
Centrum voor Wiskunde en lnformatica
Centra for Mathematics and Computer Science

E.-R. Olderog, K. A. Apt

Using transformations to verify parallel programs

Computer Science/Department of Software Technology Report CS-R8956 December

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

'J :\ ,,';. j

. ,
•'' ~·-·

)

Using Transformations to Verify
Parallel Programs

Ernst-Rudiger Olderog
Department of Computer Science

University of Oldenburg
2900 Oldenburg

Federal Republic of Germany

Krzysztof R. Apt
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

and
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188

U.S.A.

We argue that the verification of parallel programs can be considerably

simplified by using program transformations. We illustrate this approach

by proving correctness of two parallel programs under the assumption of
fairness: asynchronous fixed point computation and parallel zero search.

Keywords and Phrases: program transformations, verification, parallelism,
fairness.
1985 Mathematics Subject Classification: 68N05, 68Q55, 68Q60.

1 Introduction

The aim of this paper is to show how program transformations can simplify the
task of proving parallel programs with shared variables correct. To this end, we
present four transformations all of which preserve partial and total correctness
and fairness, and which consequently can be used in proofs of these correctness
properties.

The first transformation links parallel programs to nondeterministic sequen­
tial ones. This is as in the work of Ashcroft and Manna [1971], Flon and Suzuki
[1981] and, more recently, Back [1989] and Chandy and Misra [1988]. However,
to avoid the introduction of auxiliary variables that would destroy the program
structure, we present this transformation only for a restricted class of parallel
programs.

1
Report CS-R8956
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

To enhance the usefulness of this transformation, we combine it with two
transformations on parallel programs which introduce more points of interfer­
ence. These transformations are inspired by Lipton [1975]. Whereas Lipton
considered only ordinary termination proofs, we deal here also with fairness.

Fair termination is proved on the level of nondeterministic programs by
reducing it to ordinary termination with the help of a fourth transformation
due to Apt and Olderog [1983] which makes use of random assignments.

Considered in isolation these transformations look very simple but when
combined they can substantially reduce the task of verification. This reduction
is achieved by delaying the assertional correctness proof as much as possible,
viz. after a stepwise transformation of the original parallel program into a well­
structured nondeterministic program. The proposed transformations can also
be used to construct parallel programs from nondeterministic ones.

We illustrate our approach by proving total correctness of two parallel pro­
grams under the assumption of fairness: asynchronous fixed point computation
and parallel zero search.

There are two alternatives to these correctness proofs. The first one is to
use the transformational approach to fairness in parallel programs presented
in Olderog and Apt [1988]. It calls for proving ordinary total correctness of a
transformed parallel program simulating the fair computations of the original
program. Another possibility is to first translate the original program directly
into a nondeterministic program as in Flon and Suzuki [1981] and then use one
of the available methods for proving correctness of a nondeterministic program
under the assumption of fairness (see Francez [1986] for their overview).

In both cases the verification becomes extremely tedious and complicated
because the transformations of Olderog and Apt [1988] and Flon and Suzuki
[1981] introduce auxiliary variables that destroy the structure of the original
program.

Besides the two parallel programs we also prove correctness of the program
transformations themselves (except of the one taken from Apt and Olderog
[1983]). These proofs appear in the appendix to our paper and are based on a
simple operational program semantics due to Hennessy and Plotkin [1979].

2 Preliminaries

Throughout this paper we mean by a parallel program a program of the form

So; [S1 II ···II Sn]

where each Si is a while-program. We call So an initialization statement
and each S, for i > 0 a component program. Within the component pro­
grams we additionally allow atomic regions. Syntactically, these are loop free
while-programs enclosed in angle brackets {and). Sometimes we write [ili::1 Si]
instead of [S1 II ... II Sn]· Note that S1, ... , Sn may share variables.

