
A Compiler with Scheduling
for a Specialized Synchronous

Multiprocessor System

Petr Kroha
Technical University Praque, Department of Computers,

FEL-CVUT, Karlovo nam.13, 121 35 Praha 2, Czechoslovakia.

Peter Fritzson*
E-mail: paf@ida.liu.se

Department of Computer and Information Science
Link6ping University, S-58t 83 Link@ing, Sweden

Abstract: This paper presents an algorithm for schedufing parallel activities in a spe-
cialized synchronous muttiprocessor system. The algorithm is being implemented as a
part of a cross-compiler for an extended parallet Single Instruction Computer (SIC). A
SIC machine may contain multiple arithmetic processors, each associated with certain
addresses in the address space.

The scheduling cross-compiler initially derives a schedule including information
about the number and types of processors necessary for the highest possible degree of
parallelism for the code in each basic block. If too few arithmetic processors are avail-
able, a schedule for a smaller number of processors can be generated. Code generation
and scheduling is presented for a one page program example in Pascal. For this exam-
ple, a speedup of a factor of seven was obtained for the multiprocessor system, com-
pared to the Intel 80286 processor, and assuming the same clock cycle time.

Introduction
Besides the classical computer architectures there are many attempts at new architectures..

There are controversies concerning whether the instruction set should be very simple or very
complex. We do not settle this controversy here; there can hardly be a simple answer. Several
successful attempts belong to the RISC architecture described in many papers and books, e.g.
[Pat82], [Mi186], [BlaKro87] which uses a reduced set of instructions (about 40). It has been
demonstrated, e.g. by [Kro88], that the gain in performance by far overweighs the loss of the
possibility of hand coding in assembly language, and somewhat larger code size. RISC ma-
chines such as the Sun SPARC [Nam88] have a fascinating performance.

However, there is an extreme possibility called the single instruction machine with only
one instruction. This idea was first published by Lipovski,G.J. [Lip76]. Such a machine for-
mally executes only one instruction, and thus has no instruction set, no opcode and no instruc-
tion decoding. Instead, different operations are executed by Arithmetic Units (AMUs) asso-
ciated with special addresses in the address space. Hardware realizations and applications are
described in [TabLip80], [AzTab80], [AzTab83].

The key idea is that a Central Move Unit (CMU) delivers values to Arithmetic Units
which each are specialized in one function. The addressing mode is decoded by the CMU so
that the AMUs only need to handle execution.

The main ideas of the SIC machine have been summarized in [Tab87]. The described SIC

*. This research has been supported by the Swedish National Board for Technical Development (STU).

133

machine uses a very modest set of AMUs. There was no attention devoted to the SIC machine
from the software point of view. This was probably the reason that only such AMUs were con-
sidered whose execution time are shorter than that of a MOVE operation. From the hardware
point of view this is an advantage because the AMUs can work without starting and stopping,
and the machine need not consider the synchronization problem. However, that approach has
several disadvantages:

• The set of operations which are faster than a MOVE operation is very small.

• For control applications such a machine would be difficult to program, e.g. multiplica-
tion of real numbers using the simplest operations.

• The potential parallelism of the SIC machine cannot be used because the MOVE oper-
ation of the CMU is the slowest one.

In the report [Kro89] some properties of an extended SIC machine are described and its pro-
gramming possibilities. These extensions are:

• AMUs with an execution thane longer than that of the MOVE operation, creating a base
for nontrivial programming.

• Two CMUs cooperating with a two-port memory. The managing of the starts and stops
of the AMUs is somewhat more complex, but this opens up possibilities for simple par-
allel processing.

Further it was demonstrated in [Kro89] that for every algorithm a SIC machine could be
built with the same computational power as any CISC machine. Examples and a comparison
with an assembly program for a PDP 11 machine was given.

This opens up the possibility of a customizable compiler with scheduling, which can com-
pile programs into specialized parallel-processing SIC machines, which have exactly the re-
quired number and kind of AMUs.

Program in FORTRAN-77, C, Pascal, etc.

Front-end
of a compiler

I anguage I
r~epresentataon ot
the Program

Transformations and restructuring t
[for increasing paralMism 1

,~ The topic of this report

Dependency A n a l y s /

7
'~ ~': with file user about :

~ p y ° y ~ s y S ~ ° E ~ . ";

""'"1"2.
Code generation i Design of an algorithm-tailored

for the used ', SIC parallel machine machine

Code for the SIC machine SIC machine

Figure 1. A schematic diagram of a compiler with scheduling

134

C o m m o n requirements on parallel architectures

Before starting the discussion on the usage of SIC machines for the purposes of parallel
computing we will briefly overview some common problems concerning machines for parallel
processing.

Problems of memory

The memory system is so important that a well-known researcher has called it "the yon
Neumann bottleneck" because of its critical role. It limits how fast input data can be delivered
to a processor and how fast the results can be received from the processor.

