A parallel step will be to work directly with schemata and views which
are specified transactionally, in the spirit of [AV89].

References
[Abi88] Abiteboul, S., “Updates, a new frontier,” in: ICDT’88, 2nd International Con-

ference on Database Theory, pp. 1–18, 1988.

[AV89] Abiteboul, S. and Vianu, V., “A transaction-based approach to relational
database specification,” J. Assoc. Comp. Mach., 36(1989), pp. 758–789.

[AV90] Abiteboul, S. and Vianu, V., “Procedural languages for database queries and
updates,” 1990, to appear in J. Comput. System Sci.

[BS81a] Bancilhon, F. and Spyratos, N., “Independent components of databases,” in:
Proceedings of the Seventh International Conference on Very Large Data Bases,
pp. 398–408, 1981.

[BS81b] Bancilhon, F. and Spyratos, N., “Update semantics of relational views,” ACM
Trans. Database Systems, 6(1981), pp. 557–575.

[BH81] Beeri, C. and Honeyman, P., “Preserving functional dependencies,” SIAM J.
Computing, 10(1981), pp. 647–656.

[CM76] Chandra, A. K. and Merlin, P. M., “Optimal implementation of conjunctive
queries in relational databases,” in: Proceedings of the 1976 ACM Symposium
on the Theory of Computing, pp. 77–90, 1976.

[CP84] Cosmadakis, S. and Papadimitriou, C., “Updates of relational views,” J. Assoc.
Comp. Mach., 31(1984), pp. 742–760.

[DB78] Dayal, U. and Bernstein, P. A., “On the updatability of relational views,” in:
Proceedings of the Fourth International Conference on Very Large Data Bases,
pp. 368–474, 1978.

[DB82] Dayal, U. and Bernstein, P. A., “On the correct translation of update opeartions
on relational views,” ACM Trans. Database Systems, 8(1982), pp. 381–416.

[End72] Enderton, H. B., A Mathematical Introduction to Logic, Academic Press, 1972.

17



[Fag82] Fagin, R., “Horn clauses and database dependencies,” J. Assoc. Comp. Mach.,
29(1982), pp. 952–985.

[FV86] Fagin, R. and Vardi, M. Y., “The theory of data dependencies – a survey,”
in: Anshel, M. and Gewirtz, W., eds., Mathematics of Information Processing,
pp. 19–71, American Mathematical Society, 1986.

[Fle55] Fleischer, I., “A note on subdirect products,” Acta Math. Acad. Sci. Hungar.,
6(1955), pp. 463–465.

[FSdS79] Furtado, A. L., Sevcik, K. C., and dos Santos, C. S., “Permitting updates through
views of databases,” Information Systems, 4(1979), pp. 269–283.

[Gal86] Gallier, J. H., Logic for Computer Science, John Wiley and Sons, 1986.

[GPZ88] Gottlob, G., Paolini, P., and Zicari, R., “Properties and update semantics of
consistent views,” ACM Trans. Database Systems, 13(1988), pp. 486–524.

[GW86] Graham, M. H. and Wang, K., “Constant time maintenance or the triumph of
the fd,” in: Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pp. 202–216, 1986.

[Gra68] Grätzer, G., Universal Algebra, D. Van Nostrand, 1968.

[Heg84] Hegner, S. J., “Canonical view update support through Boolean algebras of
components,” in: Proceedings of the Third ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, pp. 163–172, 1984.

[Heg89] Hegner, S. J., “Unique complements and decompositions of database schemata,”
Technical Report PC 12/ 12.89, Centro di Ricerche in Fisica e Matematica (CER-
FIM), Locarno, Switzerland, 1989, Submitted for publication.

[HS73] Herrlich, H. and Strecker, G. E., Category Theory, Allyn and Bacon, 1973.

[JAK82] Jacobs, B. E., Aronson, A. R., and Klug, A. C., “On interpretations of rela-
tional languages and solutions to the implied constraint problem,” ACM Trans.
Database Systems, 7(1982), pp. 291–315.

[Kel82] Keller, A., “Updates to relational databases through views involving joins,”
in: Schueuermann, P., ed., Improving Database Usability and Responsiveness,
pp. 363–384, Academic Press, 1982.

[Kel84] Keller, A., “Choosing a view update translator by dialog at view definition
time,” in: Proceedings of the Twelfth International Conference on Very Large
Data Bases, pp. 467–474, 1984.

18



[Kel85] Keller, A., “Algorithms for translating view updates to database updates
for views involving selections, projections, and joins,” in: Proceedings of the
Fourth ACM SIGACT-SIGMOD Conference on Principles of Database Systems,
pp. 154–163, 1985.

[Kel87] Keller, A., “Comments on Bancilhon and Spyratos’ “Update semantics of rela-
tional views”,” ACM Trans. Database Systems, 12(1987), pp. 521–523.

[Mai83] Maier, D., The Theory of Relational Databases, Computer Science Press, 1983.

[Mas84] Masunaga, Y., “A relational database view update translation mechanism,” in:
Proceedings of the Tenth International Conference on Very Large Data Bases,
pp. 309–320, 1984.

[MT85] Medeiras, C. B. and Tompa, F. W., “Understanding the implications of view
update policies,” in: Proceedings of the Eleventh International Conference on
Very Large Data Bases, pp. 316–323, 1985.

[PDGV89] Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D., The Structure of
the Relational Database Model, Springer-Verlag, 1989.

19