2

Intuitively, an execution of [S1 II· . ·I I Sn] is obtained by interleaving the atomic,
i.e. non-interruptible steps in the executions of the components Si. ... , 8 11 • By
definition, Boolean expressions, assignments, the skip statement and atomic
regions are all evaluated or executed as atomic steps. As atomic regions are
required to be loop free, their execution is guaranteed to terminate. An inter­
leaved execution of (S1 II· .. llS11] terminates if and only if the individual execution
of each component terminates.

For convenience, we identify

{A):: A

if A is an assignment or skip.
A state is either a proper state, i.e. a mapping from variables to values, or a

special symbol 1- denoting divergence.
We consider here three semantics of parallel programs, all referring to an

interleaving model of execution. Given a parallel program S we distinguish:

• partial correctness semantics M[S],

• total correctness semantics Mtot[S],

• fair parallelism semantics M fair[S].

In the partial correctness semantics, given an initial proper state, only the
final proper states are recorded. In the total correctness semantics addition­
ally a possibility of divergence is recorded as 1-. Finally, the fair parallelism
semantics is like the total correctness semantics but only the fair computations
are taken into account. A computation of a parallel program is called fair if
each component that has not yet terminated is eventually activated again. In
particular, every finite computation is fair.

For details concerning the semantics we refer to the appendix. Each of these
three semantics induces a corresponding notion of program correctness. We thus
distinguish between

• partial correctness f= ,

• total correctness Ftot ,

• fair total correctness f= fair .

Each of these correctness notions refers to a correctness formula, i.e. a
construct of the form {p} S { q} where p and q are assertions and S a program.
We assume from the reader some knowledge of the basic concepts on program
verification.

3

3 Transformations

We now present four program transformations. The first of them transforms a
nondeterministic program in the sense of Dijkstra [197 5] into a parallel program.
We study here only one level nondeterministic programs, i.e. programs of the
form

S:: So; do D?=i Bi-+ S; od

where the subprograms s, are loop free while-programs.
For these programs we refer to the same three semantics and program cor­

rectness notions as those introduced above. The notion of a fair computation is
obtained here by considering enabled branches of a do-loop instead of nonter­
minated components of a parallel program.

Theorem 1 (Parallelization) Consider a one level nondeterministic program

S:: So; do D?=i B-+ S, od,

the parallel program

T =So; [11?:;;; 1 while B do (Ss} od]

and two assertions p and q. Suppose that for every i E {1, ... , n}

Ftot {q /\ -iB} Si {q /\ -iB}.

Then

F {p} S {q} iff F {p} T {q}

and analogously for Ftot and F/air .

Proof. See the appendix. D

The Parallelization Theorem transforms do-loops with identical guards into
parallel programs of a very restricted format. In particular, components that
are while-loops consisting only of a single atomic region are rare in practice.
To enhance the usefulness of the Parallelization Theorem we shall combine its
application with two additional transformations of parallel programs which in­
troduce more points of interference. These transformations are inspired by
Lipton [1975].

We say that two programs are disioint if none of the variables which can be
changed by one of them appears in the other. We say that a Boolean expression
B is disioint from a program S if none of the variables which can be changed
by S appears in B.

4

The next transformation reduces the size of atomic regions.

Theorem 2 (Atomicity) Consider a parallel program S = So; [Sill-. -llS,J
Let T result from S by replacing in one of its components, say Si with i > 0,
either

• an atomic region (R1; R2} where one of the R1's (I E {1, 2}) is disjoint
from all components S; with j # i by

or

• an atomic region (if B then R 1 else R2 fi} where B is disjoint from all
components S; with j # i by

if B then (R1} else (R2} fi.

