
Rie and Jun:
Towards the Generat ion of all C o m p i l e r Phases *

Masataka Sassa

Institute of Information Sciences and Electronics, University of Tsukuba

Tsukuba-shi, Ibaratd-ken, 305, Japan

sassa@is.tsukuba.ac.jp

A b s t r a c t

Two compiler generators, both based on attribute grammars, have been used together in
an attempt to generate almost all compiler phases.

Pie is a compiler generator based on a one-pass attribute grammar called ECLR-attributed
grammar [Sassa 87]. The generated compiler evaluates attributes in parallel with LR parsing. It
can be used to generate one-pass compilers or the front-end of multipass compilers.

Jun is a compiler generator which works on tree grammars. It is based on finitely
recursive attribute grammars, a class of attribute grammars which allow circularities in attribute
dependency [Farrow 86]. It overcomes the difficulty of circularities in the attribute dependency
which often appear in data-flow equations of optimizers. The evaluator generated by Jun
evaluates attributes on a tree, rather than a source program. This same formalism can be used to
generate code generators and interpreters. So, the single Jun system can cover most of the
compiler back-end.

By combining both Rie and Jun, the generation of almost all compiler phases may be
possible.

1. Introduct ion

Recently there have been many advances in the automatic generation of compilers. The
major reason for these advances seems to be the study of efficient evaluators based on attribute
grammars (AGs) [Knuth 68]. Many compiler generators have been developed using AGs, for
example MUG2 [Ganzinger 82], GAG [Kastens 82], Linguist-86 [Farrow 84], and

* This work was partially supported by the University of Tsukuba.

57

HLP84/TOOLS [Kosldmies 88]. AGs have been usually applied to the generation of compiler
front-ends, i.e. parsers, semantic analyzers, and sometimes code-generators [Ganapathi 85]
(affix grammars), but they have not been applied to the generation of compiler back-ends or
interpreters in a natural way except for few systems (cf. [Ganzinger 82]). From the software
engineering viewpoint of compiler writers, it is better to handle most compiler phases with a
smaller concept.

Based on the above consideration, we tried to use AGs also for the specification and
generation of language-based editors, compiler back-ends, and interpreters. This paper
presents an attempt to generate almost all compiler phases on the formalism of attribute
grammars.

Overall Structure of the Compiler Development Environment

Our long range plan is to generate an integrated programming environment using a small
set of generators. The overall structure of the compiler development environment is shown in
Fig. 1.

User Interface / System Browser
De, seription by
Attribute Grammar

Iiiii!ii !ii!i!!i iiii!i!i!!iii ii [iiiii i !!!iil;i:i:
w
m

II111111~ ~m~ ~
i k Jun)
i

m

j Pln~aed

Generated by Rio and Lex

Fig. 1

m e d i a t e l
T r e e , ~ "

Generated by Jun

Overall Structure of Compiler Development Environment

The front-end of a compiler is generated by Rie and Lex [Lesk 75]. The front-end
converts the source program into an intermediate tree. Rie reads in the specification of the
source-to-tree translation, which is written in a class of one-pass AGs called ECLR-attributed
grammar, and generates an attribute evaluator which evaluates attributes during LR parsing.
Rie is written in C and generates C programs. Rie can also be used to generate one-pass
compilers.

58

A major problem in applying AGs to the back-end of compilers reside in that usual
formalism for some of these phases invoIves iteration. That is, in optimizers, there is a
difficulty of circularities in attribute dependency which often appear in data-flow equations. A
similar problem arises in interpreters, where loop statements force iterative evaluation of
attributes.

To settle these problems, we used the finitely recursive attribute grammars proposed by
Farrow [Farrow 86]. This is a class of AGs which allows circularities in attribute dependency.
It is defined as an extension of the class of absolutely noncircular AGs. Broadly speaking, if
there are cycles of attribute dependency but if there exists a least fixed-point (a minimum
solution if it is a set) for each attribute in the cycle, then the evaluator can compute the attribute
values using successive approximation. The evaluator generated by Jun does this. In addition,
some other techniques for allowing iterative evaluation in interpreters have practically settled the
problem of ran-time loop statements.

