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1 Introduction 

The aim of this paper is to show how program transformations can simplify the 
task of proving parallel programs with shared variables correct. To this end, we 
present four transformations all of which preserve partial and total correctness 
and fairness, and which consequently can be used in proofs of these correctness 
properties. 

The first transformation links parallel programs to nondeterministic sequen­
tial ones. This is as in the work of Ashcroft and Manna [1971], Flon and Suzuki 
[1981] and, more recently, Back [1989] and Chandy and Misra [1988]. However, 
to avoid the introduction of auxiliary variables that would destroy the program 
structure, we present this transformation only for a restricted class of parallel 
programs. 
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To enhance the usefulness of this transformation, we combine it with two 
transformations on parallel programs which introduce more points of interfer­
ence. These transformations are inspired by Lipton [1975]. Whereas Lipton 
considered only ordinary termination proofs, we deal here also with fairness. 

Fair termination is proved on the level of nondeterministic programs by 
reducing it to ordinary termination with the help of a fourth transformation 
due to Apt and Olderog [1983] which makes use of random assignments. 

Considered in isolation these transformations look very simple but when 
combined they can substantially reduce the task of verification. This reduction 
is achieved by delaying the assertional correctness proof as much as possible, 
viz. after a stepwise transformation of the original parallel program into a well­
structured nondeterministic program. The proposed transformations can also 
be used to construct parallel programs from nondeterministic ones. 

We illustrate our approach by proving total correctness of two parallel pro­
grams under the assumption of fairness: asynchronous fixed point computation 
and parallel zero search. 

There are two alternatives to these correctness proofs. The first one is to 
use the transformational approach to fairness in parallel programs presented 
in Olderog and Apt [1988]. It calls for proving ordinary total correctness of a 
transformed parallel program simulating the fair computations of the original 
program. Another possibility is to first translate the original program directly 
into a nondeterministic program as in Flon and Suzuki [1981] and then use one 
of the available methods for proving correctness of a nondeterministic program 
under the assumption of fairness (see Francez [1986] for their overview). 

In both cases the verification becomes extremely tedious and complicated 
because the transformations of Olderog and Apt [1988] and Flon and Suzuki 
[1981] introduce auxiliary variables that destroy the structure of the original 
program. 

Besides the two parallel programs we also prove correctness of the program 
transformations themselves (except of the one taken from Apt and Olderog 
[1983]). These proofs appear in the appendix to our paper and are based on a 
simple operational program semantics due to Hennessy and Plotkin [1979]. 

2 Preliminaries 

Throughout this paper we mean by a parallel program a program of the form 

So; [S1 II ···II Sn] 

where each Si is a while-program. We call So an initialization statement 
and each S, for i > 0 a component program. Within the component pro­
grams we additionally allow atomic regions. Syntactically, these are loop free 
while-programs enclosed in angle brackets {and). Sometimes we write [ili::1 Si] 
instead of [S1 II ... II Sn]· Note that S1, ... , Sn may share variables. 
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Intuitively, an execution of [S1 II· . ·I I Sn] is obtained by interleaving the atomic, 
i.e. non-interruptible steps in the executions of the components Si. ... , 8 11 • By 
definition, Boolean expressions, assignments, the skip statement and atomic 
regions are all evaluated or executed as atomic steps. As atomic regions are 
required to be loop free, their execution is guaranteed to terminate. An inter­
leaved execution of (S1 II· .. llS11 ] terminates if and only if the individual execution 
of each component terminates. 

For convenience, we identify 

{A):: A 

if A is an assignment or skip. 
A state is either a proper state, i.e. a mapping from variables to values, or a 

special symbol 1- denoting divergence. 
We consider here three semantics of parallel programs, all referring to an 

interleaving model of execution. Given a parallel program S we distinguish: 

• partial correctness semantics M[S], 

• total correctness semantics Mtot[S], 

• fair parallelism semantics M fair[ S]. 

In the partial correctness semantics, given an initial proper state, only the 
final proper states are recorded. In the total correctness semantics addition­
ally a possibility of divergence is recorded as 1-. Finally, the fair parallelism 
semantics is like the total correctness semantics but only the fair computations 
are taken into account. A computation of a parallel program is called fair if 
each component that has not yet terminated is eventually activated again. In 
particular, every finite computation is fair. 

For details concerning the semantics we refer to the appendix. Each of these 
three semantics induces a corresponding notion of program correctness. We thus 
distinguish between 

• partial correctness f= , 

• total correctness Ftot , 

• fair total correctness f= fair . 

Each of these correctness notions refers to a correctness formula, i.e. a 
construct of the form {p} S { q} where p and q are assertions and S a program. 
We assume from the reader some knowledge of the basic concepts on program 
verification. 
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3 Transformations 

We now present four program transformations. The first of them transforms a 
nondeterministic program in the sense of Dijkstra [197 5] into a parallel program. 
We study here only one level nondeterministic programs, i.e. programs of the 
form 

S:: So; do D?=i Bi-+ S; od 

where the subprograms s, are loop free while-programs. 
For these programs we refer to the same three semantics and program cor­

rectness notions as those introduced above. The notion of a fair computation is 
obtained here by considering enabled branches of a do-loop instead of nonter­
minated components of a parallel program. 