In the presented approach two CMUs are working in parallel with a two-port memory to
speed up the processing. This is, of course, still a bottleneck, but an improvement over a single-
ported memory.

Problems of overhead

During the execution of a program on a parallel machine run-time overhead is incurred from
activities such as scheduling, interprocessor communication and synchronization. This over-
head is added to the execution time in the form of processors latencies and busy waits. As the
overhead increases, the amount of parallelism that can be exploited decreases. There is a larger
overhead for asynchronous multiprocessor parallel machines that for synchronous systems. Our
approach concerns synchronous multiprocessor system.

Problems of transforming serial algorithms into parallel algorithms

In putting multiprocessor systems to use, a major hurdle is in writing programs for such ar-
chitectures. One way to automate the production of parallel programs is to construct a compiler
for a standard high-level language to produce output for a multiprocessor system. With such a
compiler, existing software libraries can be mapped to a multiprocessor system with a minimum
of effort. Some fraction of the library undoubtedly will exhibit negligible parallelism and will
produce rather inefficient parallel implementations. These programs can be run serially.

Creating a high-quality optimizing compiler for a multiprocessor system is a formidable
task. An early attempt [Kuck72] showed that there is exploitable parallelism on the order 10 to
100 in many ordinary FORTRAN programs. The next decade have produced far more sophis-
ticated developments that have been used extensively for real applications. However, compilers
for multiprocessors have lagged behind compilers for vector processors because the translation
problem is more complex for multiprocessors.

To process two statements in parallel they must not contain dependent variables in the sense
that a value is computed in one statement and used in another statement. Such dependencies can
be detected through USE-DEF dataflow analysis.

The problem of scheduling
After program restructuring, a compiler should identify the parts of a program that can take

advantage of the architectural characteristics of a machine.
To take full advantage of a machine architecture is a complex and difficult task. When a

program has been transformed into parallel form, the next step in the translation process is to
find ways to exploit the parallelism on a given machine architecture. Part of this is the sched-
uling problem.

The scheduling schema can be static (derived at the time of program translation by the com-
piler) or dynamic (derived at run-time by the hardware or the operating system).

Scheduling compilers (sometimes called auto-scheduling compilers) create plans for the ex-
ecution of parallel programs without the involvement of an operating system for synchroniza-

t35

tion. This allows for spreading tasks across processors during run-time in an efficient way
which involves little overhead.

Scheduling methods are discussed in [Po88] and summarized:
"Extensive work has been done on the problem of static scheduling of independent tasks on

parallel processors. Most of the instances of this problem have been proved to be NP-complete.
These theoretical results however are of little help for practical cases."

A summary of problems when designing parallel architectures

When designing parallel machines, usually a class of algorithms, rather than a single algo-
rithm, must be considered. The more difficult objective is to create a single architecture that is
good for all the problems in a certain class.

In closing this section, we summarize by saying that the advantage of using the principle of
an extended single instruction machine for synchronous parallel computation is that all syn-
chronization and communication problems (including the memory sharing problems) are sim-
ply solved by using CMUs.

A Scheduling Algorithm
To get some idea about the possibilities of parallelism in a given algorithm, we need to

know the"depend on" relation for variables and objects in memory, in the sense that if an object
A "depends on" an object B then the computation of A cannot be started before the computation
of B has been finished. The graph representation of this relation is denoted the dependency
graph of variables. There can be a wide spectrum of shapes of such graphs.

total ordering

Figure 2. Kinds of ordering imposed by a dependency relation

partial ordering

It is obvious that the possibilities for parallel execution are different for different degrees of
ordering within such graphs. There are many programs, where part of the potential parallelism
is hidden and where the degree of parallelism can be increased through transformations [Fi84].
These transformations can be used by an independent phase of a compiler such as an optimizer
in a classical compiler (Fig.2). Some sophisticated transformations are described in-
Fi84],[El186].

The dependency graph of variables will be derived from the intermediate language repre-
sentation of the program. It has variables as nodes and edges labeled by operations (this is easy
to derive from the intermediate representation. For the purposes of scheduling we shaI1 use this
graph in its inverted form, i.e. we substitute edges by nodes and vice versa. Thus nodes will rep-
resent operations and edges will represent the variables. This new created graph we shall call a
dependency graph of AMUs. After the compiler is ready with this dependency graph, it com-
putes the highest number of usable AMUs of each type, e.g. the compiler informs the user that
it is not necessary to use more than M arithmetic units for addition (in the algorithm tailored
approach described in section 7).