All the back-end phases can be realized to process a common intermediate tree, which is
in the form of an abstract syntax tree. Jun is based on tree grammars, and the generated
evaluator can evaluate attributes on the intermediate tree, rather than a source program. Thus,
the single Jun system can generate most of the back-end phases, i.e. data-flow analysis
component of optimizers, code-generators and interpreters/debuggers, based on the same
framework. For the moment, Jun is made as a prototype. So, it is written in Common Lisp
(KCI) and generates programs in Common Lisp, for the ease of development.

The code-generator, interpreter, and the data-flow analysis component of the optimizer for
a small language PL/0 have been made using Jun. The transformation component of the
optimizer is still to be investigated. The generation of a language-oriented editor has been
designed [Sassa 88] but not yet implemented. A visual debugger is currently under
development. A debugger for the compiler writer (not the user of the language) to debug AG
description is also planned based on the algorithmic debugging approach [Shapiro 83]. The
generator of user interface, with multiple windows, buttons and menus, is partially complete.

In the following we mainly present the generation of compiler front-ends and back-ends
using PAe and Jun.

2. R i e a n d G e n e r a t i o n o f F r o n t - e n d

Rie [Sassa 90] is a compiler generator based on a class of one-pass AGs called ECLR
(equivalence class LR)-atwibuted grammar [Sassa 87]. The ECLR-AG is a variant of LR-AG,
where attributes can be evaluated during LR parsing [Sassa 85]. Equivalence classes are
introduced to reduce space requirements. Rie can be used to generate one-pass compilers (from
semantic analyzers to code generators) or the front-ends of multipass compilers.

Rie can deal with inherited attributes as well as synthesized attributes. One may wonder
why we can use inherited attributes during bottom-up parsing. The key idea is that an LR state
is made so that it contains all the possibilities of a syntax tree at the point of parsing. So even
the parser is looking at a terminal of the input program, all the possible syntax trees which may
come above that terminal can be foreseen [Sassa 85].

59

A resulting characteristic feature is that attribute evaluation can take place not only at
reduction-time of the LR parser but also at state transition time. For example, in a syntax and
semandc rule like

X --> XO X1 X2
{ Xl.env = X.env ; }

the evaluation of inherited attribute Xl.env is made when the LR parser enters a state including
the LR item [X --~ X0. X1 X2]. That is, inherited attributes of a nonterminal in the midst of
the right hand side of a production are evaluated at the time parsing proceeds to the point of that
nonterminal. This is in contrast with the usual bottom-up syntax-directed translator, where only
synthesized attributes are allowed and evaluated at reduction-time.

An example AG description to be input to Pie is shown in Fig. 2.

• .k .

%nonterm block :
I env: envpt r inh,
tree: t reeptr synt;

%equiv constdefpart. I_env, constdeflist. I__env,

condition. I__env, ident. I__env;

. o .

block

(a)

} (b)
)

: . . . (c)
{ . . . (e)

.(d)

constdefpart vardeclpart procdeclpart statement
%thread I env S__env;
%except c~nstdefpart. I__env = newenv(block. I_env);
block.tree = concat6(" (block ",

constdefpart.tree,
vardeclpart.tree,
procdeclpart.tree,
statement.tree,
,,),,); } ;

Fig. 2 Pie description for PL/0 (part)

Here, (a) shows the declaration of attributes and their types with the distinction of 'inherited'
and 'synthesized', (b) shows that attributes constdefpart. I_env, constdeflist. I_env,

etc., are in the same equivalence class (which roughly means that their storage can be shared in
the attribute stack), (c) is a production, and (d) is the semantic rules associated with the
production. Pie description allows for short-hand notations, such as abbreviating copy-rules
and a 'threac~ of attributes. A thread (~thread, Fig. 2(e)) is a list of attributes whose values
are passed like a "chain", normally by copying or by adding new information (%except). Pie
also allows local attributes associated with a production rather than a nonterminal, which can be
used to store temporary results of computation. These temporary results can then be used by
more than one set of semantic rules.

The fn'st version of Rie was made more than five years ago, and Pie has been applied to
generate the semantic analyzer of ISO Pascal, a translator of a stream-based language Stella
[Kuse 86], a compiler of a programming language called Gramp which is based on coupled
context-free grammars [Yamashita 88], a compiler of neural network language, etc. Rie is
designed and implemented as an efficient system. It is written in C and generates a parser and
an attribute evaluator in C.