Then the programs Sand T have the same semantics, i.e.,

M[S]= M[T],

and analogously for Mtot and MJair·

Proof. See the appendix. 0

Corollary 3 (Atomicity) Under the assumptions of the Atomicity Theorem,
for all assertions p and q

I= {p} S {q} iff I= {p} T {q}

and analogously for Ftot and F/air . 0

The Atomicity Theorem describes a simple but very useful transformation
on parallel programs. The given program S has a coarser grain of atomicity
than T - it has less points for possible interference among its components and
thus admits fewer computations. Therefore S is easier to prove correct than
T, either directly by using a proof systems for proving correctness of parallel
programs or, if possible, by using the Parallelization Theorem. On the other
hand, the resulting program T has a finer grain of atomicity and is thus more
realistic than S.

The third transformation moves initializations inside the parallel composi­
tion.

5

Theorem 4 (Initialization) Consider a parallel program of the form

Suppose that for some index i E {l, ... , n} the initialization part Ro is disjoint
from all component programs S; with j :f. i. Then the program

has the same semantics as S, i.e.

M[S] = M[T],

and analogously for Mtot and MJair·

Proof. See the appendix. D

Corollary 5 (Initialization) Under the assumptions of the Initialization The­
orem, for all assertions p and q

F {p} s {q} iff F {p} T {q}

and analogously for Ftot and Ffair . D

Again, the given program S admits fewer computations and is easier to
prove correct whereas the transformed program T has more points for possible
interference.

To reason about fair total correctness of nondeterministic programs, we use
a program transformation, originally proposed in Apt and Olderog [1983], which
reduces this notion of correctness to ordinary to~al correctness. This transforma­
tion embeds into a given nondeterministic program an abstract scheduler that
implements the fairness policy. This scheduler initializes, reads and updates
private variables by using random assignments of the form

z :=?

which assign an arbitrary non-negative integer to an integer variable z.

Theorem 6 (Fairness) Consider a one level nondeterministic program

S =So; do Dl:1 B;-+ S; od.

Let T be obtained from S as follows:

T:: !NIT; So;
do Df=1 Bi/\ SCH; -UPDATE;; S; od

6

where for variables z1 , ... , Zn not occurring in S

INIT := Z1 :=?; ... ; Zn :'=?,

Then

SCH; = z; = min{zk I k E {l, ... ,n} and Bk},

UPDATE; := z; :=?;
for all j E { 1, ... , n} - { i} do

if Bj then Zj := Zj - 1 fi
od.

Mfair[S] = Mtot[T] mod {z1, ... , Zn},

where the mod-notation means that the final states agree modulo {z1 , ... , zn},
i.e. on all variables except z1 , .•• , Zn.

Proof. See Apt and Olderog [1983]. 0

Corollary 7 (Fairness) Under the assumptions of the Fairness Theorem, for
all assertions p and q which do not contain the variables z1 , ... , Zn

Ffair {p} S {q} iff Ftot {p} T {q}

0

4 Asynchronous fixed point computation

As a first application of the Parallelization The~rem let us consider the problem
of asynchronous fixed point computation studied in Apt and Olderog [1983].
We considered there a monotonic operator F : Ln - Ln on the n-fold prod­
uct of a complete lattice L with the finite chain property (no infinite strictly
growing sequence exists). We proved that under the assumption of fairness the
nondeterministic program

computes the least fixed point of F:

Ffair {x = ..L} S {x = µF}.

Fi stands for the i-th component function F; : in - L of F defined by

7

ii abbreviates (x1, .. .,xn) and .L denotes the least element in Ln.
Now we wish to parallelize S. To this end, we check the condition of the

Parallelization Theorem, i.e. whether

!=tot {ii= µF /I. ii= F(x)} Xi := Fi(ii) {x = µF /I. ii= F(x)} (1)

for all i E {1, ... , n}. By the definition of Fi, the precondition x = F(x) implies
that for all i E {1, ... , n}

Xi = Fi(ii).

Hence for all i E {1, ... , n} the value of Xi remains unchanged under the assign­
ment x, := Fi(x). Thus (1) holds and the Parallelization Theorem yields that
under the assumption of fairness the parallel program

T = [llf=1 while ii-:/:- F(x) do x; := Fi(x) od]

also computes the least fixed point of F:

l=Jair {ii= .L} T {x = µF}.