We will make a difference between virtual AMUs and real AMUs. The number of virtual
AMUs is straightforwardly derivable from the program in intermediate language form, where

136

one "new" (not used until now) AMU is supposed to be allocated for each operation. Real
AMUs are AMUs which are physically available in the machine.

pusha a b c pusha x a b c d

add mul - ' >
st pusha c

pusha d '"~K":'" ' _ / "
mul

a add - - ~

x

Figure 3. Intermediate language representation and dependency graph of AMUs

However, a situation can arise where the compiler will propose to use some exotic unit, be-
cause of special operations in the algorithm. These operations are given by the operators of the
intermediate language. In this case the user must decide. For example, should an operator func-
tion such as sin really be an AMU (i.e. realized in hardware like in the 80287) or if it should be
computed by a library routine call. When library calls are included, the compiler must use their
source form for purposes of scheduling and substitute the call by the body of the library sub-
routine (only for scheduling, not for code generation), because the procedure uses the same
hardware units in parallel and this must be taken into account.

When scheduling, in most cases it will be found that it is not necessary for all these virtual
functional units (virtual AMU) to be mapped into real AMUs by a one to one mapping, because
they cannot work fully in parallel. Therefore the virtual units (of the same type) which are used
during non-overlapping time periods can be represented by one real AMU.

~.-..--zx~iiiiiiiil;iiiiil;;;;il;;;;;;il;;;~;~;~;!!!!!!!!!!~l~,.A
z~.

............ .[221.'"=:::::" :ii;il ;;i; Vq ================================ _ _

Virtual AMUs Real AMUs

F i g u r e 4. M a p p i n g be tween v ir tual a n d rea l A M U s

The dependency graph of AMUs represents dependencies among virtual AMUs and wilt be
used for creating a schedule.
A kind of coloring algorithm with some heuristics will be used for the scheduling. Each input

of a virtual AMU could have two colors (red, green - for wait, run). The real physical AMU
which is representing a virtual AMU, can start executing only if the virtual AMU has all inputs
colored green.

The scheduling problems addressed by this paper

The scheduling problem of our synchronous multiprocessor system can be divided into two
problems:

The first problem is scheduling of instructions, i.e. scheduling of the activity of all virtual
AMUs. This scheduling consists in finding the right time for moving data from outputs of some
AMUs to inputs of other AMUs. The schedule is a plan of actions executed by two CMUs. The
result of this parallel activity must be the same as if the AMUs would execute serially. This se-
mantics is defined by the dependency graph.

t37

The second problem is the allocation o f the real AMUs. This is solved after the scheduling
of instructions.

t~oblems caused by control structure are discussed in [Kro89], and not dealt with in any de-
tail here. The basic control structure is the conditional move, used in the same way as in
[Tab87].

Data structures used by the scheduling algorithm

One element of the array of
virtual AMU descri:)tors

Inpl i Inp2
green? I green'..

Operation
of the AMU

Output
active?

Schedule for real AMUs

CMUI,CMU2 AMUs Re, ~
, } , ..~...~. !

i
Figure 5. The data structures used by the scheduling algorithm

T

An important data structure is an array of AMU descriptors where the current state of each
virtual AMU is stored. In the following description a matrix representation of the dependency
graph of AMUs will be used. In this matrix G an element G[i,j] = n, if the virtual AMU[i] after
its execution will color n inputs of AMU[j] green. Further an array of constants C will be used,
which has as many rows as there are input constants for the given algorithm, and as many col-
umns as there are virtual AMUs. An indication of computed results will be provided in an array
R which has one element for each virtual AMU.

j-th virtual AMU

i-th
virtual
AMU

Input
vffriable

[] i-th AMU makes
k inputs of
j-th AMU
green

Figure 6. Representation of the dependency graph of units

Results

1
A scheduling algorithm

In this section some properties of the algorithm and of the SIC machine determining the
scheduling will be assumed. Remember that scheduling is for a synchronous SIC machine with
multiple functional units. The absence of asynchronous waits has to be managed by smart
scheduling and some possible insertion of delay instructions.

• The algorithm is restricted to IL program sections corresponding to basic blocks.

• We address static scheduling only, i.e. not dependent on the input data.

• We first schedule the body o f a loop and then handle the whole loop as a unit for the
next step of scheduling.

138

° We assume that the execution time for each AMU is known. For some specific cases
(e.g. sin, cos) this time must be estimated.

We are scheduling AMUs only. Additional information from the intermediate language rep-
resentation of the program will be used for code generation.

The algorithm:

Before we start the algorithm, the longest path in the IL program from the input values to
the results must be found. There are several known methods to do this. This algorithm uses a
few heuristics in order to improve the generated schedule.

The algorithm starts with all inputs of virtual AMUs colored red.
1 Apply constants to cover the inputs of AMUs to which they are connected. Then some in-

puts will become green, and some AMUs will be ready to start.

2 Build a list of AMUs that are ready to execute, i.e. a list of virtual AMUs which have all of
their inputs green, and which have not already been started.