60

Generation of Front-end

The front-end of a compiler can be generated using Lex [Lesk 75] for the lexical analyzer
and Rie for the syntactic and semantic analyzer.

In our compiler development environment, we use Rie to translate the source program into
the internal tree which is in the form of an abstract syntax tree. Since Rie is based on C (to
realize fast evaluation) and Jun on Lisp (for the ease of development), the front-end generated
by Pie writes strings of S-expression of Lisp corresponding to the internal tree. An example of
the generated S-expression for a source program is shown in Fig. 3.

;var x;
;begin
; x:=l+2
;end.
(plO (block (no_constdef) #1=(vardecl (name x))
(no_procdecl) (assign (var_id #I#) (plus (n~ I) (num 2)))))

Fig. 3 Intermediate tree (S-expression) for a source program

3. J a n

Jun is a compiler generator based on a cIass of AGs called finitely recursive attribute
grammars [Farrow 86]. Early formalism that used AGs had difficulty in specifying the data-
flow analysis of optimizers, due to the circularities in attribute dependency which may often
arise based on the recursive nature of data-flow equations [Babich 78]. It is usually possible to
rewrite the semantic rules to make the attribute dependency cycle-free, but the rewritten
semantic rules are not natural nor easily understandable. The evaluator generated by Jun can
deal with such circularities. The details wiU be given shortly. This approach is different from
previous works [Ganzinger 82][Lipps 89].

Jun can also generate interpreters which use some techniques to escape from circularities
of attribute dependency arising in run-time loops (to be described later). Jun can of course
generate usual evaluators without circular attribute dependencies, such as code generators.
Thus it should be noted that the single Jun system can generate most of the compiler back-end,
with the exception of tree transformation component of the optimizer. A prototype back-end
(data-flow analysis component of optimizer, code generator, and interpreter) of a compiler for a
small language PL/0 has been implemented.

Since Iun is presently a prototype, it is written in Common Lisp (KC1) and generates
attribute evaluators in Common Lisp. Use of Lisp is mainly for the ease of data structure
handling and early development.

Finitely Recursive Attribute Grammar and its Evaluator

The outline of the finitely recursive attribute grammar and its evaluator is as follows. See
Fig. 4 for an example.

61

(1) S ~ $1 ' ; '$2
{ S2.out = S.out ;

Sl.OUt = S2.1ive ;
S.live = Sl.live ; }

(2) S --4 E
{ S.live = S.out ; }

(3) S ---) id ' := 'E
{ S.live = E.use u (S.out - {id.name}) ; }

(4) S ---) ' if E 'then' $1 'else' $2
{ Sl.out = S.out ;

S2.out = S.out ;
S.live = E.use u Sl.live u S2.1ive ; }

(5) S --~ 'while'E 'do' S1
{ Sl.out = E.use t., S.out u Sl.live ;

S.live = E.use v S.out u Sl.llve ; }

S.live: set of variables that are live on entry to S
S.out: set of variables that are live on exit from S
E.use: set of variables whose values at the entry of E are used in E

Fig.4 Attribute grammar G1 for live variable analysis

This formalizes the live variable analysis for a small language. To check whether the given AG
is finitely recursive, first, make the attribute dependency graph for each production of G 1 of
Fig. 4 (see Fig. 5 (a)). Then take its closure and make the extended attribute dependency gIzph
(see Fig. 5 (b)).

There is a cycle in the extended attribute dependency graph DG5*. The cycle consists of
Sl.out and Sl.live. The set of nodes (attribute occurrences) in such a cycle is called a circular
dependency class (CDC). Nodes x and y of an extended dependency graph belong to the same
CDC i_ff x depends on y and y depends on x. A usual attribute not in a cycle wiU be in a CDC
by itself. The CDC that contains an attribute occurrence x is denoted by [x]. By regarding each
CDC as a single node, we can get an extended attribute dependency graph without cycles (see
Fig. 5 (c)). This suggests that the evaluation of ata-ibutes in a CDC can be performed by
successive approximation.