5 Parallel zero search

The next example illustrates how all four transformations can be combined to
verify a parallel program. We prove that under the assumption of fairness the
parallel program

with

and

S = found :=false; [S1 llS2]

Si::: x := O;
while -./ ov.nd do

x := x + 1;
if /(x) = 0 then found:= true fi

od

S2::: y := l;
while -.f ov.nd do

y := y- 1;
if f(y) = 0 then found:= true fi

od

finds a zero of the function f provided such a zero exists:

l=Jair {3u: /(u) = O} S {f(x) = 0 V f(y) = O}.
We proceed in 5 steps.

8

(2)

Step 1. Simplifying the program

We first use the Atomicity Corollary and Initialization Corollary and reduce the
original problem (2) to the following claim

where

with

and

Ffair {3u: f(u) = O} T {f(x) = 0 V f(y) = O}

T =found:= false; x := O; y := l;
[T1llT2]

T1 = while -if ound do
< x := x + 1;

if f(x) = 0 then found:= true fi)
od

T2 =while -ifound do
< y := y-1;

if f(y) = 0 then found:= true fi).
od

(3)

Both corollaries are applicable here by virtue of the fact that x does not ap­
pear in S2 and y does not appear in S1. Recall that by assumption assignments
and the skip statement are considered to be atomic regions.

Step 2. Decomposing fair total correctness

To prove (3) we use the fact that fair total correctness can be decomposed into
fair termination and partial correctness. More precisely we use the following
observation.

Lemma 8 For all nondeterministic or parallel programs R and all assertions p

and q

Ffair {p} R {q} iff Ffair {p} R {true} and I= {p} R {q}.

Proof By the definition of fair total correctness and partial correctness. D

Thus to prove (3) it suffices to prove

F/air {3u: f(u) = O} T {true} (4)
and

I= {3u: /(u) = O} T {f(x) = 0 V f(y) = O}. (5)

9

Step 3. Reduction to nondeterminism

To prove (4) we use the Parallelization Theorem. Consider the following non­
deterministic program

T' :: found :=false; z := 0; y := 1;
do -ifound- z := z + 1;

if f(z) = 0 then found:= true fi
D -ifound - y := y - 1;

if f(y) = 0 then found := true fi
od.

Clearly

and

I= tot {true/\ found}
z := z + 1;
if f(z) = 0 then found:= true fi

{true /\ found}

I= tot {true /\ found}
y := y-1;
if f(y) = 0 then found := true fi

{true/\ found}.

Thus by the Parallelization Theorem, to prove (4) it suffices to prove

l=tair {3u: /(u) = O} T' {true}.

Step 4. Proving fair termination

(6)

To prove (6) we use a proof rule for fair total correctness of one level non­
deterministic programs, introduced in Apt and Olderog [1983]. This rule is
obtained from the Fairness Corollary 7 by absorbing, as it were, the scheduler
parts INIT, SCH i and UPDATEi referring to the scheduling variables z1, •.• , Zn

of the transformed program into the pre- and postconditions.
For the case of the identical loop guards this proof rule reads as follows:

FAIR LOOP RULE

(i) {p /\ B} Si {p}, i E {1, ... , n},
(ii) {p /\ B /\ z ~ 0 /\ 3zi ~ 0: t[z; + 1/z;]#i = n-}

Si
{t<a},iE{l, .. .,n},

(iii) p /\ z ~ 0 - t E W

10

where

• t is an expression which takes values in a partial order (P, <) that is well­
founded on the subset W ~ P,

• z1 , ... , Zn are integer variables that may occur freely in t, but not in p, B;
or Si, for i E { 1, ... , n},

• t[zi + l/zj]i;ti denotes the expression that results from t by substituting
for every occurrence of Zj in t the expression Zj + l; here j ranges over the
set {l, ... , n} -{i},

• z 2: 0 abbreviates z1 2: 0 /\ ... /\ Zn 2: 0,

• a is a simple variable ranging over P and not occurring in p, t, B; or S;,
for i E { 1, ... , n }; its purpose is to freeze the value of t[zj + 1/ Zj]i;ti before
the execution of S;.