3 Order this list in decreasing order by the execution time needed for running each AMU be-
ginning with the AMUs which are on the longest path. This step represents a heuristic in the
algorithm. If a better heuristic for choosing an AMU from a list of free AMUs should be
found, it should be used in this step. This heuristic assumes that it is better to start AMUs
that take longer early, since more time is available then.

4 Pick the first AMU from the list.

5 Find an idle real AMU of the same type as the chosen virtual AMU in the schedule. If there
is no one, then consider the next virtual AMU from the list of free AMUs. This is the second
heuristic. Another heuristic could be to first search in the schedule and investigate if it
would be better to wait for some AMU with a long execution time that should finish soon.
If no one of the virtual AMUs in the list can be assigned to a real AMU, then wait for a mes-
sage from the schedule that some AMU of an appropriate type finished. Then try again. This
is the third heuristic feature. Another alternative is to backtrack as in the PROLOG imple-
mentations and to continue searching for a solution without waiting time.

6 When a real AMU has been chosen, then check if its output is free, i.e. if there isn't any
result waiting to be used later. If the output is not free, search for the next real AMU, but
with a free output. If there is no one, then generate a MOVE instruction from the output of
the AMU to a register. The scheduler must remember the number of the virtual AMU to
which the value stored temporarily into this register should be moved later. This is another
heuristic (the fourth), because it would perhaps in many cases be better to wait in the hope
that during the next time period storing to registers will not be necessary. The time spent on
register management could be greater than the waiting time for a more suitable situation.

7 Schedule the feeding of input values to the chosen AMU, i.e. the action of one or two CMUs
(due to the arity of the chosen AMU). Two CMUs can work in paraltel because of the usage
of a two-port memory in the extended SIC machine.

8 Schedule an activity of the started AMU.

9 Make one step in the time scale of the schedule.

10 Check the schedule if some AMU has finished execution at the current time.

11 Update the state of inputs and outputs of AMUs due to the dependency graph of AMUs.

12 Check if all results are green. If so, the final state has been reached, if not, then continue by
step 2.

139

Comments:

This scheduling algorithm will first be used without any limitations in resources, i.e. poten-
tially as many real AMUs as are needed for achieving the maximum degree of parallelism. The
waiting time of both CMUs will be minimal. In this case no registers for storing intermediate
results are needed. The customizable compiler informs the user about the in'st schedule found
under the given conditions, i.e. unlimited resources and the simplest heuristics used. One part
of the schedule is information about the number of cycles needed for reaching the final state. It
represents the minimal execution time which can be achieved by using this architecture for a
given algorithm with described scheduling heuristics.

The quotient between the number of virtual AMUs and the number of used real AMUs can
be used as an easy computable degree of parallelism of an algorithm for the purposes of design
of a SIC machine. If the dependency graph of variables corresponds to a total order relation then
obviously one real AMU (of each type) will be enough and the degree of parallelism is one, i.e.
such an algorithm is sequential. This quotient can be used in heuristics for an evaluation func-
tion.

The user can ask for all other schedules which can be derived under the same conditions by
backtracking the algorithm (in the PROLOG implementation) for finding a minimal scheduling
time. There can be a large number of these. Finding all such schedules can result in a combina-
torical explosion. Because of heuristics it is not certain if a minimal schedule has been found
until all schedules have been generated.

If the user is interested in the generation of a specialized SIC machine the compiler can sys-
tematically, step by step, decrease the number of used real AMUs and provide new schedules
for the user to decide what combination of real AMUs would be most convenient. If the user
could precisely formulate the cost function of this process (the dependence between the price
of the realization and the speed of processing) then this can be an automatic process.

The user could also specify certain limitations concerning the set of real AMUs (e.g. to use
a smaller number of AMUs of a specified type) and let the compiler compute the scheduling
again from the beginning. After the user is satisfied with the schedule for a limited set of AMUs,
he can specify limitations for the number of registers and let the compiler schedule again.

This whole process can be repeated for combinations of different heuristics. It is obvious
that a heuristic which could give the best results for one case of resource limitation need not
give the best results for another case of resource limitation. The places for including heuristics
are marked in the algorithm and from the number of used heuristics at each point in the algo-
rithm and from the number of cases of resource limitations we can derive an upper limit of the
number of possible schedules. The danger of combinatorical explosion is of course very actual.

After the dialogue between the user and the compiler is completed, there is a fixed set of
real AMUs, a set of registers and a schedule for the parallel activity of the AMUs .

The compiler generates code for the extended SIC machine by using the intermediate pro-
gram representation and the created schedule table. Code will be generated for two CMUs
working in parallel, and having access to a two-port memory.

If a method could be devised for splitting the set of variables into more than two memory
banks, a set of SIC machines could be used and the performance of a vector machine could be
achieved.

The usage of AMUs with pipe!ining

An interesting possibility occurs when the used real AMUs are designed for a pipeline mode
of execution. Then all virtual AMUs of a certain type can be mapped into only one real AMU
of the same type. Registers for saving intermediate results will be necessary in this case.

