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A b s t r a c t  

Two compiler generators, both based on attribute grammars, have been used together in 
an attempt to generate almost all compiler phases. 

Pie is a compiler generator based on a one-pass attribute grammar called ECLR-attributed 
grammar [Sassa 87]. The generated compiler evaluates attributes in parallel with LR parsing. It 
can be used to generate one-pass compilers or the front-end of multipass compilers. 

Jun is a compiler generator which works on tree grammars. It is based on finitely 
recursive attribute grammars, a class of attribute grammars which allow circularities in attribute 
dependency [Farrow 86]. It overcomes the difficulty of circularities in the attribute dependency 
which often appear in data-flow equations of optimizers. The evaluator generated by Jun 
evaluates attributes on a tree, rather than a source program. This same formalism can be used to 
generate code generators and interpreters. So, the single Jun system can cover most of the 
compiler back-end. 

By combining both Rie and Jun, the generation of almost all compiler phases may be 
possible. 

1. Introduct ion  

Recently there have been many advances in the automatic generation of compilers. The 
major reason for these advances seems to be the study of efficient evaluators based on attribute 
grammars (AGs) [Knuth 68]. Many compiler generators have been developed using AGs, for 
example MUG2 [Ganzinger 82], GAG [Kastens 82], Linguist-86 [Farrow 84], and 

* This work was partially supported by the University of Tsukuba. 
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HLP84/TOOLS [Kosldmies 88]. AGs have been usually applied to the generation of compiler 
front-ends, i.e. parsers, semantic analyzers, and sometimes code-generators [Ganapathi 85] 
(affix grammars), but they have not been applied to the generation of compiler back-ends or 
interpreters in a natural way except for few systems (cf. [Ganzinger 82]). From the software 
engineering viewpoint of compiler writers, it is better to handle most compiler phases with a 
smaller concept. 

Based on the above consideration, we tried to use AGs also for the specification and 
generation of language-based editors, compiler back-ends, and interpreters. This paper 
presents an attempt to generate almost all compiler phases on the formalism of attribute 
grammars. 

Overall Structure of the Compiler Development Environment 

Our long range plan is to generate an integrated programming environment using a small 
set of generators. The overall structure of the compiler development environment is shown in 
Fig. 1. 
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Overall Structure of Compiler Development Environment 

The front-end of a compiler is generated by Rie and Lex [Lesk 75]. The front-end 
converts the source program into an intermediate tree. Rie reads in the specification of the 
source-to-tree translation, which is written in a class of one-pass AGs called ECLR-attributed 
grammar, and generates an attribute evaluator which evaluates attributes during LR parsing. 
Rie is written in C and generates C programs. Rie can also be used to generate one-pass 
compilers. 
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A major problem in applying AGs to the back-end of compilers reside in that usual 
formalism for some of these phases invoIves iteration. That is, in optimizers, there is a 
difficulty of circularities in attribute dependency which often appear in data-flow equations. A 
similar problem arises in interpreters, where loop statements force iterative evaluation of 
attributes. 

To settle these problems, we used the finitely recursive attribute grammars proposed by 
Farrow [Farrow 86]. This is a class of AGs which allows circularities in attribute dependency. 
It is defined as an extension of the class of absolutely noncircular AGs. Broadly speaking, if 
there are cycles of attribute dependency but if there exists a least fixed-point (a minimum 
solution if it is a set) for each attribute in the cycle, then the evaluator can compute the attribute 
values using successive approximation. The evaluator generated by Jun does this. In addition, 
some other techniques for allowing iterative evaluation in interpreters have practically settled the 
problem of ran-time loop statements. 

All the back-end phases can be realized to process a common intermediate tree, which is 
in the form of an abstract syntax tree. Jun is based on tree grammars, and the generated 
evaluator can evaluate attributes on the intermediate tree, rather than a source program. Thus, 
the single Jun system can generate most of the back-end phases, i.e. data-flow analysis 
component of optimizers, code-generators and interpreters/debuggers, based on the same 
framework. For the moment, Jun is made as a prototype. So, it is written in Common Lisp 
(KCI) and generates programs in Common Lisp, for the ease of development. 

