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1 I n t r o d u c t i o n  

Performance of computers is drastically increased by hardware facilities operating in paral- 
lel. In order to take advantage of that power, parallel tasks have to be identified, scheduled 
and executed on different levels of software, depending on the kind of parallelism which 
is addressed. This paper concentrates on parallelism on instruction level which has to be 
planned in the code generation phase of compilers. An overview is given over those code 
generation problems and techniques of their solutions. 

From the view of hardware we distinguish concepts of parallelism on different architec- 
ture levels: Distributed processors with local memories are coupled via asynchronous 
message passing. The processors of a multiprocessor machine cooperate asynchronously 
via a shared memory. Within a single processor several instructions may be executed in 
parallel by an instruction pipeline or by several functional units both synchronized by 
the processor's clock. This parallelism on instruction level is considered in this paper. 
Vector processors (not considered here) execute single operations simultaneously on an 
array of data elements. Finally on register transfer level single processor components are 
controlled in parallel by horizontal micro instructions or hardware logic. 

From the view of program execution different kinds of parallelism are observed: The oper- 
ating system schedules processes to several processors which may be distributed. A single 
program task may be composed of several asynchronous processes, which are explicitly 
synchronized. This level is usually called coarse grained parallelism. Any program allows 
operations to be executed in parallel, even if it is specified in a sequential style. Such fine 
grained parallelism can be analyzed by compilers, in order to take advantage of instruction 
level parMlelism in the processor. (A functional program specification exhibits the paral- 
lelism more directly.) This paper is devoted to problems of this kind of translation. Data 
parallelism analyzed for the translation to vector machine code is not considered here. 
Classifications of parallel architectures like [Dun90] often ignore the instruction level par- 
allelism, since it is completely transparent for high level programming. On the other hand 
a parallelizing compiler is absolutely necessary to achieve the potential performance of 
such a processor. 

Parallelism on the level of micro programs is a rather old technique. Hence in their de- 
velopment and translation similar problems as considered here have to be solved. That 
is why many of the compiler techniques mentioned here originate from the area of mi- 
cro programming. As soon as processor design lifts control of internal parallelism to the 
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instruction level, translation and scheduling tasks are shifted from hardware design and 
micro programming into compiler code generation tasks. As an example the MIPS pro- 
cessor [HJG82] requires its instruction sequences being properly scheduled for pipetining 
to be executed correctly. On the other hand processors like the RISC [PaS82] incorporate 
hardware facilities to controt and possibly correct the scheduled instruction sequence. Here 
hardware effort is invested for the solutions of problems which could be better solved in 
the compiler. The situation is in general comparable with the tendency going from CISC 
class processors to those of RISC class: Implementation decisions are moved from the 
processor hardware to the compiler software where deeper knowledge on the particular 
program is available. This reduction of hardware complexity can be used to increase speed 
and/or the number of functional units operating in parallel. 

Besides pipelining the second concept of instruction level parallelism occurs in processors 
which have several functional units synchronously executing operations. Such processors 
range from a few units in processors like the i860 [Mar89] or RS/6000 [IBMg0] to so 
called VLIW (very long instruction word) processors like the TRACE [Fis81], ESL or 
Cydra [RGP82] with more than 20 units. Again techniques for instruction scheduling are 
required to generate correct and efficient code for processors of this class. The degree of 
useful fine grained parallelism very much depends on the program characteristics. Broader 
investigations like that in [CGL89] are still required. 

In this paper both kinds of instruction level parallelism, pipelining and multiple functional 
units are considered together from the view of compiler synthesis. Section 2 introduces 
a simplified abstract model for that parallelism. The problems of instruction scheduling, 
allocation of functional units and of resources are discussed in Section 3, with specific 
emphasis on their interrelation. While Section 3 artificially simplifies the problem by 
application to basic blocks of the source program, in Section 4 an overview over some 
techniques applied to larger control flow structures (including loops) is given. The presen- 
tation here should be understood as an introduction to this class of compilation problems, 
being rather incomplete since the topics are subject of actual research at many places. 