Theorem 1 (Parallelization) Consider a one level nondeterministic program 

S:: So; do D?=i B-+ S, od, 

the parallel program 

T =So; [11?:;;; 1 while B do (Ss} od] 

and two assertions p and q. Suppose that for every i E {1, ... , n} 

Ftot {q /\ -iB} Si {q /\ -iB}. 

Then 

F {p} S {q} iff F {p} T {q} 

and analogously for Ftot and F/air . 

Proof. See the appendix. D 

The Parallelization Theorem transforms do-loops with identical guards into 
parallel programs of a very restricted format. In particular, components that 
are while-loops consisting only of a single atomic region are rare in practice. 
To enhance the usefulness of the Parallelization Theorem we shall combine its 
application with two additional transformations of parallel programs which in­
troduce more points of interference. These transformations are inspired by 
Lipton [1975]. 

We say that two programs are disioint if none of the variables which can be 
changed by one of them appears in the other. We say that a Boolean expression 
B is disioint from a program S if none of the variables which can be changed 
by S appears in B. 
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The next transformation reduces the size of atomic regions. 

Theorem 2 (Atomicity) Consider a parallel program S = So; [Sill-. -llS,J 
Let T result from S by replacing in one of its components, say Si with i > 0, 
either 

• an atomic region (R1; R2} where one of the R1's (I E {1, 2}) is disjoint 
from all components S; with j # i by 

or 

• an atomic region (if B then R 1 else R2 fi} where B is disjoint from all 
components S; with j # i by 

if B then (R1} else (R2} fi. 

Then the programs Sand T have the same semantics, i.e., 

M[S]= M[T], 

and analogously for Mtot and MJair· 

Proof. See the appendix. 0 

Corollary 3 (Atomicity) Under the assumptions of the Atomicity Theorem, 
for all assertions p and q 

I= {p} S {q} iff I= {p} T {q} 

and analogously for Ftot and F/air . 0 

The Atomicity Theorem describes a simple but very useful transformation 
on parallel programs. The given program S has a coarser grain of atomicity 
than T - it has less points for possible interference among its components and 
thus admits fewer computations. Therefore S is easier to prove correct than 
T, either directly by using a proof systems for proving correctness of parallel 
programs or, if possible, by using the Parallelization Theorem. On the other 
hand, the resulting program T has a finer grain of atomicity and is thus more 
realistic than S. 

The third transformation moves initializations inside the parallel composi­
tion. 
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Theorem 4 (Initialization) Consider a parallel program of the form 

Suppose that for some index i E {l, ... , n} the initialization part Ro is disjoint 
from all component programs S; with j :f. i. Then the program 

has the same semantics as S, i.e. 

M[S] = M[T], 

and analogously for Mtot and MJair· 

Proof. See the appendix. D 

Corollary 5 (Initialization) Under the assumptions of the Initialization The­
orem, for all assertions p and q 

F {p} s {q} iff F {p} T {q} 

and analogously for Ftot and Ffair . D 

Again, the given program S admits fewer computations and is easier to 
prove correct whereas the transformed program T has more points for possible 
interference. 

To reason about fair total correctness of nondeterministic programs, we use 
a program transformation, originally proposed in Apt and Olderog [1983], which 
reduces this notion of correctness to ordinary to~al correctness. This transforma­
tion embeds into a given nondeterministic program an abstract scheduler that 
implements the fairness policy. This scheduler initializes, reads and updates 
private variables by using random assignments of the form 

z :=? 

which assign an arbitrary non-negative integer to an integer variable z. 

Theorem 6 (Fairness) Consider a one level nondeterministic program 

S =So; do Dl:1 B;-+ S; od. 

Let T be obtained from S as follows: 

T:: !NIT; So; 
do Df=1 Bi/\ SCH; -UPDATE;; S; od 
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where for variables z1 , ... , Zn not occurring in S 

INIT := Z1 :=?; ... ; Zn :'=?, 

Then 

SCH; = z; = min{zk I k E {l, ... ,n} and Bk}, 

UPDATE; := z; :=?; 
for all j E { 1, ... , n} - { i} do 

if Bj then Zj := Zj - 1 fi 
od. 

Mfair[S] = Mtot[T] mod {z1, ... , Zn}, 

where the mod-notation means that the final states agree modulo {z1 , ... , zn}, 
i.e. on all variables except z1 , .•• , Zn. 

Proof. See Apt and Olderog [1983]. 0 

Corollary 7 (Fairness) Under the assumptions of the Fairness Theorem, for 
all assertions p and q which do not contain the variables z1 , ... , Zn 

Ffair {p} S {q} iff Ftot {p} T {q} 

0 

4 Asynchronous fixed point computation 

As a first application of the Parallelization The~rem let us consider the problem 
of asynchronous fixed point computation studied in Apt and Olderog [1983]. 
We considered there a monotonic operator F : Ln - Ln on the n-fold prod­
uct of a complete lattice L with the finite chain property (no infinite strictly 
growing sequence exists). We proved that under the assumption of fairness the 
nondeterministic program 

computes the least fixed point of F: 

Ffair {x = ..L} S {x = µF}. 

Fi stands for the i-th component function F; : in - L of F defined by 
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ii abbreviates (x1, .. .,xn) and .L denotes the least element in Ln. 
Now we wish to parallelize S. To this end, we check the condition of the 

Parallelization Theorem, i.e. whether 

!=tot {ii= µF /I. ii= F(x)} Xi := Fi(ii) {x = µF /I. ii= F(x)} (1) 

for all i E {1, ... , n}. By the definition of Fi, the precondition x = F(x) implies 
that for all i E {1, ... , n} 

Xi = Fi(ii). 