A finitely recursive attribute grammar is defined in the following way: let ATI'ILIBS be the
set of attributes in the cycle of the dependency graph and FUNCTS be the set of corresponding
semantic functions for these attributes. An AG is a finitely recursive attribute grammar i_if:
1. The domain of all attributes in ATTRIBS constitutes a complete partial order (c.p.o.), in
which it is possible to test pairs of elements for equality, and
2. All functions in FUNCTS are monotonic and converge (an ascending chain condition), that
is,

f(s[0]) < f(s[1]) < < f(s[k]) = f(s[k+l])
for

s[0] < s[1] < s[2] <
where f~ FUNCTS, s~ ATTRIBS, i of s[i] is the count of iteration. Here, f(s[k]) = f(s[k+l])
is called the least feted-point.

62

DG2
DG1 DG~"

DG~"

DG3 DG4

DG5

(a) attribute dependency graph for each production

DG3*

DG5*

DG4"

(b) extended dependency graph for each production

Fig. 5

[sir l~e] - IS1. out]

(c) CDC of production (5) of G1

Attribute dependency of grammar G1

(We used an ascending chain condition and least fixed-point because the operator was '~ ' in

G1. If the operator were 'n ' , we could as well use a descending chain condition and greatest
fixed-point .)

The finitely recursive attribute grammar is well-defined and it is an extension of the
absolutely noncircular attribute grammar.

The above condition states that the values of attributes in cycles can be computed via
successive approximation in a finite number of iterations. There may be several ways to make
the evaluator. In Jun, we used Farrow's recursive synth-function evaluator [Farrow 86]. This
attribute evaluator is static in the sense that the order of evaluation at each node of the tree is
determined at generation time. For each synthesized attribute of each class a function is
generated. An example of such a function R-{S.live} for the attribute S.live of the 'while
statement' (production (5) of Fig. 4 or Fig. 5(c)) is shown in Fig. 6. Here the computation of
Sl.out and Sl.live is made by successive approximation in the 'repeat' statement.

63

R-{S.live} (T, S.out) /* function for synthesized attribute S.live */
case rootOf(T) of

. , . • • •

[S -> while E do S1]:
E,use := R-{E.use} i f [l]) ; /* TIl l is the first son o f T */
S 1.out := emptySet ;
S 1.live := emptySet ;
/* repeat until all attribute values in the cycle become the same as

the values computed in the previous iteration */
repeat

stop := true ;
TMP_SI.out := E.use u S 1.live u S.out ;
if TMP_SI.out ~ Sl.out then stop := false ;
S t.out := TMP_S 1.out ;
TMP_SI.live := R-{S.live} (T[2], Sl.out) ;
if TMP_S 1.live ~ S 1.live then stop := false ;
S 1.live := TMP_S 1 .live ;

until stop ;
return (E.use u S 1.live u S.out) ;

end/* of R-{S.live} */;

/* Initialize: let the irfitial values of attributes in the cycle Ix] be empty sets */
for each y in Ix] do y := bottom ;

Fig. 6 The attribute evaluator for grammar G1 (actually in Lisp for Jun)

Intermediate Tree and Jun Description

The intermediate tree used in our environment is common to all back-end phases. It is in
the form of an abstract syntax tree, similar to DIANA [Goos 83].

The AG description that is the input to Jun is similar to the usual AG. A difference is that
Jun is based on tree grammars and the syntax is in the form of the tree. An example Jun
description is shown in Fig. 7.

%class
STM ::= stm slassignJif{whilelproc_calll ...(a)

write{write!nlreadlnul!_stm;
. . o

%node
stm s => STM, STM;
assign => var : C_ID, EXP;
if => COND, STM;
while => COND, STM;

%attribute
C_BLOCK, C PROCDECL, C__PROC ID, STM =>

out : inh,
in : synt save;

C CONSTDEF, C_VARDECL,
EXP, COND, BOP, UOP, C_ID, C_NAME, C NUMBER =>

use : synt ;

Fig. 7

...(b)

...(c)

...(#)

Jun description for live variable analysis of PL/0 (pan) (cont. on next page)

64

%semantics
stm s { stra2.out = stm_s.out ;

stml.out = stm2.in ;
stm s.in = stml.in }

null stm (nu~l stm.in = null stm.out
assi~ { assign, in = (union expl.use

if

while

...(d)