The code-generator, interpreter, and the data-flow analysis component of the optimizer for 
a small language PL/0 have been made using Jun. The transformation component of the 
optimizer is still to be investigated. The generation of a language-oriented editor has been 
designed [Sassa 88] but not yet implemented. A visual debugger is currently under 
development. A debugger for the compiler writer (not the user of the language) to debug AG 
description is also planned based on the algorithmic debugging approach [Shapiro 83]. The 
generator of user interface, with multiple windows, buttons and menus, is partially complete. 

In the following we mainly present the generation of compiler front-ends and back-ends 
using PAe and Jun. 

2. R i e  a n d  G e n e r a t i o n  o f  F r o n t - e n d  

Rie [Sassa 90] is a compiler generator based on a class of one-pass AGs called ECLR 
(equivalence class LR)-atwibuted grammar [Sassa 87]. The ECLR-AG is a variant of LR-AG, 
where attributes can be evaluated during LR parsing [Sassa 85]. Equivalence classes are 
introduced to reduce space requirements. Rie can be used to generate one-pass compilers (from 
semantic analyzers to code generators) or the front-ends of multipass compilers. 

Rie can deal with inherited attributes as well as synthesized attributes. One may wonder 
why we can use inherited attributes during bottom-up parsing. The key idea is that an LR state 
is made so that it contains all the possibilities of a syntax tree at the point of parsing. So even 
the parser is looking at a terminal of the input program, all the possible syntax trees which may 
come above that terminal can be foreseen [Sassa 85]. 
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A resulting characteristic feature is that attribute evaluation can take place not only at 
reduction-time of the LR parser but also at state transition time. For example, in a syntax and 
semandc rule like 

X --> XO X1 X2 
{ Xl.env = X.env ; } 

the evaluation of inherited attribute Xl.env is made when the LR parser enters a state including 
the LR item [ X --~ X0. X1 X2 ]. That is, inherited attributes of a nonterminal in the midst of 
the right hand side of a production are evaluated at the time parsing proceeds to the point of that 
nonterminal. This is in contrast with the usual bottom-up syntax-directed translator, where only 
synthesized attributes are allowed and evaluated at reduction-time. 

An example AG description to be input to Pie is shown in Fig. 2. 

• .k . 

%nonterm block : 
I env: envpt r inh, 
tree: t reeptr synt; 

%equiv constdefpart. I_env, constdeflist. I__env, 

condition. I__env, ident. I__env; 

. o .  

block 

(a) 

} (b) 
) 

: . . . ( c )  
{ . . . (e )  

.(d) 

constdefpart vardeclpart procdeclpart statement 
%thread I env S__env; 
%except c~nstdefpart. I__env = newenv(block. I_env); 
block.tree = concat6(" (block ", 

constdefpart.tree, 
vardeclpart.tree, 
procdeclpart.tree, 
statement.tree, 
,,),, ); } ; 

Fig. 2 Pie description for PL/0 (part) 

Here, (a) shows the declaration of attributes and their types with the distinction of 'inherited' 
and 'synthesized', (b) shows that attributes constdefpart. I_env, constdeflist. I_env, 

etc., are in the same equivalence class (which roughly means that their storage can be shared in 
the attribute stack), (c) is a production, and (d) is the semantic rules associated with the 
production. Pie description allows for short-hand notations, such as abbreviating copy-rules 
and a 'threac~ of attributes. A thread (~thread, Fig. 2(e)) is a list of attributes whose values 
are passed like a "chain", normally by copying or by adding new information (%except). Pie 
also allows local attributes associated with a production rather than a nonterminal, which can be 
used to store temporary results of computation. These temporary results can then be used by 
more than one set of semantic rules. 

The fn'st version of Rie was made more than five years ago, and Pie has been applied to 
generate the semantic analyzer of ISO Pascal, a translator of a stream-based language Stella 
[Kuse 86], a compiler of a programming language called Gramp which is based on coupled 
context-free grammars [Yamashita 88], a compiler of neural network language, etc. Rie is 
designed and implemented as an efficient system. It is written in C and generates a parser and 
an attribute evaluator in C. 
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Generation of Front-end 

The front-end of a compiler can be generated using Lex [Lesk 75] for the lexical analyzer 
and Rie for the syntactic and semantic analyzer. 