2 M o d e l  

In this section we introduce a roughly simplified model for the execution of instructions 
by processors which internally operate in parallel, We concentrate on the two concepts 
of pipelining and multiple functional units. The model does not exhibit specific proces- 
sor components. It is restricted to the consecutive and parallel execution of operations 
and constraints on the composition of the code. This is the view of a compiler which 
ensures that the code is semantically correct and takes best advantage of the processors 
parallelism. Of course the design of compiler code generation for a particular processor 
needs much more specific information on the hardware than this model provides. Here it 
is sufficient for an overview on the structure of the problems and an idea of the algorithms 
for their solution. 
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In our model the machine code is a sequence of instructions. It is fed into the processor 
which initiates execution of the next instruction on each processor cycle. Execution of a 
branch may specify the next instruction explicitly. Execution of a straight line instruction 
sequence by a sequential processor p is depicted in Fig. t. The processor is shown as a 
window being moved over the instruction sequence along the time axis. In the j- th cycle 
it contains the instruction Ij which is currently being executed. Since each instruction is a 
single elementary operation of a (possibly RISC-like) instruction set there is no parallelism 
observable on code level for this processor. 
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Fig. 1: Sequential Processor 

This diagram is easily extended modeling a processor with an instruction pipeline. It 
consists of n stages operating in parallel on n consecutive instructions, e.g. decoding the 
instruction, fetching the operands, and computing and storing the results. In Fig. 2 the 
processor window is extended to contain 3 instructions, one in each stage. When moving 
the window an instruction enters the pipeline in stage 0 and leaves it completely executed 
after 3 cycles. Fig. 2 shows the situation in cycle 4 when the instructions I2,/3,14 are 
in the 3-stage pipeline. This model assumes that processing of any instruction takes one 
cycle in each stage. 
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Fig. 2: Pipelining Processor 
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Another kind of parallelism is observed if the processor consists of multiple functional 
units (FUs). Each functional unit executes one operation in each cycle. The operations 
again are elements of an instruction set, which may differ for the specific FUs (e.g. some 
FUs for integer operations others for floating point operations). From the view of the 
code now each instruction is a tuple of m operations which are allocated to each of the m 
FUs and executed in parallel. Fig. 3 shows a processor with 3 FUs executing instruction 
Ia which consists of the operations Iaa, I3a, I3.3. At this point it should be mentioned that 
we don't consider here how" these long instructions are represented in memory, fetched 
from there, and how their operations are directed to the FUs. 

cycle FU1 FU2 FU2 
I1.2 11.3 

12.1 12.2 /2.3 

14.1 14.2 14.3 
Isa I5.= 15.3 

. . .  

Fig. 3: Multiple Functional Units 

These two concepts of parallelism of course can be combined: If each of the m FUs is 
organized as a pipeline with n stages we get the situation of Fig. 4 where in each cycle 
the processor is executing in parallel n instructions in different stages each containing m 
operations. 
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Fig. 4: Pipelined Multiple Functional Units 

In reality we have FUs which differ in the number of cycles needed to complete an oper- 
ation (e.g. a floating point FU may take longer than an integer FU, or one FU dedicated 
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for multiplication may take longer than one for simpler operations only). Hence the op- 
erations on different FUs have a different delay, i.e. the number of cycles needed for 
completion. In Fig. 5 the FUs have a delay of 2, 4, and 3 cycles represented by the shape 
of the processor window. 
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Fig. 5: Pipelined Multiple Functional Units with different delays 

Finally we may have the situation that certain FUs cannot initiate a new operation on 
each cycle. There has to be a latency of k cycles until the next operation can be fed into 
the FU. The processor window in Fig. 6 has the additional constraint that at most one 
operation may be within the shaded area which covers k cycles• If the FU is pipelined its 
stages usually take k cycles each. As a consequence the operation sequence for such a FU 
must have gaps at least of length k - 1 filled with no operations. 
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Fig. 6: Functional Unit with latency 2 

This model of a processor window moving over the instruction sequence will be used in 
the discussion of instruction scheduling in Sect. 2. We then say two operations O1 and 
O2 scheduled in the instruction sequence at positions Im.h and In.g, with m < n, meet in 
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the window, if n - rn < Sh, where sh is the number of pipeline stages of FUh. In that case 
execution of O1 and 02 will overlap. 