(set-difference assign.out vat.use)) }
{ stml.out = if.out ;

if.in = (union condl.use stmi.in) }
{ %circle stml.out, stml.in ; ...(*)

stml.out = (union (union condl.use while.out) stml.in) ;
while.in = (union (union condl.use while.out) stml.in) }

Fig. 7 Jun description for live variable analysis of PL/0 (part)

The specification of the syntax (structure) of the tree incorporates nodes and classes. A
node actually means the node type appearing in the (abstract) syntax tree (see Fig. 7 (b)). A
class is a collection of node types of the syntax tree (see Fig. 7 (a)). This is for collecting
similar node types (e.g. 'assignment statement', 'conditional statement', 'while statement', etc.)
into a single category (e.g. 'statement'). In Jun, class names are conventionally written in
upper case letters.

The attribute definitions come down next (see Fig. 7(c)). An atlribute can be associated to
one or more classes. Here 'synt' and 'inh' mean synthesized and inherited attributes,
respectively. Then come the semantic rules (see Fig. 7(d)), which are normally in the form of

node name or class name { semantic rules }.
We allow local attributes in the Jun description similar to the ones in the Rie description.

In the synth-function evaluator of Jun, we allow two modes of evaluation for each
synthesized attribute: the usual mode and the save mode. In the usual mode, the evaluated value
of a synthesized attribute is returned as the function value and is not stored in the tree. In the
save mode, the evaluated value is stored in the corresponding node of the tree, and after that the
stored value is taken without reevaluating it. The save mode of evaluation can be specified by
putting an option 'save' to the relevant attribute (see Fig. 7(#)).

The generator cart detect circularities of attribute dependency, but it cannot decide whether
the attributes in the cycle and the relevant semantic rules satisfy the condition of finitely
recursive AG shown before. Thus, we decided that the writer of the AG should be responsible
to see that the conditions are satisfied, and (s)he should specify such attributes by

% c i r c t e attribute occurrence ;
at the beginning of the semantic rules (see Fig. 7(*)). This strategy to let the AG writer specify
such attributes is less error-prone and more maintainable than the fully automatic strategy. Of
course the generator signals an error if attributes in detected cycles are not specified by
'%circle'.

4. Generation of Optimizer

The optimization phase of a compiler is roughly divided into two components: data-flow
analysis and optimizing transformation. The data-flow analysis component, such as the
analysis of 'available expressions', 'reaching definitions', and 'live variables', can be generated

65

using Jun. The finitely recursive attribute grammar, on which Jun is based, is well suited for
this since most data-flow information is represented as a set and has a least fixed-point.

An example Jun description of the live variable analysis for PL/0 was already shown in
Fig. 7. This corresponds to the formal AG specification of Fig. 4.

The optimizing transfornaation component of this phase is not yet well studied.

5. Generation of Interpreter

Severn interesting ideas about the formalization of dynamic semantics have been studied.
But our main interest was in the generation of interpreters based on the same formalism used in
other back-end phases. For that, we borrowed the concept of action semantics [Watt 86],
which unifies numerous different domains of the denotational semantics into a single domain
called action. In our work, an action is the run-time environment. We use the following
dynamic attributes:

vat x;
begin

x:=l+2
end.

(a) source program

pl0

ardecl assign preacyal',cleClclaborate preaet / " K execule

val var_id / N ~ plus "x,
X name p ~ ~ l u a t e

x
I evahmte I evah, ate

(b) flow of attributes for (a)

Fig. 8 Flow of attributes in a PL/0 interpreter

66

elaborate

execute

evaluate
preact

run-time environment as a result of allocating stores to each variable
(result of variable elaboration)
run-time environment after executing a statement
(result of executing a statemen0
value of an expression (result of evaluating an expression)
run-time environment before executing a statement
or evaluating an expression

An exampte of the flow of attributes using the above dynamic attributes is shown in Fig. 8. A
part of the corresponding Jun description for PL/0 interpreter is shown in Fig. 9.