In our compiler development environment, we use Rie to translate the source program into 
the internal tree which is in the form of an abstract syntax tree. Since Rie is based on C (to 
realize fast evaluation) and Jun on Lisp (for the ease of development), the front-end generated 
by Pie writes strings of S-expression of Lisp corresponding to the internal tree. An example of 
the generated S-expression for a source program is shown in Fig. 3. 

;var x; 
;begin 
; x:=l+2 
;end. 
(plO (block (no_constdef) #1=(vardecl (name x)) 
(no_procdecl) (assign (var_id #I#) (plus (n~ I) (num 2) ) ) ) ) 

Fig. 3 Intermediate tree (S-expression) for a source program 

3. J a n  

Jun is a compiler generator based on a cIass of AGs called finitely recursive attribute 
grammars [Farrow 86]. Early formalism that used AGs had difficulty in specifying the data- 
flow analysis of optimizers, due to the circularities in attribute dependency which may often 
arise based on the recursive nature of data-flow equations [Babich 78]. It is usually possible to 
rewrite the semantic rules to make the attribute dependency cycle-free, but the rewritten 
semantic rules are not natural nor easily understandable. The evaluator generated by Jun can 
deal with such circularities. The details wiU be given shortly. This approach is different from 
previous works [Ganzinger 82][Lipps 89]. 

Jun can also generate interpreters which use some techniques to escape from circularities 
of attribute dependency arising in run-time loops (to be described later). Jun can of course 
generate usual evaluators without circular attribute dependencies, such as code generators. 
Thus it should be noted that the single Jun system can generate most of the compiler back-end, 
with the exception of tree transformation component of the optimizer. A prototype back-end 
(data-flow analysis component of optimizer, code generator, and interpreter) of a compiler for a 
small language PL/0 has been implemented. 

Since Iun is presently a prototype, it is written in Common Lisp (KC1) and generates 
attribute evaluators in Common Lisp. Use of Lisp is mainly for the ease of data structure 
handling and early development. 

Finitely Recursive Attribute Grammar and its Evaluator 

The outline of the finitely recursive attribute grammar and its evaluator is as follows. See 
Fig. 4 for an example. 
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(1) S ~ $1 ' ; '$2  
{ S2.out = S.out ; 

Sl.OUt = S2.1ive ; 
S.live = Sl.live ; } 

(2) S --4 E 
{ S.live = S.out ; } 

(3) S ---) id ' := 'E 
{ S.live = E.use u (S.out - {id.name}) ; } 

(4) S ---) ' if  E 'then' $1 'else' $2 
{ Sl.out = S.out ; 

S2.out = S.out ; 
S.live = E.use u Sl.live u S2.1ive ; } 

(5) S --~ 'while'E 'do' S1 
{ Sl.out = E.use t., S.out u Sl.live ; 

S.live = E.use v S.out u Sl.llve ; } 

S.live: set of variables that are live on entry to S 
S.out: set of variables that are live on exit from S 
E.use: set of variables whose values at the entry of E are used in E 

Fig.4 Attribute grammar G1 for live variable analysis 

This formalizes the live variable analysis for a small language. To check whether the given AG 
is finitely recursive, first, make the attribute dependency graph for each production of G 1 of 
Fig. 4 (see Fig. 5 (a)). Then take its closure and make the extended attribute dependency gIzph 
(see Fig. 5 (b)). 

There is a cycle in the extended attribute dependency graph DG5*. The cycle consists of 
Sl.out and Sl.live. The set of nodes (attribute occurrences) in such a cycle is called a circular 
dependency class (CDC). Nodes x and y of an extended dependency graph belong to the same 
CDC i_ff x depends on y and y depends on x. A usual attribute not in a cycle wiU be in a CDC 
by itself. The CDC that contains an attribute occurrence x is denoted by [x]. By regarding each 
CDC as a single node, we can get an extended attribute dependency graph without cycles (see 
Fig. 5 (c)). This suggests that the evaluation of ata-ibutes in a CDC can be performed by 
successive approximation. 