Branching.  In context of parallelism execution of branch instructions causes specific 
effects. If a conditional branch is entered into a pipelined processor (single FU), the 
branch decision may be taken in stage k > 0 (e.g. the operand read stage or the execution 
stage). Hence at that point k more operations from the instruction sequence have already 
entered the pipeline. They wilt be executed independent of the branch decision. We have 
a delayed branch with a delay of k instructions. A code generator would try to move k 
instructions behind the branch which do not depend on the branch decision. In Fig. 7 /3  
may be a branch, decided in stage 2 with a delay of 2. In the next cycle either/6 or I£ is 
fed into the pipeline. Usually it takes additional time for fetching the next instruction if 
the branch is taken. In that case the pipeline will be drained for some cycles, whereas no 
gaps occur if control follows the instruction sequence. The compiler may take advantage 
from this behavior by arranging branches such that the preferred direction is the faster 
o n e .  
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Fig. 7: Delayed Branch 

A processor with several FUs may evaluate more than one branch in parallel• In this case 
a precedence (either defined over the FUs or over the associated condition code registers) 
determines which branch will be effective. The instruction then has the semantics of 
a branch cascade executed in parallel. If the precedence relation is predefined by the 
hardware, its use imposes additional constraints on allocation of operations to FUs and/or 
of values to condition code registers. The effect is combined with that of delayed branches 
if the FUs operate in pipelining mode. 

The concept of multi-way branches is further extended in the experimental machine de- 
scribed in [Ebc88]. There a single instruction forms a binary tree. Its inner nodes are 
branch decisions, its leafs are labels• Each edge carries several operations• The branch 
conditions are checked on instruction fetch. Then only those operations on the thus 
determined path in the tree are directed to the FUs. 
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The Cydra machine [RGP82] incorporates an additional control feature: Any operation 
of an instruction may be disabled for execution depending on the contents of a condition 
code. That feature is used for shielding operations during the prologue and epilogue of 
compacted loops, or for composition of code from different basic blocks in a straight line 
instruction sequence. It of course leaves the disabled FUs inactive at execution time. 

3 Instruct ion Scheduling and Allocat ion 

The code generation phase of a compiler produces an instruction sequence from a repre- 
sentation of the analyzed source program. Certain optimizing transformations, which are 
either generally applicable or are specific for the kind of processor parallelism, may be 
applied to that representation. Then the code generator has to schedule the operations, 
allocate them to functional units, and allocate intermediate values to registers, and other 
resources to each operation. 

The objectives of code generation are to preserve the semantics of the program and to 
take best advantage of the processor's parallelism. The latter goal is approa&ed - like 
in sequential code generation - by producing an instruction sequence as short as possible, 
especially for frequently executed program parts, i.e. inner loops. For that purpose the 
program representation has to exhibit the fine grained parallelism of the source program. 
So each basic block is represented by a DAG, where the nodes stand for operations and the 
edges for values read or computed by the operations. More information on the context of 
a basic block is computed by data flow analysis and added to the representation in order 
to improve the code in a larger context, see Sect. 4. 

The processor's parallelism imposes additional constraints onto code generation. Certain 
resources cannot be used by several operations which are executed in parallel. The model 
introduced in the previous section gives the base to exhibit those constraints: Any two 
operations, which meet within the processor window at the same time, may be in conflict. 

In case of a pipelining processor it may be necessary to insert empty operations in order 
to separate operations which would be in conflict otherwise. Such a situation has to be 
avoided as far as possible. In case of multiple functional units conflicts have to be avoided 
by leaving empty some fields of instruction tuples. Again the objective is to produce the 
code as compact as possible. 

In the following we give short specifications of the problems: scheduling, functional unit 
allocation, and resource allocation. They  are separated here for ease of presentation, 
although they are highly interrelated. 

In s t ruc t ion  Scheduling.  The operations of the program representation are arranged 
into a sequence of sets of operations. Each set will be mapped to an instruction tuple by 
solving FU allocation. Hence the cardinality of the sets must not exceed the number of 
FUs. If there is only one FU that mapping is trivial. The following constraints have to 
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be obeyed by the scheduling decisions: 

. 

. 

. 

The resulting schedule considered as a partial order has to cover the partial order 
of the program DAG. Furthermore in case of pipelining an operation 02 depending 
on O1 must not be scheduled earlier than d instructions after O1, where d is the 
distance of the read and write stages in the pipeline (possibly shortened by hardware 
bypasses). 

Two Operations O1 and 02 scheduled at Im.g and I=.h must not use the same 
resources exclusively if they meet in the processor window. A predicate conflict 
(0t ,m,g,  O2, n, h) may check that during the process of scheduling. In general 
these constraints can be checked completely only if FUs and operation resources are 
already allocated. 

The schedule must preserve the lifetime of values stored in resources like registers, 
memory, or condition codes. An operation must not write into a resource before 
the last operation has read the value stored there. Of course these constraints can 
be considered only if storing resources are allocated before or while scheduling. As 
tong as intermediate values are represented symbolically (by edges in the DAG) no 
conflict arises. 