%semantics

assign /* as_id expl */
{ expl.preact = assign.preact ;

assign.execute = (update assign.preact as_id.name expl.evaluate)

Fig. 9 Description of PL/0 interpreter (part)

...(a)

..(b)
~...(c)

For example, at the node for assignment (assign) Of Fig. 9(a), the evaluator let the run-
time environment before evaluating the expression in the fight-hand side (expl .preact) be the
environment before executing the assignment (assign .p reac t) (see Fig. 9(b)). Next, the
evaluator updates the variable in the left-hand side (as_id. name) tO the value which results
from evaluating the expression in the right-hand side (expl . eva lua te) , and the resulting
environment becomes the environment after executing the whole assignment
(ass ign.execute) (see Fig. 9(c)).

Since attribute evaluation in the synth-function evaluator of Jun is demand driven, only
necessary parts are executed. Therefore, conditional statements, such as an 'if statement', can
be handled correctly.

Now, we had a serious problem in loop statements. As an example, consider the
dependency of dynamic attributes at a node of a 'while statement'

while => cond stms.
m

The dependency is shown in Fig. 10.

preact evaluate preact execute

Fig. 10 Dependency of dynamic attributes of'while statement'

67

In this 'while statement', the whole statement is usually re-executed several times after
executing stm_s. So there is an attribute dependency from execute of stm_s to p reae t of
while. This constitutes a cycle in attribute dependency at run-time and attributes in this cycle
are usually evaluated several times. Note that this problem is essentially caused by dynamic
semantics that deals with the run-time behavior, and cannot be resolved by the iterative
evaluation of finitely reeursive attribute grammars which deals with the static semantics. The
attribute grammar was originally conceived for describing static semantics at compile-time, and
in pure AGs, attribute values have the property of single assignments and their values cannot be
modified once they are defined. Therefore, AGs cannot completely specify the dynamic
semantics, unless we use functions themselves as attribute values.

Our solution here was made on a practical standpoint. We didn't go deep into the single
assignment property of AGs: we allowed re-assignment to attributes i f the assignment was
explicitly described as a side-effect within the right-hand side of semantic rules. Fig. 11 shows
our way of describing dynamic semantics of a 'while statement'. Here, while .proaet iS re-
assigned its value in the right-hand side of a semantic rule (Fig. 11 (*)).

while
{

/* as cond as stms ~/
as_cond.preact = while.preact ;
as stm s.preact = while.preact ;
wh~le.execute = (loop (when (not as cond.evaluate)

(return while.preact))
(setq while.preact as_stm_s.execute))

Fig, 11 Description of dynamic semantics of 'while statement'

J ...(*)

The above strategy is of course not a complete solution. But considering that the
possibility of cycles in attribute dependency at run-time is generally restricted to loop
statements, the part exceeding the pure AG formalism is quite limited. Moreover use of the
same attribute evaluator as in other back-end phases was attractive in our generation
environment.

6. G e n e r a t i o n o f C o d e G e n e r a t o r

There are several formalism for the code generator, such as the one using pattern matching
and tree-rewriting rules [Cattell 80], LR parsing techniques [Glanville 78], and affix grammars
[Ganapathi 85]. We adopted the attribute grarranar formalism based on tree grammars, because
multiple traversals over the syntax tree are possible in AGs, which cannot be performed in other
methods. Using AGs enables description of algorithms such as the generation of shortest
object code for expressions using minimum registers. Moreover, adoption of the unified
formalism for all back-end phases was attractive.

An example description of code generator for PL/0 is shown in Fig. 12. This is a part of
the description for generating the shortest object code of expressions for Sun-3. Four types of
nodes - plus, minus, mul, and dry nodes - are treated together. Here the attribute regs is the set
of allocatable registers, code is the generated code, treg is the target register to which the result
value is stored, and nregs is the required number of registers.

68

The algorithm for the shortest code generation for expressions is usually given in the form
of two-pass traversals on the syntax tree [Aho 86]. However, we think such a description is
too procedural and specifies the order of processing more than is necessary. If we write this
algorithm in AG as in Fig. 12, the description is declarative and easy to read. We don't need to
think about the order of tree traversah. As an example of object code, take the expression

a*(b+e)-d*e/(f-g).
The code for this expression generated by the vendor-supplied compiler (Sun-3 Pascal) uses 3
registers, while the code generated by the AG of Fig. 12 uses 2 registers, which is optimal.