A finitely recursive attribute grammar is defined in the following way: let ATI'ILIBS be the 
set of attributes in the cycle of the dependency graph and FUNCTS be the set of corresponding 
semantic functions for these attributes. An AG is a finitely recursive attribute grammar i_if: 
1. The domain of  all attributes in ATTRIBS constitutes a complete partial order (c.p.o.), in 
which it is possible to test pairs of elements for equality, and 
2. All functions in FUNCTS are monotonic and converge (an ascending chain condition), that 
is, 

f(s[0]) < f(s[1]) < ...... < f(s[k]) = f(s[k+l]) 
for 

s[0] < s[1] < s[2] < ...... 
where f~ FUNCTS, s~ ATTRIBS, i of s[i] is the count of iteration. Here, f(s[k]) = f(s[k+l]) 
is called the least feted-point. 
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DG3 DG4 

DG5 

(a) attribute dependency graph for each production 

DG3* 

DG5* 

DG4" 

(b) extended dependency graph for each production 

Fig. 5 

[ sir l~e ] - IS1. out ] 

(c) CDC of production (5) of G1 

Attribute dependency of grammar G1 

(We used an ascending chain condition and least fixed-point because the operator was '~ '  in 

G1. If the operator were 'n ' ,  we could as well use a descending chain condition and greatest 
fixed-point .) 

The finitely recursive attribute grammar is well-defined and it is an extension of the 
absolutely noncircular attribute grammar. 

The above condition states that the values of attributes in cycles can be computed via 
successive approximation in a finite number of iterations. There may be several ways to make 
the evaluator. In Jun, we used Farrow's recursive synth-function evaluator [Farrow 86]. This 
attribute evaluator is static in the sense that the order of evaluation at each node of the tree is 
determined at generation time. For each synthesized attribute of each class a function is 
generated. An example of such a function R-{S.live} for the attribute S.live of the 'while 
statement' (production (5) of Fig. 4 or Fig. 5(c)) is shown in Fig. 6. Here the computation of 
Sl.out and Sl.live is made by successive approximation in the 'repeat' statement. 
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R-{S.live} (T, S.out) /* function for synthesized attribute S.live */ 
case rootOf(T) of  

. , . • • • 

[S -> while E do S1]: 
E,use := R-{E.use} i f [ l ] )  ; /* TIl l  is the first son o f T  */ 
S 1.out := emptySet ; 
S 1.live := emptySet ; 
/* repeat until all attribute values in the cycle become the same as 

the values computed in the previous iteration */ 
repeat 

stop := true ; 
TMP_SI.out := E.use u S 1.live u S.out ; 
if TMP_SI.out ~ Sl.out then stop := false ; 
S t.out := TMP_S 1.out ; 
TMP_SI.live := R-{S.live} (T[2], Sl.out) ; 
if TMP_S 1.live ~ S 1.live then stop := false ; 
S 1.live := TMP_S 1 .live ; 

until stop ; 
return (E.use u S 1.live u S.out) ; 

end/* of R-{S.live} */; 

/* Initialize: let the irfitial values of attributes in the cycle Ix] be empty sets */ 
for  each y in Ix] do y := bottom ; 

Fig. 6 The attribute evaluator for grammar G1 (actually in Lisp for Jun) 

Intermediate Tree and Jun Description 

The intermediate tree used in our environment is common to all back-end phases. It is in 
the form of an abstract syntax tree, similar to DIANA [Goos 83]. 

The AG description that is the input to Jun is similar to the usual AG. A difference is that 
Jun is based on tree grammars and the syntax is in the form of the tree. An example Jun 
description is shown in Fig. 7. 

%class 
STM ::= stm slassignJif{whilelproc_calll ...(a) 

write{write!nlreadlnul!_stm; 
. . o 

%node 
stm s => STM, STM; 
assign => var : C_ID, EXP; 
if => COND, STM; 
while => COND, STM; 

%attribute 
C_BLOCK, C PROCDECL, C__PROC ID, STM => 

out : inh, 
in : synt save; 

C CONSTDEF, C_VARDECL, 
EXP, COND, BOP, UOP, C_ID, C_NAME, C NUMBER => 

use : synt ; 

Fig. 7 

...(b) 

...(c) 

...(#) 

Jun description for live variable analysis of PL/0 (pan) (cont. on next page) 
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%semantics 
stm s { stra2.out = stm_s.out ; 

stml.out = stm2.in ; 
stm s.in = stml.in } 

null stm ( nu~l stm.in = null stm.out 
assi~ { assign, in = (union expl.use 

if 

while 

...(d) 