Note that with the precondition of premise (ii) simplified to

p/\B/\t=a

and premise (iii) simplified to

p-+tEW,

we obtain the usual rule for total correctness of nondeterministic do-loops. The
above usage of the variables z1 , .. ., Zn in the premises allows us to establish fair
total correctness.

We call p the invariant of the loop and t the bound function of the loop. In
the proof outlines we denote them by inv: p and bd: t, respectively.

We use the above rule to first prove a weaker fair termination result than
(6), viz. where f has a zero u > 0:

Flair {f(u) = 0 /\ u > O} T' {true}.

A proof outline for (7) has the following structure:

{f(u) = 0 /\ u > O}
found := false;
x := O;
y := l;
{f(u) = 0 /\ u > 0 /\-.found/\ x = 0 /\ y = l}
{inv: p}{bd: t}
do -.found-+ {p /\-.found}

x := x+ l;
if f(x) = 0 then found:= true fi

11

(7)

{p}
D -.found-+ {p /\ -.found}

y := y- 1

od
{p /\found}
{true}.

if f(y) = 0 then found := true fi
{p}

It remains to find a loop invariant p and a bound function t that will complete
this outline.

Since the variable u is left unchanged by the program S, certainly

f (u) = 0 /\ u > 0

is an invariant. But for the completion of the proof outline we need a stronger
invariant relating u with the program variables x and found. We take as an
overall invariant

p = f(u) = 0 /\ u > 0 /\ x ~ u /\ if-.found then x < u fi..

Notice that the implications

f(u) = 0 /\ u > 0 /\-.found/\ x = 0 /\ y = 1 -+ p

and

p /\ found -+ true

are obviously true and thus confirm the proof outline as given outside the do­
loop.

To check the proof outline inside the loop, we take as partial order the set

P= Z x Z,

ordered lexicographically by <rez and well-founded on the subset

W =No x No,

where Z denotes the set of integers and No the set of natural numbers.
As a bound function we take

t =< U - X, Z1 >.

In t the scheduling variable z1 counts the number of executions of the second
loop component before the next switch to the first one, and u - x, the distance

12

between the current test value x and the zero u, counts the remaining number
of executions of the first loop component.

We show now that our choices of p and t complete the overall proof outline
as given inside the do-loop. To this end, we have to prove the premises of the
Fair Loop Rule.

We do this for the second premise. For the first loop component we have
the proof outline:

{ -.found/\ f(u) = 0 /\ u > 0 /\ x < u
/\ z1 ~ 0 /\ z2 ~ 0 /\ 3z1 ~ 0 : < u - x, z1 >= a}

{3z1 ~ 0: < u - x, z1 >= o:}
{< u - x - l,z1 > <zex a}
x := x + l;
{ < u - x, z1 > <1er a}
found:= f(x) = 0
{<u-x,z1> <1.xa}
{t <!ex a}.

Thus the bound function t drops below o: because the program variable x is
incremented into the direction of the zero u.

For the second loop component we have the proof outline:

{ -.found/\ f(u) = 0 /\ u > 0 /\ x < u
/\ z1 ~ 0 /\ z2 ~ 0 /\ < u - x, z1+1 >=a}

{ < U - X, Z1+1 >=a}
{ < u - x, z1 > <ter a}
y := y-1;
found := f (y) = 0
{<u-x,z1 > <1ex0:'}
{t<1exa}.

Notice that only with the help of the scheduling variable z1 we can prove that the
bound function t drops here below a; the assignments to the program variables
y and found do not affect t at all.