We think that use of AGs for code generators is welt suited to the generation of codes for
RISC machines. However in CISC machines, methods using pattern matching of trees may
yield better results by considering numerous matching patterns for a given tree.

BEXP /* as_expl as_exp2 */ /* binary expressions plus, minus, mul and div */
(%local nl = (case %node

((plus mul) (if (= 0 as expl.nregs as exp2.nregs) I as expl.nregs))
((minus div) (max as expl.nregs i))),

n2 = as exp2.nregs,
op = (case %node

('plus "addl")
('minus "subl")
('mul "mulsl")
('div "divsl")) ;

as_expl.regs = (request-reg (case %node
((plus mul) (if (>= nl n2)

BEXP.regs
(reverse BEXP.regs)))

((minus div) BEXP.regs))
nl);

as_exp2.regs = ...
BEXP.code = (cond ((case %node

((plus mul) (and (>= nl *sum-of-reg*)(> = n2 *sum-of-reg*)))
((minus div) (and (> n2 0)(> BEXP.nregs *sum-of-reg*))))

(append as_exp2.code
(genop "movl" (to-string as exp2°treg ",sp@-"))
as expl.code
(genop op (to-string "sp@+, ~' as__expl.treg))))

((>= nl n2)
(append as_expl.code as exp2.code

(genop op (to-strlng as exp2.treg "," as_expl.treg))))
(t (append as exp2.code as expl.code

(genop op
(case %node
((plus mul) (to-string as_expl.treg "," as exp2.treg))
((minus div) (to-string as exp2.treg "," as_expl.treg)))))));

as expl.left = (case %node
((plus mul) (>= nl n2))
((minus div) t));

as_exp2.1eft = (case %node
((plus mul) (< nl n2))
((minus div) nil));

BEXP.treg = (case %node
((plus mul) (if (>= nl n2) as expl.treg as_exp2.treg))
((minus div) as_expl.treg));

BEXP.nregs = (if (= nl n2) (i+ nl) (max nl n2));
)

Fig. 12 Description of code generator for PL/0 (part)

69

7. Experimental Results

The number of lines (including comments and blank lines) for the description of each
phase of a compiler for the PL/0 language using Pie and Jun, and the corresponding generation
time are as follows.

. description generation --
declaration of syntax and
symbols, nodes, semantic
attributes etc. rules
(lines) (lines)

front-end (pie) 82 539
optimizer (Jun) 96 317
(data-flow analysis)
interpreter (Jun) 112 191
code generator (Jun) 75 282

others total time

(lines) (lines) (sec)
353(in C) 974 0.81

79 (*) 492 54.8

74 (*) 314 35.2
65 (*) 366 50.9

(*) in Common Lisp

It can be seen that the generation time by Pie is quite fast. Note that in Jun, the number of
description lines was reduced by about 40%, by collecting node types with similar semantic
rules into a class. The time of generation is on Sun-4/280.

8. Concluding Remarks

We have presented an attempt of our group to generate almost all compiler phases by
using compiler generators based on attribute grammars.

The following issues are left as future problems.
(i) The transformation component of the optimizer is not well studied. It should be further
investigated. Transformation of trees [Lipps 89] seems to be useful.
(ii) The description of dynamic semantics for the interpreter was made on a practical
standpoint. However, a better formalism might be found.
('fii) So far the formalism is made for structured syntax of programming languages without
goto statements. Application to goto statements and other non-local jumps should also be
investigated.
(iv) We do not have a description of back-end phases for large scale programming languages.
Further experience would be required before languages of practical size could be handled.
(v) Jun is presently a prototype. More detailed design and efficient implementation are
desirable.

Acknowledgments

The author wishes to thank the members of the programming language laboratory for
assistance in the development of Pie and Jun, especially H. Ishizuka, M. Sawatani, J. Iizumi,
and to I. Nakata and K. Hayashi for helpful comments to the manuscript.

70

References

[Aho 86] Aho, A.V., Sethi, R. and Ullman, J.D. : Compilers - Principles, Techniques, and
Tools, Addison-Wesley, 1986.