(set-difference assign.out vat.use)) } 
{ stml.out = if.out ; 

if.in = (union condl.use stmi.in) } 
{ %circle stml.out, stml.in ; ...(*) 

stml.out = (union (union condl.use while.out) stml.in) ; 
while.in = (union (union condl.use while.out) stml.in) } 

Fig. 7 Jun description for live variable analysis of PL/0 (part) 

The specification of  the syntax (structure) of the tree incorporates nodes and classes. A 
node actually means the node type appearing in the (abstract) syntax tree (see Fig. 7 (b)). A 
class is a collection of  node types of the syntax tree (see Fig. 7 (a)). This is for collecting 
similar node types (e.g. 'assignment statement', 'conditional statement', 'while statement', etc.) 
into a single category (e.g. 'statement'). In Jun, class names are conventionally written in 
upper case letters. 

The attribute definitions come down next (see Fig. 7(c)). An atlribute can be associated to 
one or more classes. Here 'synt' and 'inh' mean synthesized and inherited attributes, 
respectively. Then come the semantic rules (see Fig. 7(d)), which are normally in the form of 

node name or class name { semantic rules }. 
We allow local attributes in the Jun description similar to the ones in the Rie description. 

In the synth-function evaluator of  Jun, we allow two modes of  evaluation for each 
synthesized attribute: the usual mode and the save mode. In the usual mode, the evaluated value 
of a synthesized attribute is returned as the function value and is not stored in the tree. In the 
save mode, the evaluated value is stored in the corresponding node of the tree, and after that the 
stored value is taken without reevaluating it. The save mode of evaluation can be specified by 
putting an option 'save' to the relevant attribute (see Fig. 7(#)). 

The generator cart detect circularities of attribute dependency, but it cannot decide whether 
the attributes in the cycle and the relevant semantic rules satisfy the condition of  finitely 
recursive AG shown before. Thus, we decided that the writer of  the AG should be responsible 
to see that the conditions are satisfied, and (s)he should specify such attributes by 

% c i r c t e  attribute occurrence .... ; 
at the beginning of  the semantic rules (see Fig. 7(*)). This strategy to let the AG writer specify 
such attributes is less error-prone and more maintainable than the fully automatic strategy. Of 
course the generator signals an error if attributes in detected cycles are not specified by 
'%circle'. 

4. Generation of Optimizer 

The optimization phase of a compiler is roughly divided into two components: data-flow 
analysis and optimizing transformation. The data-flow analysis component, such as the 
analysis of  'available expressions', 'reaching definitions', and 'live variables', can be generated 
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using Jun. The finitely recursive attribute grammar, on which Jun is based, is well suited for 
this since most data-flow information is represented as a set and has a least fixed-point. 

An example Jun description of the live variable analysis for PL/0 was already shown in 
Fig. 7. This corresponds to the formal AG specification of Fig. 4. 

The optimizing transfornaation component of this phase is not yet well studied. 

5. Generation of Interpreter 

Severn interesting ideas about the formalization of dynamic semantics have been studied. 
But our main interest was in the generation of interpreters based on the same formalism used in 
other back-end phases. For that, we borrowed the concept of action semantics [Watt 86], 
which unifies numerous different domains of the denotational semantics into a single domain 
called action. In our work, an action is the run-time environment. We use the following 
dynamic attributes: 

vat x; 
begin 

x:=l+2 
end. 

(a) source program 

pl0 

ardecl assign preacyal',cleClclaborate preaet / "  K execule 

val var_id / N ~  plus "x, 
X name p ~  ~ l u a t e  

x 
I evahmte I evah, ate 

(b) flow of attributes for (a) 

Fig. 8 Flow of attributes in a PL/0 interpreter 
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elaborate 

execute 

evaluate 
preact 

run-time environment as a result of allocating stores to each variable 
(result of variable elaboration) 
run-time environment after executing a statement 
(result of executing a statemen0 
value of an expression (result of evaluating an expression) 
run-time environment before executing a statement 
or evaluating an expression 

An exampte of the flow of attributes using the above dynamic attributes is shown in Fig. 8. A 
part of the corresponding Jun description for PL/0 interpreter is shown in Fig. 9. 