Hence for all i E {1, ... , n} the value of Xi remains unchanged under the assign­
ment x, := Fi(x). Thus (1) holds and the Parallelization Theorem yields that 
under the assumption of fairness the parallel program 

T = [llf=1 while ii-:/:- F(x) do x; := Fi(x) od] 

also computes the least fixed point of F: 

l=Jair {ii= .L} T {x = µF}. 

5 Parallel zero search 

The next example illustrates how all four transformations can be combined to 
verify a parallel program. We prove that under the assumption of fairness the 
parallel program 

with 

and 

S = found :=false; [S1 llS2] 

Si::: x := O; 
while -./ ov.nd do 

x := x + 1; 
if /(x) = 0 then found:= true fi 

od 

S2::: y := l; 
while -.f ov.nd do 

y := y- 1; 
if f(y) = 0 then found:= true fi 

od 

finds a zero of the function f provided such a zero exists: 

l=Jair {3u: /(u) = O} S {f(x) = 0 V f(y) = O}. 
We proceed in 5 steps. 
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Step 1. Simplifying the program 

We first use the Atomicity Corollary and Initialization Corollary and reduce the 
original problem (2) to the following claim 

where 

with 

and 

Ffair {3u: f(u) = O} T {f(x) = 0 V f(y) = O} 

T =found:= false; x := O; y := l; 
[T1llT2] 

T1 = while -if ound do 
< x := x + 1; 

if f(x) = 0 then found:= true fi) 
od 

T2 =while -ifound do 
< y := y-1; 

if f(y) = 0 then found:= true fi). 
od 

(3) 

Both corollaries are applicable here by virtue of the fact that x does not ap­
pear in S2 and y does not appear in S1. Recall that by assumption assignments 
and the skip statement are considered to be atomic regions. 

Step 2. Decomposing fair total correctness 

To prove (3) we use the fact that fair total correctness can be decomposed into 
fair termination and partial correctness. More precisely we use the following 
observation. 

Lemma 8 For all nondeterministic or parallel programs R and all assertions p 

and q 

Ffair {p} R {q} iff Ffair {p} R {true} and I= {p} R {q}. 

Proof By the definition of fair total correctness and partial correctness. D 

Thus to prove (3) it suffices to prove 

F/air {3u: f(u) = O} T {true} (4) 
and 

I= {3u: /(u) = O} T {f(x) = 0 V f(y) = O}. (5) 
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Step 3. Reduction to nondeterminism 

To prove ( 4) we use the Parallelization Theorem. Consider the following non­
deterministic program 

T' :: found :=false; z := 0; y := 1; 
do -ifound- z := z + 1; 

if f(z) = 0 then found:= true fi 
D -ifound - y := y - 1; 

if f(y) = 0 then found := true fi 
od. 

Clearly 

and 

I= tot {true/\ found} 
z := z + 1; 
if f(z) = 0 then found:= true fi 

{true /\ found} 

I= tot {true /\ found} 
y := y-1; 
if f(y) = 0 then found := true fi 

{true/\ found}. 

Thus by the Parallelization Theorem, to prove ( 4) it suffices to prove 

l=tair {3u: /( u) = O} T' {true}. 

Step 4. Proving fair termination 

(6) 

To prove (6) we use a proof rule for fair total correctness of one level non­
deterministic programs, introduced in Apt and Olderog [1983]. This rule is 
obtained from the Fairness Corollary 7 by absorbing, as it were, the scheduler 
parts INIT, SCH i and UPDATEi referring to the scheduling variables z1, •.• , Zn 

of the transformed program into the pre- and postconditions. 
For the case of the identical loop guards this proof rule reads as follows: 

FAIR LOOP RULE 

(i) {p /\ B} Si {p}, i E {1, ... , n}, 
(ii) {p /\ B /\ z ~ 0 /\ 3zi ~ 0: t[z; + 1/z;]#i = n-} 

Si 
{t<a},iE{l, .. .,n}, 

(iii) p /\ z ~ 0 - t E W 
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where 

• t is an expression which takes values in a partial order (P, <) that is well­
founded on the subset W ~ P, 

• z1 , ... , Zn are integer variables that may occur freely in t, but not in p, B; 
or Si, for i E { 1, ... , n}, 

• t[zi + l/zj]i;ti denotes the expression that results from t by substituting 
for every occurrence of Zj in t the expression Zj + l; here j ranges over the 
set {l, ... , n} -{i}, 

• z 2: 0 abbreviates z1 2: 0 /\ ... /\ Zn 2: 0, 

• a is a simple variable ranging over P and not occurring in p, t, B; or S;, 
for i E { 1, ... , n }; its purpose is to freeze the value of t[zj + 1/ Zj ]i;ti before 
the execution of S;. 

Note that with the precondition of premise (ii) simplified to 

p/\B/\t=a 

and premise (iii) simplified to 

p-+tEW, 

we obtain the usual rule for total correctness of nondeterministic do-loops. The 
above usage of the variables z1 , .. ., Zn in the premises allows us to establish fair 
total correctness. 