[Babich 78] Babich, W.A. and Jazayeri, M. : The Method of Attributes for Data Flow Analysis,
Part I. Exhaustive Analysis, Acta Inf. 10, 245-264 (1978).

[Cattell 80] Cattell, R.G.G. : Automatic Derivation of Code Generators from Machine
Descriptions, ACM TOPLAS, 2, 2, 173-190 (1980).

[Farrow 84] Farrow, R. : Generating a Production Compiler from an Attribute Grammar, IEEE
Software, 1, 4, 77-93 (1984).

[Farrow 86] Farrow, R. : Automatic Generation of Fixed-Point-Finding Evaluator for Circular,
but Well-Defined, Attribute Grammars, ACM SIGPLAN '86 Syrup. on Compiler
Construction, 85-98 (1986).

[Ganapathi 85] Ganapathi, M. and Fischer, C. N. : Affix Grammar Driven Code Generation,
ACM TOPLAS, 7, 4, 560-599 (1985).

[Ganzinger 82] Ganzinger, H. and Giegerich, R. : A Truly Generative Semantics-Directed
Compiler Generator, in Proc. SIGPLAN Syrup. on Compiler Construction, SIGPLAN
Notices,17, 6, 172-184 (1982).

[Glanville 78] GlanviUe, R. S. and Graham, S. L. : A New Method for Compiler Code
Generation, 5th ACM POPL, 231-240 (1978).

[Goos 83] Goos,G. et al. : DIANA An Intermediate Language for Ada, revised version, Lec.
Notes in Comp. Sci., Vol. 161, Springer, 1983.

[Kastens 82] Kastcns, U., Hutt, B. and Zimmermann, E. : GAG: A Practical Compiler
Generator, Lec. Notes in Comp. Sci., Vol. I41, Springer, 1982.

[Knuth 68] Knuth, D.E. : Semantics of Context-Free Languages, Math. Syst. Th., 2, 2, 127-
145, 1968, correction ibid. 5, l, 95-96 (1971).

[Koskimies 88] Koskimies, K., et al. : The Design of a Language Processor Generator, Softw.
Pract. Exper.,18, 2, 107-135 (1988).

[Kuse 86] Kuse, K., Sassa, M. and Nakata, I. : Modelling and Analysis of Concurrent
Processes Connected by Streams, J. Inf. Process., 9, 3, 148-158 (1986).

[Lesk 75] Lesk, M.E. : Lex - A Lexical Analyzer Generator, Computer Science Tech. Rep. 39,
AT&T Bell Lab., 1975.

[Lipps 89] Lipps, P. Mrncke, U. and Wilhelm, R. : OPTRAN - A Language/System for the
Specification of Program Transformations: System Overview and Experiences, Proc. 2nd
CCHSC Workshop, Lee. Notes in Comp. Sci., Vol. 371, Springer, 1989.

[Sassa 85] Sassa, M., Ishizuka, H. and Nakata, I. : A Contribution to LR-attributed
Grammars, L Inf. Process., 8, 3, t96-206 (1985).

[Sassa 87] Sassa, M., Ishizuka, H. and Nak~ata, I. : ECLR-attributed Grammars: a Practical
Class of LR-attributed Grammars, Inf. Process. Lett., 24, 31-41 (1987).

[Sassa 88] Sassa, M. : Incremental Attribute Evaluation and Parsing Based on ECLR-attributed
Grammars, Report A-1988-9, Dept. of Computer Science, Univ. of Helsinki, 1988.

[Sassa 90] Sassa, M. Ishizuka, H. Sawatani, M. and Nakata, I. : Introduction to Rie and Rie
User's Manual, Tech. Rep. ISE-TR-90-82, Inst. of Inf. Sci. & Elec., Univ. of Tsukuba,
1990.

[Shapiro 83] Shapiro, E.Y. : Algorithmic Program Debugging, MIT Press, 1983.
[Watt 86] Watt, D. A. : Executable Semantic Descriptions, Softw. Pract. Exper., 16, 13-43

(1986).
[Yamashita 88] Yamashita, Y. and Nakata, I. : Programming in Gramp: a programming

language based on CCFG, Tech. Rep. ISE-TR-88-73, Inst. of InL Sci. & Elec., Univ.
Tsukuba, 1988.