140

Conclusions
The problems of communication overhead and effective parallelism are serious problems,

and they are likely to limit multiprocessors to relatively few processors in practical systems. Ex-
ploitation of multiprocessors depends strongly on finding ways to:

• Map serial programs to parallel programs.

• Identify useful parallelism, as opposed to parallelism that leads to wasted effort.

• Reduce overhead for scheduling tasks.

We have addressed the last problem by a method for compile time scheduling of multiple
arithmetic processors in the single instruction machine architecture. It was demonstrated that
the usage of two CMUs as the only means for communication and synchronization among pro-
cessors can be efficient enough for a large class of tasks, in the case when there are operations
with a longer execution time than the MOVE operation. This condition wilt be often valid when
we consider some complex arithmetical operation with integers or floating-point operations.
The described scheduling cross-compiler will not only generate code, but also will generate in-
formation about the degree of parallelism found in the translated algorithm, and of the most
suitable structure for a specialized algorithm-tailored SIC machine and its performance.

In the given example we have compared the performance of the proposed machine sched-
uled by the described compiler with the performance of the I80286 executing the code produced
by the Turbo-Pascal 5.0 compiler. We have assumed that the time needed for the execution of
a MOVE operation on the SIC machine will be the same as for the I80286. Actually, it should
be shorter because the time necessary in the I80286 for decoding the opcode will not be needed
by the SIC and because of simpler addressing modes.

There are several possibilities for extensions and future work:
• Making a comparative study of the used heuristics in relation to other methods, and in-

tegrating with results from the field of parallelizing VLIW compilation.

• The possibility of building a vector machine from many SIC machines. Each memory
bank of the vector machine can be represented by a data memory of one SIC machine
which is the way how to get a SIMD machine based on the SIC architecture.

• The possibility of building a systolic array machine from many SIC machines. Each of
these SIC machines must include AMUs with the operations "to send message" and "to
receive message". However, there is a synchronization limitation. The SIC machine can
not provide asynchronous waiting like a transputer.

• The possibility of building a hierarchical system of SIC machines. Each CALL instruc-
tion of the intermediate language representation of the program could be substituted by
starting a SIC machine with this subroutine in its Instruction Memory. Then there could
not only be more AMUs executing in parallel but also far more SIC machines working
in parallel. The scheduling principles will be the same assuming that the execution time
of the subroutine is known or some upper limit can be estimated.

There are no absolute rules which say that one architecture is better than another. The ob-
jective is to look both at cost and performance, not performance alone, in evaluating architec-
tures.

141

A p p e n d i x A - A p r o g r a m e x a m p l e

We will present an example of the scheduling of the code of a body of a boolean function
used in a program which determines if two line segments are intersecting each other. This func-
tion has not been specially written for the purpose of this illustration, it has been taken from the
collection of algorithms in the book [Sed88],p.350-351. The complete environment of this
function wilt be shown, but for our purposes it is enough to investigate the body of the function.

For this function body the translation into assembly language for the processor 180286
(IBM PC/AT) is appended. It was obtained from a Turbo Pascal 5.0 compilation. The given
number of machine cycles for each instruction has been calculated accordingly to [MorA1b86].
The listing of assembly instructions has been obtained using the Turbo Debugger.

program inter;
type

point = record
x,y : integer;

end;
line = record

pl,p2 : point;
end;

var
inl,ln2 : line;

function CCW(pO,pI,p2 : point) : integer;
vat

dxl,d~2,dyl,dy2 : integer;
c, d : integer;

begin

{ Pascal code for I80286 number of cycles }
{ .. }

dxl:=pl.x-p0.x;
mov
sub
mov

dx2 : ---p2. x-pO. x
mov
sub
mov

dyl :---pl .y-pO .y;
mov
sub
mov

d y 2 : = p 2 . y - p 0 . y ;
mov
s u b
mov

C : =dxl *dy2 ;