We call p the invariant of the loop and t the bound function of the loop. In 
the proof outlines we denote them by inv: p and bd: t, respectively. 

We use the above rule to first prove a weaker fair termination result than 
(6), viz. where f has a zero u > 0: 

Flair {f(u) = 0 /\ u > O} T' {true}. 

A proof outline for (7) has the following structure: 

{f(u) = 0 /\ u > O} 
found := false; 
x := O; 
y := l; 
{f(u) = 0 /\ u > 0 /\-.found/\ x = 0 /\ y = l} 
{inv: p}{bd: t} 
do -.found-+ {p /\-.found} 

x := x+ l; 
if f(x) = 0 then found:= true fi 
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{p} 
D -.found-+ {p /\ -.found} 

y := y- 1 

od 
{p /\found} 
{true}. 

if f(y) = 0 then found := true fi 
{p} 

It remains to find a loop invariant p and a bound function t that will complete 
this outline. 

Since the variable u is left unchanged by the program S, certainly 

f ( u) = 0 /\ u > 0 

is an invariant. But for the completion of the proof outline we need a stronger 
invariant relating u with the program variables x and found. We take as an 
overall invariant 

p = f(u) = 0 /\ u > 0 /\ x ~ u /\ if-.found then x < u fi.. 

Notice that the implications 

f(u) = 0 /\ u > 0 /\-.found/\ x = 0 /\ y = 1 -+ p 

and 

p /\ found -+ true 

are obviously true and thus confirm the proof outline as given outside the do­
loop. 

To check the proof outline inside the loop, we take as partial order the set 

P= Z x Z, 

ordered lexicographically by <rez and well-founded on the subset 

W =No x No, 

where Z denotes the set of integers and No the set of natural numbers. 
As a bound function we take 

t =< U - X, Z1 >. 

In t the scheduling variable z1 counts the number of executions of the second 
loop component before the next switch to the first one, and u - x, the distance 
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between the current test value x and the zero u, counts the remaining number 
of executions of the first loop component. 

We show now that our choices of p and t complete the overall proof outline 
as given inside the do-loop. To this end, we have to prove the premises of the 
Fair Loop Rule. 

We do this for the second premise. For the first loop component we have 
the proof outline: 

{ -.found/\ f(u) = 0 /\ u > 0 /\ x < u 
/\ z1 ~ 0 /\ z2 ~ 0 /\ 3z1 ~ 0 : < u - x, z1 >= a} 

{3z1 ~ 0: < u - x, z1 >= o:} 
{< u - x - l,z1 > <zex a} 
x := x + l; 
{ < u - x, z1 > <1er a} 
found:= f(x) = 0 
{<u-x,z1> <1.xa} 
{t <!ex a}. 

Thus the bound function t drops below o: because the program variable x is 
incremented into the direction of the zero u. 

For the second loop component we have the proof outline: 

{ -.found/\ f(u) = 0 /\ u > 0 /\ x < u 
/\ z1 ~ 0 /\ z2 ~ 0 /\ < u - x, z1+1 >=a} 

{ < U - X, Z1+1 >=a} 
{ < u - x, z1 > <ter a} 
y := y-1; 
found := f (y) = 0 
{<u-x,z1 > <1ex0:'} 
{t<1exa}. 

Notice that only with the help of the scheduling variable z1 we can prove that the 
bound function t drops here below a; the assignments to the program variables 
y and found do not affect t at all. 

The remaining two premises can be easily established. This completes the 
proof of (7). 

Symmetrically we can deal with the case when f has a zero u :5 0: 

l=Jair {!(u) = 0 /\ u :5 O} T' {true}. 
Combining this with (7) by standard rules of Hoare's logic yields (6). 

Step 5. Proving partial correctness 

It remains to prove (5). To this end, we use the approach of Owicki and Gries 
[1976] and Lamport [1977]. First we need to construct interference free proof 
outlines for partial correctness of the component programs T1 and T2 of T. 
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For Ti we use the invariant 

Pi::: x > 0 (8) 
/\ (f~und--+ (x > 0 /\ f(x) = 0) V (y :$ 0 /\ f(y) = 0)) (9) 
/\ (-ifound /\ x > 0--+ f(x) i: 0) (10) 

to construct the proof outline 

{inv: pi} 
while -i/ ound do 

od 

{x ~ 0 /\(found--+ y :$ 0 /\ f(y) = 0) 
/\ (x > 0--+ f(x) =ft O)} 

( x := x + 1; 
if f(x) = 0 then found:= true fi} 

{p1 /\ found}. 

Similarly, for T2 we use the invariant 

(11) 

P2 =: y :$ 1 (12) 
/\ (found-+ (x > 0 /\ f(x) = 0) V (y :$ 0 /\ f(y) = 0)) (13) 
/\ (-ifound /\ y :$ 0--+ f(y) f 0) (14) 

to construct the proof outline 

{inv: P2} 
while -i/ ound do 

od 

{y :$ 1 /\(found--+ x > 0 /\ f(x) = 0) 
/\ (y :$ 0--+ f(y) =ft O)} 

(y:=y-1; . 
if f(y) = 0 then found := true fi} 

{P2 /\ found}. 

The intuition behind the invariants Pi and P2 is as follows. Conjuncts (8) 
and (12) state the range of values that the variables x and y may assume during 
the execution of the loops Ti and T2. 