The complexity of this instruction scheduling problem and the structure of solution al- 
gorithms depend on the constraints to be considered. In the scheduling theory problems 
are characterized by the following properties [Bru81]: 

n Jobs (operations) 

m processors (FUs, m = 1 for a single FU pipelined processor) 

a dependency relation (program DAG) 

different job durations d (operations may be dedicated to FUs with different numbers 
of pipeline stages) 

minimization of the latest job completion (length of instruction sequence). 

This problem classification does not cover the constraints (2) and (3) above. The classical 
resource constraint scheduling problems cover (2) instead of (1), i.e. they neither consider 
a precedence relation nor dependencies from storing resources. Hence any of the classical 
scheduling algorithm has to be augmented by additional constraints heuristically, in order 
to yield tractable but suboptimal algorithms. 

The well-known quadratic algorithm of Hu [Hu61] computes optimal solutions if the DAGs 
are restricted to trees and all operations require unit time. It is often applied in the gen- 
eral Case, augmented by heuristic criteria and additional constraints yielding suboptimal 
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solutions. It basically labels the operation nodes by numbers I (i.e. their level above 
the bottom nodes). If x is the shortest completion time, assuming arbitrary many FUs, 
then for each operation x - I is the latest start time of the operation such that x can be 
reached. The labeling can easily be computed by a walk backwards through the DAG. It 
exhibits the shortest reachable schedule length, as well as the maximal achievable degree 
of parallelism, and critical paths in the DAG. The second phase fills the instructions in 
forward order with a preference for higher labeled operations. This is the place where 
additional constraints are inserted, and heuristics may be applied. E.g. in [GiM86] oper- 
ations are preferred if they may cause conflicts with a greater number of their successors. 
The algorithm of Coffman and Graham [Cof76] uses a refined labeling. It has been proven 
to be optimal for DAGs and 2 FUs. 

Such scheduling algorithms may be applied before, after, or interleaved with allocation of 
FUs and storing resources. If it is done before, then allocation might cause conflicts of 
class (3) above. In such a case the initial schedule has to be modified (in general length- 
ened) on the base of only local information. If scheduling is applied after allocation, then 
the choices for parallel execution may be drastically reduced; e.g. two independent expres- 
sions may not be computed in parallel because the same registers are used. Furthermore 
scheduling algorithms like the above, have to be augmented by often complicated looka- 
head computation, in order to avoid deadlocks due to mutually exclusive use of resources, 
e.g. updating "safe paths" in the postpass pipeline scheduling of [HeG83]. 

Funct ional  Uni t  Allocat ion.  Each operation of the DAG is allocated to a FU which will 
execute it. The "column" within the instruction sequence is determined, while scheduling 
fixes the "row" for the operation. This problem is trivially solved, if each operation can 
be executed on exactly one FU (e.g. one integer one floating point and one load/store 
unit), or if there is only one (pipelined) FU at all. If there are several FUs of the same 
class choices have to be made, which are interrelated with scheduling: The operations of 
one instruction have to be executed in parallel by different FUs. If the FUs of each class 
are completely equivalent, e.g. with respect of access of registers, FU allocation can be 
done trivially after scheduling without any penalty on the schedule length. In that case 
all registers and FUs have to be completely connected by expensive hardware structures, 
like in the Cydra machine [RGP82]. 
More sophisticated solutions are required for FUs with local register sets. The TRACE 
machines [Fis81] have this property. Here explicit register transfer operations move values 
from a register of one FU to that of another FU. Furthermore the operation takes more 
time and needs a different bus, if the FUs are in different "clusters". Obviously these con- 
straints cause another interrelationship between scheduling, FU and register allocation. 
Ellis suggests the following heuristical approach for his Bulldog compiler [Ell86]: The FUs 
are allocated during a first scheduling phase, where no other constraints are considered. 
The schedule itself is discarded. Then a second scheduling phase with integrated register 
allocation computes the final schedule. Here the costs for additional register transfer op- 
erations can be taken into account. Another approach for FU allocation before scheduling 
could be based on a "closeness" relation over the program DAG described for hardware 
synthesis in [McF83]. 
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Resou rce  Al locat ion.  Two categories of resources have to be distinguished: storing 

resources e.g. registers, which store values for being read in subsequent operations and 
execution resources like busses or memory ports, which are occupied exclusively by an 
operation for the duration of its execution. 