mov
imul
mov

d: =dyl *dx2 ;
mov
imul
mov

if c > d then CCW:=l;
mov
cmp
j) . e
r a o v

if C < d then CCW:=-I;
mov
cmp
j n l
mov

if c = d then
mov
C~p
j n e

begin
if (dxl*dx2 < 0) or

ax,[bp+08] 3
ax,[bp+0C] 7
[bp-04] ax 5

ax,[bp+04] 3
ax,[bp+0C] 7
[bp-06] ax 5

ax,[bp+0A] 3
ax,[bp+0E] 7
[bp-08] ax 5

ax,[bp+06] 3
ax,[bp+0E] 7
[bp-0A] ax 5

ax,[bp-04] 3
word ptr [bp-0A] 24
[bp-0C] ax 5

ax, [bp-08] 3
word ptr [bp-06] 24
[bp-OE] ax 5

ax,[bp-0C] 3
ax,[bp-0E] 7
Inter.25 12
word ptr [bp-10] 5

ax,[bp-0C] 3
ax,[bp-0E] 7
Inter.26 12
word ptr [bp-12] 5

ax,[bp-0C] 3
ax,[bp-0E] 7
Inter.31 i0

(dyl*dy2 < O) then
CCW:=-I else

mov ax,[bp-04] 3
imul word ptr [bp-06] 24
or ax,ax 2
jl 007A i0

142

if (dxl*dxl
(dx2*dx2

mov
imul
mov
mov
imul
add
mov
mov
imul
mov
mov
imul
add
cmp

9z
X O E

m O V

I m p

m o v

end;
end

mov ax,[bp-08] 3
imul word ptr [bp-0A] 24
or ax, ax 2
jnl Inter.29 10
mov word ptr [bp-12] 5
]mp Inter.31 i0

+ dyl*dyl) >=
+ dy2*dy2) then

CCW:=0 else CCW:=I;
ax,[bp-0A] 3
word ptr [bp-04] 24
CXraX 2
ax, [bp-06] 3
word ptr [bp-08] 24
ax, cx . 2
bx, ax 2
ax,[bp-08] 3
word ptr [bp-06] 24
cx, ax ,.. 2
ax,[bp-04] 3
word ptr [bp-0A] 24
ax,cx 2
ax,bx 2
00AE i0
ax~ax . 2
[bp-02],ax 5
Inter.31 12
word ptr [bp-10] 5

To process the body of function CCW (because the relation between c and d is data depen-
dent, we consider all cases) about 440 cycles are necessary for the code of the processor 80286
which is used as a comparison.

Appendix B - The example translated into the IL

For the purposes of this presentation a very simple stack-oriented intermediate language has
been chosen. The translated example is presented below.

pusha ...push an address on the compilation stack.
pushc .. push a constant on the compilation stack
add, sub, mul, st, or, ¢omp .,..generate code for an operation over the dements described in the stack
tfj....generate an instruction for "jump if false", i,e. if the previous comparison sets the flag to false

pushc i mu± mul usha dxl
pusha pl.x st
pusha p0.x
sub lab L1
st pusha c
.......... pusha d

comp <
similar to the previous ifj L2

.......... pusha cow
pusha c pushc -i
pusha dxl st
pusha dy2
mul lab L2
st pusha c
.......... pusha d
• comp -
similar to the previous ifj L3

.......... pusha dxl
pusha c pusha dx2
pusha d mul
comp >
ifj L1 pushc 0
.......... oomp <
pusha cow pusha dyl

pusha dy2

pushc 0 pusha dy2
comp < pusha dy2
or mul
........... add

pushc i
comp comp >=
ifj L4 ifj L5

pusha ccw pusha ccw
pushc -I pushc 1
st st

lab L4 la L5
pusha dxl pusha cew
pusha dxl pushc 0
mul st

pusha dyl lab L3
pusha dyl
mul
add

pusha dx2
pusha dx2

143

Appendix C - A dependency graph based on the program in IL form.

Set of input values

0 p0.x p0.y pl.x pl.y p2 .x p2 j 1~"~

~ f ~ m " ' , , , ~ ~ p ~ ~ ~ ?

Set of results
Figure 7. A dependency graph of arithmetic processor units (AMUs)

A matrix representation of the dependency graph.

Representation of the dependency graph of vir~uat AMUs

" 7 ~"" ~ ' " " i ' " " . ~ ' " " ~ ' ~ " i ' " " i ' T ' . i . ' " ' " i ' • " i " " i " " ' ~ . ' " " [~ ' " " i " ' " ' i ' " " $ ' " - i " i " " ' ~ . " ' " i l

x~-~.~...~.~.~.~.~.i.....~..~.~...i.~.~.i.....*.~i~..~..i~.~.~..~....~i..~...i~.~;.~.~*.~...~"~...i~.....;~...~....~i~....~...f~"~
.. :=.' L..',....'..........:....:............~....-....... ...

.P , , t -~ I . - . , .L2~ . . , . . .~ :~ , . . . , .~ : ,L . , . .~ ~ , S ~ i . . • :..... ~ :~ ~ . I t
• ~ V~.~i.~.~.~i.....~!.~....~.~.i~...i~.......~.~i~.....i~.~i.~.̀ ..~...~i~...i....~!~..~".~.~..~...~i......~..~.~....~i

.......

.t/.~_....,......, , , ,......i......i..Lil.i...-,.-...-~.....~.....i- -,."