Thanks to the initialization of x with 0 and y with 1 in T, the condition 
x > 0 expresses the fact that the loop Ti has been traversed as least once, 
and similarly the condition y :$ 0 expresses the fact that the loop T2 has been 
traversed at least once. Thus the conjuncts (9) and (13) in the invariants Pi and 
P2 state that if the variable found is true, then the loop Ti has been traversed 
at least once and a zero x of f has been found, or that the loop T2 has been 
traversed at least once and a zero y off has been found. 
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The conjunct (10) in Pi states that if the variable found is false and the 
loop Ti has been traversed at least once, then x is not a zero off. Analogously 
for the conjunct (14) in P2· 

Let us discuss now the proof outlines. In the first proof outline the most 
complicated assertion is (11). Note that 

P1 /\ -ifound-+(11) 

as required by the definition of a proof outline. 
Given (11) as a precondition, the loop body in T1 establishes Pi as a post­

condition, as required. Notice that the conjunct 

found-+ y :::; 0 /\ f(y) = 0 

in the precondition (11) is necessary to establish the conjunct (9) in the invariant 

Pi· 
Next we deal with the interference freedom of the above proof outlines. In 

total 6 correctness formulas have to be proved, 3 for each component, pairwise 
symmetric. 

The most difficult case is the interference freedom of the assertion ( 11) in 
the proof outline for Ti with the loop body in T2 • It is proved by the following 
proof outline: 

{ x ~ 0 /\(found-> y:::; 0 /\ f(y) = 0) /\ (x > 0-> f(x) # 0) 
/\ y:::; 1 /\(found-> x > 0 /\ f(x) = 0) /\ (y ~ 0-> f(y) # O)} 

{x ~ 0 /\ y ~ 1 /\ -ifound /\ (x > 0-> f(x) # O)} 
(y:=y-1; 

if f(y) = 0 then found := true fi) 
{x ~ 0 /\(found-+ y ~ 0 /\ f(y) = 0) /\ (x > 0-> f(x) # O)}. 

Note that the first assertion in the above proof outline indeed implies -ifound: 

(found-+ (x > 0 /\ f(x) = 0)) /\ (x > 0-+ f(x) # 0) 

implies 

found-+ (J(x) # 0 /\ f(x) = 0) 

implies 

-ifound. 

This information is recorded in the second assertion of the proof outline and 
used to establish the last assertion. 

The remaining cases in the interference freedom proof are straightforward 
and left to the reader. 
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We now apply the rule of parallel composition and get 

From this correctness formula it is straightforward to prove the desired par­
tial correctness result (5). 

This concludes the proof of (2). 

Discussion 

(i) In the above proof we first simplified (2) to (3) and then decomposed (3) 
into ( 4) and (5). Clearly we could have decomposed in an analogous way (2). 
But this would lead to a much more complicated proof of partial correctness 
because S contains more interference points than T. In particular, to deal with 
the initialization x := 0 and y := 1 within the parallel composition in S requires 
the use of auxiliary variables. 

This shows that the Atomicity and Initialization Theorems simplify the task 
of proving parallel programs correct. 

(ii) To prove ( 4) we used the Parallelization Theorem. It is useful to note that 
we cannot use it to prove (3) directly. Indeed, to apply it we would have to 
prove 

Ftot {(f(x) = 0 V f(y) = 0) /\found} 
x := x + 1; 
if f(x) = 0 then found:= true fi 
{(f(x) = 0 V f(y) = 0) /\found} 

and a similar claim for the second component. However, the above claim does 
not hold as the assignment x := x + 1 can invalidate the assertion f(x) = 0. 

This shows that the Parallelization Theorem is of limited applicability and 
has to be used in conjunction with other methods. 

(iii) To prove fair termination of T' in (6) or (7) we could have applied the 
Fairness Corollary 7 to T' and proved ordinary termination of the transformed 
version of T'. However, we preferred to use the Fair Loop Rule presented in 
Step 3 because it allowed us to reason directly about the original program T'. 
In this way certain parts of the transformation are handled uniformly and a 
generation of several intermediate assertions (for example dealing with random 
assignments) is avoided. 
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Appendix 

In this appendix we prove Theorems 1 and 2. As a preparation we define 
rigorously the program semantics. We use here the operational approach due 
to Hennessy and Plotkin [1979]. Its basic concept is a configuration which is 
simply a pair < S, u > consisting of a program S and a proper state u. The 
semantics is then defined in terms of transitions. Intuitively, a transition 

< s, u > _,. < R, T > 
means: executing S one step in a proper state u can lead to state r with R 
being the remainder of S still to be executed. To express termination we allow 
the empty program E inside configurations: R = E in in the above transition 
means that S terminates in r. We stipulate that E; Sand S; E abbreviate to 
S. Also, we identify 

[Ell· .. l!E] := E. 

This expresses the fact that a parallel program terminates iff all its components 
terminate. 