%semantics 

assign /* as_id expl */ 
{ expl.preact = assign.preact ; 

assign.execute = (update assign.preact as_id.name expl.evaluate) 

Fig. 9 Description of PL/0 interpreter (part) 

...(a) 

..(b) 
~...(c) 

For example, at the node for assignment (assign) Of Fig. 9(a), the evaluator let the run- 
time environment before evaluating the expression in the fight-hand side (expl .preact)  be the 
environment before executing the assignment (assign .p reac t )  (see Fig. 9(b)). Next, the 
evaluator updates the variable in the left-hand side (as_id. name) tO the value which results 
from evaluating the expression in the right-hand side (expl . eva lua te ) ,  and the resulting 
environment becomes the environment after executing the whole assignment 
(ass ign.execute)  (see Fig. 9(c)). 

Since attribute evaluation in the synth-function evaluator of Jun is demand driven, only 
necessary parts are executed. Therefore, conditional statements, such as an 'if statement', can 
be handled correctly. 

Now, we had a serious problem in loop statements. As an example, consider the 
dependency of dynamic attributes at a node of a 'while statement' 

while => cond stms. 
m 

The dependency is shown in Fig. 10. 

preact evaluate preact execute 

Fig. 10 Dependency of dynamic attributes of'while statement' 



67 

In this 'while statement', the whole statement is usually re-executed several times after 
executing stm_s. So there is an attribute dependency from execute of stm_s to p reae t  of 
while. This constitutes a cycle in attribute dependency at run-time and attributes in this cycle 
are usually evaluated several times. Note that this problem is essentially caused by dynamic 
semantics that deals with the run-time behavior, and cannot be resolved by the iterative 
evaluation of finitely reeursive attribute grammars which deals with the static semantics. The 
attribute grammar was originally conceived for describing static semantics at compile-time, and 
in pure AGs, attribute values have the property of single assignments and their values cannot be 
modified once they are defined. Therefore, AGs cannot completely specify the dynamic 
semantics, unless we use functions themselves as attribute values. 

Our solution here was made on a practical standpoint. We didn't go deep into the single 
assignment property of AGs: we allowed re-assignment to attributes i f  the assignment was 
explicitly described as a side-effect within the right-hand side of semantic rules. Fig. 11 shows 
our way of describing dynamic semantics of a 'while statement'. Here, while .proaet  iS re- 
assigned its value in the right-hand side of a semantic rule (Fig. 11 (*)). 

while 
{ 

/* as cond as stms ~/ 
as_cond.preact = while.preact ; 
as stm s.preact = while.preact ; 
wh~le.execute = (loop (when (not as cond.evaluate) 

(return while.preact)) 
(setq while.preact as_stm_s.execute)) 

Fig, 11 Description of dynamic semantics of 'while statement' 

J ...(*) 

The above strategy is of course not a complete solution. But considering that the 
possibility of cycles in attribute dependency at run-time is generally restricted to loop 
statements, the part exceeding the pure AG formalism is quite limited. Moreover use of the 
same attribute evaluator as in other back-end phases was attractive in our generation 
environment. 

6. G e n e r a t i o n  o f  C o d e  G e n e r a t o r  

There are several formalism for the code generator, such as the one using pattern matching 
and tree-rewriting rules [Cattell 80], LR parsing techniques [Glanville 78], and affix grammars 
[Ganapathi 85]. We adopted the attribute grarranar formalism based on tree grammars, because 
multiple traversals over the syntax tree are possible in AGs, which cannot be performed in other 
methods. Using AGs enables description of algorithms such as the generation of shortest 
object code for expressions using minimum registers. Moreover, adoption of the unified 
formalism for all back-end phases was attractive. 

An example description of code generator for PL/0 is shown in Fig. 12. This is a part of 
the description for generating the shortest object code of expressions for Sun-3. Four types of 
nodes - plus, minus, mul, and dry nodes - are treated together. Here the attribute regs is the set 
of allocatable registers, code is the generated code, treg is the target register to which the result 
value is stored, and nregs is the required number of registers. 
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The algorithm for the shortest code generation for expressions is usually given in the form 
of two-pass traversals on the syntax tree [Aho 86]. However, we think such a description is 
too procedural and specifies the order of processing more than is necessary. If we write this 
algorithm in AG as in Fig. 12, the description is declarative and easy to read. We don't need to 
think about the order of tree traversah. As an example of object code, take the expression 

a*(b+e)-d*e/(f-g). 
The code for this expression generated by the vendor-supplied compiler (Sun-3 Pascal) uses 3 
registers, while the code generated by the AG of Fig. 12 uses 2 registers, which is optimal. 