• I" ['""i'""'i":Li'T÷""t-"i-"'i'-'÷ -'" ~'"i-'"}'-"-" i""i'""'i'""~'"".~'"i--i"-'-""" "['" _.I
Legend - Virtual AMUs:
a - I. SUB (-I) m- i. CMP (?,>,f) R- result (column)
b - 2. SUB (-2) n - 2. CMP (?,<,f)

c - 3. SUB (-3) o - 3. CMP (?,=,f) Input values (rows):
d - 4. SUB (-4)

e - i. MUL (*I)
f - 2. MUL (*2)

Figure 8. A matrix as a representation of the dependency graph of AMUs

144

A p p e n d i x D - D e r i v e d s chedu le s for the p r o g r a m e x a m p l e

-- * 9 +)r

] 2 3 4 -5 3 7 6 2 1 4 8 4] 2_/{___5_ 7 6 1 2 <--real AMUs

#:;~:.";N~.~ " " " ' ~ ' " ' - - ~ 9 " - ' ' " ' " ' " - " r ' " " : ' " " r - -.- r " " ' r "" '" .~ '" - ~ " ' - . ~ ' " ' " . = r 2 c y c l e s

:::::::::::::::::::: ~,.,..:,,....,..,.~,.,.~,.,...,.,,~ :,,.,,~,..,~...~,,,,.:....,: ~ is 1 line