In the following u, r stand for proper states, i.e. mappings from variables 
to values. We write u(t) to denote the value of an expression t in u and u f= B 
to express that the Boolean expression B evaluates to true in u. Further on, 
u[u(t)/u] is a proper state that agrees with u except for the variable u where its 
value is u(t). The transition relation _,. is defined by induction on the structure 
of programs. We use the following transition axioms and rules: 

(i) < skip, u > _,. < E, u >, 

(ii) < u := t, u > ........ < E, u[u(t)/u] >, 

(iii) 

< S1; S, (f > ........ < S2; S, T > 

(iv) < if B then 5 1 else S2 fi, u > _,. < S1, u > where u f= B, 

(v) <if B then 51 else S2 fi,O" > _,. < S2,u >where u f= -iB, 

(vi) <doDZ:1 B;-+S;od,u>-+ <S;; doDi=1 B;-+S;od,O"> 
where u f= B; and i E {l, ... , n}, 

(vii) < do Di=i B; _,. S; od, u > _,. < E, O" > where u f= Ai= 1 -.B;. 

(viii) 

< s, u > _,. * < E, T > 
< (S) > -+ < E, T > 
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(ix) 

whereiE{l, ... ,n}. 

By definition the transitions for while B do Sod are as for do B-+ Sod. 
Rule (viii) formalizes the intuitive meaning of atomic regions by reducing each 
terminating computation of the "body" S of an atomic region (S) to a one 
step computation of the atomic region. Rule (ix) states that a parallel program 
[S111-. ·II Sn] performs a transition if one of its component performs a transition. 
Thus concurrency is modelled here by interleaving. 

A transition < S, er > -+ < R, r > is possible if and only if it can be 
deduced in the above transition system. 

Definition 9 Let S be a parallel or nondeterministic program and er a proper 
state. 

(i) A transition sequence of S starting in er is a finite or infinite sequence of 
configurations< S;, er;> (i ;=:: 0) such that 

<S,er>=<So,ero>-+ <S1,er1> ---> ••. ---> <S;,er;> ---> ••• 

(ii) A computation of S starting in er is a transition sequence of S starting in 
er which cannot be extended. 

(iii) A computation of S is terminating in r (or terminates in r) if it is finite 
and its last configuration is of the form< E, r >. 

(iv) A computation of Sis diverging (or diverges) if it is infinite. Scan diverge 
from er if there exists an infinite computation of S starting in er. 

0 

Let ___.• stand for the transitive, reflexive closure of --->. We now define three 
semantics of parallel or nondeterministic programs by putting for a proper state 
er 

M[S](er) = {r I< S,er > --->* < E, r > }, 

Mtoi[S](er) = M[S](er) U {j_ IS can diverge from er}, 

Mfair[S](er) = M[S](er) U {J. IS can diverge from er by a fair computation.} 
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The corresponding notions of partial, total and fair total correctness of pro­
grams can be defined as inclusion properties of sets of states. For partial cor­
rectness we put 

F {p} s {q} iff M[S]([p]) ~ [q] 

where [p] is the set of all proper states satisfying the assertion p and analogously 
for q. The definitions for Ftot and Ffair refer to Mtot and MJair instead. 

Proof of Theorem 1. We proceed in 6 steps. 

Step 1 We consider the case when S and T have no initialization part So 
and introduce a subset of computations of T. To this end, observe that in an 
arbitrary finite or infinite transition sequence 

e :< T,a >=< T1,a1 > - ... - < T;,a; > - ... 

ofT, each transition< 1j, a;> - < T;+1 1 a;+1 >in e is ofone of the following 
three types. 

It can be a B;-transition passing succcessfully the loop condition B in the 
i-th component so that 

Tj _ [ .. -llwhile B do (S;} odll ... ] and <r; F= B, 

TJ+i _ [ .. -ll(S;}; while B do (S;} odll· .. ] and a;+1 = u;; 

it can be an Si-transition executing the loop body S; as an atomic action so 
that 

Tj - [ .. ·ll(Si}; while B do (S;} odll· .. ], 

TJ+1 - [ .. -llwhile B do (S;~ odll· .. ]; 

or it can be an E;-transition terminating the loop of the i-th component so that 

T; = [ ... llwhile B do (S;} odll ... ] and <r; F= -.B, 

T;+1 = [ .. ·llEll· .. ] and CTj+l = u;. 

We say that ~ is delay free if each B;-transition is immediately followed by 
the corresponding Si-transition. 

Nate that in a delay free computation of T for each S;-transition < T;, a; > 
- < TJ+1, C1j+l > 

T; := [while B do (S1} odll ... 
ll(S;}; while B do (S;} odll· .. 
llwhile B do (Sn} odll ... ] 
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and 

'.I~Hl = [while B do (S1} odll· .. 
!lwhile B do (S;} odll· .. 
II while B do {Sn} odll· .. ] 

:T. 

Also, after an £;-transition only Ertransitions for i ::j:. j can take place. 

Step 2 To compare the computations of S and T, we use the following notion 
of equivalence. Two computations are called i/o equivalent if they start in the 
same state and either both diverge or both terminate in the same state. 

Step 3 We prove the following two claims: 

• every (fair) computation of S is i/o equivalent to a delay free (fair) com­
putation of T, 

• every delay free (fair) computation of T is i/o equivalent to a (fair) com­
putation of S. 

First consider a (fair) computation~ of S. We construct an i/o equivalent delay 
free (fair) computation of T from~ by replacing 

• every loop entry transition 

< S,u >-+ < S;; S,u > 

with the B;-transition 

< T, a> -+ < [while B do (S1} odll· .. 
ll(S;); while B do S; odll· .. 
llwhile B do Sn odll· .. , a>, 

• every transition subsequence 

< S;; S, u > -+ ... -+ < S, r >, 

forming the stepwise execution of the loop body S;, with the S;-transition 

< [while B do (S1} odll· .. 
ll(S;}; while B do S; odll· .. 
llwhile B do Sn odjj ... , O' > -+ < T, r >, 
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• every loop exit transition 

< S,u >--+ < E,u > 

with a sequence of n final Bi-transitions, i E {1, ... , n}, dealing with the 
state u. 