The execution resources are allocated to single operations. Scheduling constraints (no. 
2 above) guarantee that conflicts are avoided. A limited number of equivalent instances 
within a resource class and the use of resources from more than one class raises the 
complexity of the scheduling algorithm. This category of resources is usually considered 
in scheduling theory; algorithms, strategies, and heuristics are investigated. Due to the 
short duration of its access (a single operation or some of its stages) there usually isn't 
an allocation problem. 

Storing resources realize data flow between operations. They are allocated to symbolic 
values. In the DAG a symbolic value is represented by a set of edges starting from the 
same node. The symbolic values can be understood as instances of resource classes with 
unlimited cardinality. Resource allocation maps them to real instances of limited classes. 
Reuse of one resource r for different values vl, v2 requires that in the resulting instruction 
sequence the lifetimes of vl and v2 (from the definition to its last use) are disjoint. Hence 
the decisions made for allocation are interrelated with those of scheduling. 

In generation of sequential code this register allocation problem is well understood. There 
are methods and algorithms for trees [AhJ76,SeU70], DAGs and basic blocks [Be166] 
and control flow graphs by graph colouring [Cha82]. They all reduce the amount of 
spill code needed if not enough registers are available. Here Mso the interrelationship 
between allocation and evaluation order causes high complexity of the problem. Integrated 
optimal solutions are tractable only for trees (if restrictions on the register classes hold). 
The solution for more general structures either fix the evaluation order first or apply 
suboptimal heuristics. 

The situation for generation of parallel code is comparable: If the decisions of schedul- 
ing, allocation of storing resources and of functional units are serialized, early decisions 
should be triggered by heuristic preferences on later constraints. Hence a schedule can 
be computed (after FU allocation as suggested above) such that the maximal resource 
requirements are minimized. For a DAG it could be expressed by a graph layout with 
minimal cut width [Pfa88]; For allocation then methods like colouring may be applied. 
(Techniques like these are used in the solution of comparable problems for high level 
hardware synthesis [Pfa88].) There are several approaches which start with resource allo- 
cation [GiM86,HeG83]. In this case additional restrictions are imposed on the scheduling 
decisions (no. 3 above). They may cause serialization which could often be avoided if pref- 
erences of the data flow structure influence the allocation decision. The interrelationship 
of these decision structure still needs deeper investigation. 
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4 Global  Techniques  

In sequential code generation improving transformations are more effective if they are 
applied on the base of data flow information computed for the whole flow graph of a 
procedure or the program rather than considering each basic block separately. That 
global view is even more important for generation of parallel code. Usually the degree of 
fine grained parallelism found in single basic blocks does not provide enough operations for 
simultaneous execution. It may be sufficient for a single pipelined FU, but a larger number 
of FUs can't be kept busy by only local techniques. Furthermore special techniques have 
to be applied to loops where improvements are most effective in runtime savings. 

In the following some methods are presented which increase the degree of parallelism 
either on the level of the abstract program structure, or between adjacent basic blocks, 
or within loops. Many of the ideas and techniques originate from the area of micro code 
optimization. Horizontal micro code instructions control several hardware components 
operating in parallel. Hence the optimization problems are similar to those considered 
here on instruction level. 

In the following the DAG representation for basic blocks is assumed to be embedded in 
a global flow graph of block nodes linked according to the static control structure of the 
program. Furthermore data flow analysis for reaching definitions and live variables should 
have been applied. Its results (represented by use-def and def-use chains) describe the 
data flow via variables across block boundaries [ASU86,Kasg0]. 

If definitions and uses of certain variables can not be determined at compile time due to 
aliasing, their store and load operation have to remain in the original order relative to 
each other. The program graph is augmented by specific sequencing dependencies, which 
further restricts scheduling. Hence an effective aliasing analysis for pointers, parameters, 
and array indices is required, especially since memory access is often a bottleneck for 
highly parallel processors. The me~hods discussed below are originally presented on a 
level where allocation of values to registers is already done. In that case that data flow 
information is required for registers instead of variables. Since the interrelations between 
allocation and scheduling decisions are treated in the previous section, this aspect is not 
discussed here again. 

Genera l ized  D a t a  D e p e n d e n c y  Graph  (GDDG).  In [IKI89] a technique for micro 
code optimization is presented which increases the freedom for scheduling decisions in the 
context of global program flow by transformations of the data flow graph described above. 
It is based on the following idea: The range where a specific operation O can be scheduled 
is bounded by those operations which compute the inputs for O and those which use its 
output. These points (given by the use-def and def-use information) lie not necessarily 
in the same block to which O initially belongs. Hence the operation can be moved out of 
the block if additional constraints on the use of variables in adjacent blocks hold. In the 
GDDG these dependencies are introduced for operations outside of blocks. A subsequent 
scheduling phase is applied to each basic block. It first computes a schedule comprising 
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those operations, which must be executed in that block. Then without increasing the 
length of the instruction sequence, free positions are filled with operations which may be 
executed there according to the GDDG relations. The authors suggest some heuristics 
based on the branch structure of the flow graphs to determine the order in which the 
blocks are scheduled and may-operations are chosen. 