i~t~!%%~ili: ---i..,-,: ' , - , , , + , , . + - . . - . : ' - - " ' - - - - " - + " " i } ~ : ' : , ~ - - , . ; , , ~ - , - ~ ~, . . , . . :a. , . , ,~, ,- - - : , , - . . . " . . . , , . : ~'.,,,,~

~~~..,...~.,...~.....~..-.~,+,,,.~.,:.,:..~.:.,..., . : , .. , ~ ............. [ ~.....:,....4......~,...: : . . ..',.....~.., . ..... 

..................................................................... ............. I 
~.]~;.%~ ...... ~.,...:......÷ . . . . . .  . ........... :.....~....,~.,..,,~...,,.+.,.¢ ............ :.. ........... 

:1 
...... i...,.,g.-,..~ ..... ~ ..... i.-,-~,..,,.~.,,,.;~..,,..:......,! . . . . . . . . . . . . . . . .  
. . . . . .  " , , . , . ; , . . , . &  . . . . . . . . . .  , ~ , . . , , . i . , , , , , ' , . . . . ~ , , . , . ~ .  . . . . . . . . . .  " " , . . . ~ . , , . ~ . , , , , , L , , , , , i  . . . . . . . . . . . .  g . . . . . . . . . .  

Niiiiiiiiiiii iiii::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::: = 
..... !i a i ~t cf ~ -;~~~~~t~izi~~ ................................ ~ ............. " ~'.. ~'..n '.. o~ ~" ~:..~ "<"~','," . ~ t ~  

AMU s 

~ multipliers~ / 52 cycles 

• 0 , 

1 plpe~ined 
multiplier 

Figure 9. A derived schedule for real AMUs without limitation of resources 

80 cycles 

F i g u r e  10. A schedu le  f o r  l imi ted  resources :  1 subtrac t ,  3 mul t ip ly ,  5 condi t ional ,  1 addi t ion,  and  ] 

1 og ica t -or  A M U .  



t45 

Appendix E - Generated SIC machine code for the program example 

CMU - i: CMU - 2: 

pl .x --> inpl (-I) p0.x --> inp2 (-i) 
p2 .x --> inpl (-2) p0.x --> inp2 (-2) 

out (-I) --> inpl (*5) out (-i) --> inp2 (*5) 
out(-l) --> inpl(*3) out (-2) --> inp2(*3) 
out (-2) --> inpl(*7) out (-2) --> inp2(*7) 

pl .y --> inp2 (-3) p0.y --> inp2 (-3) 
p2.y --> inpl (-4) p0.y --> inp2 (-4) 

out (-3) --> inpl (*6) out (-3) --> inp2 (* 6) 
out (-3) --> inpl(*2) out (-2) --> inp2(*2) 
out (-3) --> inpl(*l) out (-4) --> inp2(*l) 
out(-l) --> inpl(*4) out (-4) --> inp2(*4) 
out (-4) --> inpl(*8) out (-4) --> inp2(*8) 
out (*3) --> inpl(?4) #0 --> inp2(?4) 

Rwl --> Rwl Rw2 --> Rw2 
Rwl --> Rwl Rw2 --> Rw2 

out (*5) --> inpl(+l) out (*6) --> inp2 (+i) 
Rwl --> Rwl Rw2 --> Rw2 

out(*l) --> inpl(?l) out (*2) --> inp2(?l) 
out (*i) --> inpl(?2) out (*2) --> inp2(?2) 
out(*l) --> inpl(?3) out (*2) --> inp2(?3) 
out (*4) --> inpl(?5) #0 --> inp2(?5) 
out (*7) --> inpl(+2) out (*7) --> inp2(+2) 
out(?4) --> inpl(or) out (?5) --> inp2(or) 
out(+l) --> inpl(?7) out (+2) --> inp2 (?7) 
out(or) --> inpl(?6) #I --> inp2(?6) 
.................................................... 

out(?l) --> Rwl out(?2) --> Rw2 
#LI -c> PC1 #L2 -c> PC2 
#I --> CCW #-I --> CCW 

#END1 --> PCl #END2 --> PC2 
LI: L2: 
out(?6) --> Rwl out(?7) --> Rw2 

#L3 -C> PC1 #L4 -c> PC2 
#-I --> CCW #i --> CCW 

#END1 --> PCl #END2 --> PC2 
L3: L4: 
END1: #0 --> CCW 

#END --> PC2 END2: 
#END --> PC1 #END --> PCl 

#END --> PC2 
61 cycles 

Figure 11. A scheduled program for the designed paraUel SIC machine given unlimited AMU resources. 



146 

REFERENCES 
[AzTab80] Azaria ,H.,Tabak,D.: Bit-Sliced Realization of a CMOVE Architecture Microcomputer. In: 

EUROMICRO Journal, Vol.6, No.6, pp.373-380, Nov.1980. 

[AzTab83] Azaria,H.,Tabak,D.: Desi~a Consideration of a Single-Instruction Microcomputer- A Case Study. 
Microprocessing and Microprogramming, Vol.11, No.3,4, pp.187-194, North-Holland, 1983. 

[BlaKro87] Blazek,Z.,Kroha,P.: Design of a Reconfigurable Parallel RISC Machine. EUROMICRO'87, 
Portsmouth, in: Microprocessing and Microprogramming, Vol.21., No. 1-5, pp.39-46, North-Holland, 
1987. 

[Fi84] Fisher,J.A.,Ellis,J.R.,Ruttenberg,J.C.,Nicolau,A.: Parallel Processing: A Smart Compiler and a Dumb 
Machine. In:Proceeding of the Compiler Construction, pp.37-47, Association for Computing 
Machinery, June 1984. 

[Fri83] Fritzson,P.: Symbolic Debugging Through Incremental Compilation in an Integrated Environment. 
The Journal of Systems and Software 3, pp.285-294 (1983). 

[Fri86] Fritzson,P.: A Common Intermediate Representation for C, Pascal, Modula-2 and FORTRAN-77. 
LITH-tDA-R-86-38, Research Report, PELAB, December 1986, University of LinkOping. 

[Kess82] Kessler,P.B.: The Portable C Compiler's Intermediate Representation, as Used by the Berkeley 
Pascal Front-End for the VAX. (An unpublished paper). 

[Kro86] Kroha,P.: Design of a Code Generator by Help of a PROLOG-Database. Proceedings of the 
Workshop Compiler Compilers and Incremental Compilation, Bautzen, October 1986, in: IIR, 12/86, 
AdW. 

[Kro88] Kroha,P.: Code Generation for a RISC Machine. Proceedings of CCHSC'88, Berlin, GDR, October 
1988. In Lecture Notes on Computer Science 371, Springer Verlag~ 

[Kro89] Kroha,P.: An Extension of the Single Instruction Machine Idea. LtTH-IDA-R-89-25, Research 
Report, PELAB, June 1989, Department of Computer Science, LinkOping University, Sweden. 

[Kuck72] Kuck,D.J.,Muraoka,Y.,Chen,S.C.: On the Number of Operation Simultaneously Executable in 
Fortran-like Programs and their Resulting Speedup. IEEE Transactions on Computers C-21(12), 
pp.1293-1310, December, 1972. 

[Kuck78] Kuck,DJ.: The Structure of Computers and Computations. John Wiley and Sons, New York, 1978. 

[Lip76] Lipovski,G.J.: The Architecture of a Simple, Effective, Control Processor. EUROMtCRO'76, in: 
Microprocessing and Microprogramming, pp.7-18, North-Holland, 1976. 

[Mi186] Milutinovic,V.M.: RISC Architecture. Tutorials, EUROMICRO'86, North-Holland. 

[MorAlb86] Morse,S.P.,Albert,D3.: The 80 286 Architecture. John Wiley & Sons,1986. 

[Nam88] Namjoo,M.,Agrawal,A.: Implementing SPARC: A High-Performance 32-Bit RISC Processor. Sun 
Technology, Winter 1988. 

[Pat82] Patterson,D.A.,Sequin,C.H.: A VLSI RISC. IEEE Computer, September 1982. 

[Po88] Polychronopoulos,C.D.: Parallel Programming and Compilers. Kluwer Academic Publishers, 1988. 

[Sed88] Sedwick,R.: Algorithms. Addison-Wesley, Second edition, pp.350-351,1988. 

[TabLipS0] Tabak,D.,Lipovski,G.J.: MOVE Architecture in Digital Controllers. IEEE Trans. Comput., VoI. 
C-29, pp. 180-190, Feb.1980, 

[Tab87] Tabak,D.: RISC Architecture. Research Studies Press, John Wiley & Sons, 1987. 