Now consider a delay free (fair) computation T/ ofT. By applying the above 
replacement operations in reverse direction, we construct an i/o equivalent (fair) 
computation of S from T/· 

Step 4 To compare computations of T, we introduce the following variant of 
i/ o equivalence. Two computations are called q-equivalent if they both start in 
the same state and either both diverge or both terminate in a state satisfying 
assertion q. 

Step 5 By a p-computation we mean a computation starting in a state satisfying 
the assertion p. Suppose that every terminating delay free p-computation of 
T terminates in a state satisfying the assertion q. We prove that under this 
assumption every (fair) p-computation of T is q-equivalent ·to a delay free p­
computation of T. 

Consider a (fair) computation 

e :< T,u >=< T1,u1 >--+ ... --+ < T;,u; >--+ ... 

ofT with u F= p. 

Case 1Vj~1 : u; F= B. 
Then e is infinite. Let 

be the sequence of all $;-transitions in e. Then there exists an infinite delay free 
(fair) p-computation T/ of T which starts in u and has the same sequence of Si­
transitions. We can construct T/ by performing the corresponding B;-transitions 
immediately before the S;-transitions of this sequence. This is possible because 
in the present case the B;-transitions are everywhere enabled. 

Case 2 3j ~ 1 : u; F= -.B. 
Let io be the smallest such j. Consider the prefix 

of e. By the choice of j 0 , the last transition in ea is an Si-transition. 
We first show that u;0 F= q. To this end, we argue in a similar way as above. 

Let 
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be the sequence of all Si-transitions in eo. Then there exists a finite delay 
free transition sequence 7Jo of T starting in <r, running through the same S;­
transitions as e0 , and ending in the configuration < T, u;0 >. Note that we 
indeed obtain here the program T thanks to the observation about S;-transitions 
in delay free transition sequences stated in Step 1. Since <rjo I= -iB, the only 
transitions which are possible after < T, <r io > are Bi-transitions, i E { 1, ... , n}. 
By adding all these transitions, we obtain a delay free p-computation 1J of T 
terminating in <r ; 0 • By the assumption of this step, <r io I= q. 

Thus q ; 0 I= q /\ -iB. This information is sufficient to see how the original 
computation e of T continues after the prefix fo. In fo there may be some 
Bi-transitions without a corresponding $;-transition. Since by assumption 

these remaining S;-transitions all yield states satisfying q /\ -iB. Thus these 
S;-transitions and n final E;-transitions are the only possible transitions in the 
remainder of e. Thus also e terminates in a state satisfying q. Consequently, e 
and the delay free computation 1J are q-equivalent. 

Step 6 By combining the results from Step 3 and 5, it is easy to prove the claim 
of the theorem for the case when S and T have no initialization part So. The 
first claim of Step 3 implies the "if" -part. The second claim of Step 3 together 
with the result of Step 5 imply the "only-if" -part. Indeed, suppose 

I= {p} s {q}, 

i.e. every terminating p-computation of S terminates in a state satisfying q. 
Then by the second claim of Step 3, every terminating delay free p-computation 
of T terminates in a state satisfying q. Thus by the result of Step 5, every 
terminating p-computation of T terminates in a state satisfying q, i.e. 

I= {p} T {q}. 

Similar arguments deal with l=tot and l=tair . The case when S and T have 
an initialization part So is left to the reader. D 

Proof of Theorem 2. We treat the case when S has no initialization part So 
and T results form S by splitting {R1; R2} into {R1}; (R2}. Our presentation 
follows the 6 steps outlined in the previous proof. 

Step 1 By an Rk-transition, k E {l, 2}, we mean a transition occurring in a 
computation of T which is of the form 
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We call a fragment ~ of a computation of T good if in e each R1-transition is 
immediately followed by the corresponding R2-transition, and we call e almost 
good if in e each R 1 -transition is eventually followed by the corresponding R 2-

transition. 
Observe that every fair and hence every finite computation of T is almost 

good. 

Step 2 To compare the computations of S and T, we use the i/o equivalence 
introduced in Step 2 of the proof of Theorem l. 

Step 3 We prove the following two claims: 

• every (fair) computation of S is i/ o equivalent to a good (fair) computation 
ofT, 

• every good (fair) computation ofT is i/o equivalent to a (fair) computation 
of S. 

First consider a (fair) computation e of S. Every program occurring in a config­
uration of e is a parallel composition of n components. Let for such a program 
U the program split(U) result from U by replacing in the i-th component of U 
every occurrence of (R1; R2) by (R1); (R2). For example, split(S) = T. 

We construct an i/o equivalent good (fair) computation of T from e by 
replacing 

• every transition of the form 

< [U1IJ ... Jl(R1; R2); U,JJ ... JIUnJ, o- > 
-+ < [Uill· · ·llU;JI ... IJUn], r > 

with two consecutive transitions 

< split([U1ll· . . IJ(R1; R2); Udl· .. JIUn]), u- > 
-+ < split([U1ll·· .Jl(R2); U;ll···llUn)),0-1 > 
-+ < split([U1ll· . . JIU;JI . .. JIUn]),r > 

where the intermediate state u-1 is defined by 
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• every other transition 

< U, u > -+ < V, r > 

with 

< split(U), u > -+ < split(V), r > . 