Trace Scheduling.  The trace method was initially presented by Fischer in [Fis81], in the 
context of micro code compaction, and then transferred to VLIW compilation. It is based 
on the following idea: Instruction scheduling is applied to larger paths through the pro- 
gram graph rather than to single basic blocks. Such a path is chosen by certain heuristics. 
The operations of all consecutive blocks on a path are scheduled into a single instruction 
sequence, ignoring outgoing branches and labels where control flow joins within the path. 
The large number of operations from several blocks allows an effective scheduling which 
yields rather compact code for that path. Within that instruction sequence operations 
may be moved - even across branches and joins. Hence additional compensation code is 
required in the adjacent blocks: Operations which are moved down (up) over a branch 
(join) must be copied to the branch target (origin of the join). They increase the number 
of operations in paths considered later and thus reduce its code quality. Hence paths 
which are expected to be executed frequently should be scheduled early'. Loop bodies are 
considered separately before their enclosing path. Their resulting instruction sequence is 
then treated as a meta instruction. 

Under certain conditions large amounts of compensation code are copied, theoretically 
leading to exponentially increased code size in the worst case. The refined trace method 
of Tree Compaction [LaA83] avoids this effect: Paths are chosen such that they" don't 
contain a join of control flow. 

It is important for the trace method in general to make a good choice on execution 
fl'equency at compile time, since the code quality differs for the paths. Measurements 
from sample runs may be fed back into compilation. A complete compiler design including 
Trace Scheduling is described in [El186]. 

Loop Scheduling.  Special methods are applied for optimization of loop bodies. Whereas 
conventional loop optimization tries to reduce the number of operations in the loop body 
as far as possible, here operations of subsequent iterations are merged in order to increase 
the degree of parallelism. This situation is similar to optimization for vector machines 
where parallelism of data rather than operations has to be analyzed. For both targets 
especially data dependencies between values of different iterations and array indices based 
on induction variables have to be analyzed (see e.g. [Ken81]). In fact some of the tech- 
niques discussed below were originally developed for vectorizing compilers. 

A rather old technique is loop unrolling. The loop body is copied several times. Loop 
control can be eliminated between adjacent copies yielding larger basic blocks. Then 
operations from different iterations may be scheduled in parallel. This method is refined 
in several ways: In [Nic87] conditions for the degree of unrolling are developed, considering 
nested loops, too. 



38 

Several techniques introduce pipelining as an abstract concept to loop execution, see Fig. 
8: The central part of the loop code (called steady state) is considered as a pipelined 
"processor" with n "stages". It contains all operations merged from n successive loop 
iterations. Repetition of this code advances computation of n loop iterations in "parallel". 
The code is embedded in a prologue, initiating the n first iterations, and an epilogue 
finalizing the n last ones. If parallel instructions are to be generated the technique has to 
be combined with scheduling in order to achieve both a short and compact steady state. 

Aiken and Nicolau [AiN88a] suggest a technique to find the pattern of a steady state 
by combining a greedy scheduling with loop unrolling. In [AiN88b] the same authors 
introduce Perfect Pipelining, a combination of loop unrolling and percolation scheduling. 
The latter technique is based on local transformations of the program graph, which move 
operations backwards as far as possible and combine them with other operations to form 
compound instructions. Here the pattern of the steady state is developed in the program 
graph. 

prologue 
initiating first n iterations 

steady state 
executing n iterations 

epilogue 
finalizing last n iterations 

Fig. 8 Loop Pipelining 

The so called Software Pipelining technique [Lam88] achieve the same goal without un- 
rolling the loop explicitly. On the base of a schedule for a single instance of the loop 
body and the available resources a lower bound for the distance of the initiation of two 
adjacent loop iterations is computed. Starting from that lower bound schedules with the 
operations from several loop iterations are tried until the one for the steady state is found. 
Lain applied the technique in a compiler for the iWarp processor. Similar techniques are 
presented for the Cydra in [RGP82]. The techniques mentioned here further differ in the 
ability to handle branching and nested loops within the loop body. 
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