We think that use of AGs for code generators is welt suited to the generation of codes for 
RISC machines. However in CISC machines, methods using pattern matching of trees may 
yield better results by considering numerous matching patterns for a given tree. 

BEXP /* as_expl as_exp2 */ /* binary expressions plus, minus, mul and div */ 
(%local nl = (case %node 

((plus mul) (if (= 0 as expl.nregs as exp2.nregs) I as expl.nregs)) 
((minus div) (max as expl.nregs i))), 

n2 = as exp2.nregs, 
op = (case %node 

('plus "addl") 
( 'minus "subl") 
( 'mul "mulsl") 
( 'div "divsl") ) ; 

as_expl.regs = (request-reg (case %node 
((plus mul) (if (>= nl n2) 

BEXP.regs 
(reverse BEXP.regs))) 

((minus div) BEXP.regs)) 
nl); 

as_exp2.regs = ... 
BEXP.code = (cond ((case %node 

((plus mul) (and (>= nl *sum-of-reg*)(> = n2 *sum-of-reg*))) 
((minus div) (and (> n2 0)(> BEXP.nregs *sum-of-reg*)))) 

(append as_exp2.code 
(genop "movl" (to-string as exp2°treg ",sp@-")) 
as expl.code 
(genop op (to-string "sp@+, ~' as__expl.treg)))) 

((>= nl n2) 
(append as_expl.code as exp2.code 

(genop op (to-strlng as exp2.treg "," as_expl.treg)))) 
(t (append as exp2.code as expl.code 

(genop op 
(case %node 
((plus mul) (to-string as_expl.treg "," as exp2.treg)) 
((minus div) (to-string as exp2.treg "," as_expl.treg))))))); 

as expl.left = (case %node 
((plus mul) (>= nl n2)) 
((minus div) t)); 

as_exp2.1eft = (case %node 
((plus mul) (< nl n2)) 
((minus div) nil)); 

BEXP.treg = (case %node 
((plus mul) (if (>= nl n2) as expl.treg as_exp2.treg)) 
((minus div) as_expl.treg)); 

BEXP.nregs = (if (= nl n2) (i+ nl) (max nl n2)); 
) 

Fig. 12 Description of code generator for PL/0 (part) 
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7. Experimental Results 

The number of lines (including comments and blank lines) for the description of each 
phase of a compiler for the PL/0 language using Pie and Jun, and the corresponding generation 
time are as follows. 

. . . . . . . . . . . . . . . . . . . . . . . . .  description . . . . . . . . . . . . . . . . . . .  generation -- 
declaration of syntax and 
symbols, nodes, semantic 
attributes etc. rules 
(lines) (lines) 

front-end (pie) 82 539 
optimizer (Jun) 96 317 
(data-flow analysis) 
interpreter (Jun) 112 191 
code generator (Jun) 75 282 

others total time 

(lines) (lines) (sec) 
353(in C) 974 0.81 

79 (*) 492 54.8 

74 (*) 314 35.2 
65 (*) 366 50.9 

(*) in Common Lisp 

It can be seen that the generation time by Pie is quite fast. Note that in Jun, the number of 
description lines was reduced by about 40%, by collecting node types with similar semantic 
rules into a class. The time of generation is on Sun-4/280. 

8. Concluding Remarks 

We have presented an attempt of our group to generate almost all compiler phases by 
using compiler generators based on attribute grammars. 

The following issues are left as future problems. 
(i) The transformation component of the optimizer is not well studied. It should be further 
investigated. Transformation of trees [Lipps 89] seems to be useful. 
(ii) The description of dynamic semantics for the interpreter was made on a practical 
standpoint. However, a better formalism might be found. 
('fii) So far the formalism is made for structured syntax of programming languages without 
goto statements. Application to goto statements and other non-local jumps should also be 
investigated. 
(iv) We do not have a description of back-end phases for large scale programming languages. 
Further experience would be required before languages of practical size could be handled. 
(v) Jun is presently a prototype. More detailed design and efficient implementation are 
desirable. 
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