Now consider a good (fair) computation TJ of T. By applying the above 
replacement operations in reverse direction we construct an i/ o equivalent (fair) 
computation of S from 'f/· 

Step 4 For the comparison of computations of T we use i/o equivalence, but 
to reason about it we also introduce a more discriminating variant of it called 
"permutation equivalence". 

First consider an arbitrary computation e of T. Every program occurring in 
a configuration of e is the parallel composition of n components. To distinguish 
between different kinds of transitions in e, we attach labels to the transition 
arrow -+ . We write 

Rk < U, (J' > -+ < V, T > 

if k E {1, 2} and< U, u > -+ < V, r > is an Ri.:-transition of the i-th component 
of U, 

i < U, <J' > -+ < V, r > 

if< U, <J' > -+ < V, r > is any other transition caused by the activation of the 
i-th component of U, and 

< U, (}" > .!..,. < v, T > 

if j f. i and < U, u > -+ < V, r > is a transition caused by the activation of 
the j-th component of U. 

Hence with each transition arrows in a computation of T there is a unique 
label associated. This enables us to define: 

Two computations 17 and e of T are permutation equivalent if 

• T/ and e start in the same state, 

• for all states O', T/ terminates in O' iff e terminates in IJ', 

• the possibly infinite sequence of labels attached to the transition arrows 
in T/ and e are permutations of each other. 
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Clearly, permutation equivalence of computations of T implies their ijo 
equivalence. 

Step 5 We prove the following claim: every (fair) computation of T is i/o 
equivalent to a good (fair) computation of T. 

To this end, we establish two simpler claims. 

Claim 1 Every (fair) computation of T is i/o equivalent to an almost good 
(fair) computation of T. 

Proof of Claim 1. Consider a computation { of T which is not almost good. 
Then by the observation stated in Step 1, €is not fair and hence diverging. More 
precisely, there exists a suffix €1 of e which starts in a configuration < u, q > 
with an R1-transition and then continues with infinitely many transitions not 
involving the i-th component any more, say 

(: u R, TT ii u h ._1:< ,u>-+<vo,uo>-+< 1,u1>-+ ... 

where J1c :ft i fork ;?:: 1. By the definition of semantics of while-programs we 
conclude the following: if R1 is disjoint from S; with j :ft i, then there is also 
an infinite transition sequence of the form 

(: u ii v; i2 ._2 :< , q > --+ < 1i T1 > -+ · · ., 

and if R2 is disjoint from S; with j :ft i, then there is also an infinite transition 
sequence of the form 

c U R1 lJ, R, tr j, V, h ._3 :< ,u > --+ < o,uo > --+ < vo,ro > --+ < 1,r1 > -+ ... 

We say that 6 is obtained from {i by deletion of the initial Ri-transition and 
{ 3 is obtained from 6 by insertion of an R2-transition. Replacing the suffix {i 
of {by 6 or 6 yields an almost good computation of T which is ijo equivalent 
to€- D 

Claim 2 Every almost good (fair) computation of T is permutation equivalent 
to a good (fair) computation of T. 

Proof of Claim 2. By the definition of semantics of while-programs the 
following: if R1c with k E {1, 2} is disjoint from S; with j :ft i, then the relations 
Rk d j t . --+ an --+ commu e, i.e. 

where o denotes relational composition. Repeated application of this commu­
tativity allows us to permute the transitions of every almost good fragment €i 
of a computation of T of the form 
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c U R1 ii j,,. R2 V 
.. 1 :< , Cf > -+ 0 -+ O ••. o -+ O -+ < , T > 

with j,. =f. i fork E {l, .. ., m} into a good order, i.e. into 

c U ii j,,. R1 R2 V 
.. 2 :< , Cf > -+ O ••• 0 -+ O -+ O -+ < , T > 

or 

R1 R2 ii j,,. 6 :< U, (f > -+ 0 -+ 0 -+ 0 .•. 0 -+ < v, T > 

depending on whether R1 or R2 is disjoint from S; with j -:j:. i. 
Consider now an almost good computation e of T. We construct from e 

a permutation equivalent good computation e* of T by successively replacing 
every almost good fragment of e of the form 6 by a good fragment of the form 
6 or ea. 

Note that a computation 1/ ofT is fair iffthere exists a configuration< U, <J" > 
such that every sequential component of Uhas either terminated or is activated 
infinitely often in the suffix of 1J starting in < U, <J" >. Since this property is 
preserved by the above construction of a permutation equivalent computation 
e· from e, we conclude: if e is fair, also e· is fair. 0 

Claims 1 and 2 together imply the claim of Step 5. 

Step 6 By combining the results of Step 3 and 5, we get the claim of the theorem 
for the case when S has no initialization part So and T results fromS by splitting 
(R1; R2} into (R1}; (R2). The cases when S has an initialization part So and 
where T results from S by splitting the atomic region (if B then R1 else R2 fi} 
are left to the reader. D 

The proof of the Initialization Theorem follows the same lines as the proof 
of the Atomicity Theorem and is therefore omitted. 
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