The remaining two premises can be easily established. This completes the
proof of (7).

Symmetrically we can deal with the case when f has a zero u :5 0:

l=Jair {!(u) = 0 /\ u :5 O} T' {true}.
Combining this with (7) by standard rules of Hoare's logic yields (6).

Step 5. Proving partial correctness

It remains to prove (5). To this end, we use the approach of Owicki and Gries
[1976] and Lamport [1977]. First we need to construct interference free proof
outlines for partial correctness of the component programs T1 and T2 of T.

13

For Ti we use the invariant

Pi::: x > 0 (8)
/\ (f~und--+ (x > 0 /\ f(x) = 0) V (y :$ 0 /\ f(y) = 0)) (9)
/\ (-ifound /\ x > 0--+ f(x) i: 0) (10)

to construct the proof outline

{inv: pi}
while -i/ ound do

od

{x ~ 0 /\(found--+ y :$ 0 /\ f(y) = 0)
/\ (x > 0--+ f(x) =ft O)}

(x := x + 1;
if f(x) = 0 then found:= true fi}

{p1 /\ found}.

Similarly, for T2 we use the invariant

(11)

P2 =: y :$ 1 (12)
/\ (found-+ (x > 0 /\ f(x) = 0) V (y :$ 0 /\ f(y) = 0)) (13)
/\ (-ifound /\ y :$ 0--+ f(y) f 0) (14)

to construct the proof outline

{inv: P2}
while -i/ ound do

od

{y :$ 1 /\(found--+ x > 0 /\ f(x) = 0)
/\ (y :$ 0--+ f(y) =ft O)}

(y:=y-1; .
if f(y) = 0 then found := true fi}

{P2 /\ found}.

The intuition behind the invariants Pi and P2 is as follows. Conjuncts (8)
and (12) state the range of values that the variables x and y may assume during
the execution of the loops Ti and T2.

Thanks to the initialization of x with 0 and y with 1 in T, the condition
x > 0 expresses the fact that the loop Ti has been traversed as least once,
and similarly the condition y :$ 0 expresses the fact that the loop T2 has been
traversed at least once. Thus the conjuncts (9) and (13) in the invariants Pi and
P2 state that if the variable found is true, then the loop Ti has been traversed
at least once and a zero x of f has been found, or that the loop T2 has been
traversed at least once and a zero y off has been found.

14

The conjunct (10) in Pi states that if the variable found is false and the
loop Ti has been traversed at least once, then x is not a zero off. Analogously
for the conjunct (14) in P2·

Let us discuss now the proof outlines. In the first proof outline the most
complicated assertion is (11). Note that

P1 /\ -ifound-+(11)

as required by the definition of a proof outline.
Given (11) as a precondition, the loop body in T1 establishes Pi as a post­

condition, as required. Notice that the conjunct

found-+ y :::; 0 /\ f(y) = 0

in the precondition (11) is necessary to establish the conjunct (9) in the invariant

Pi·
Next we deal with the interference freedom of the above proof outlines. In

total 6 correctness formulas have to be proved, 3 for each component, pairwise
symmetric.

The most difficult case is the interference freedom of the assertion (11) in
the proof outline for Ti with the loop body in T2 • It is proved by the following
proof outline:

{ x ~ 0 /\(found-> y:::; 0 /\ f(y) = 0) /\ (x > 0-> f(x) # 0)
/\ y:::; 1 /\(found-> x > 0 /\ f(x) = 0) /\ (y ~ 0-> f(y) # O)}

{x ~ 0 /\ y ~ 1 /\ -ifound /\ (x > 0-> f(x) # O)}
(y:=y-1;

if f(y) = 0 then found := true fi)
{x ~ 0 /\(found-+ y ~ 0 /\ f(y) = 0) /\ (x > 0-> f(x) # O)}.

Note that the first assertion in the above proof outline indeed implies -ifound:

(found-+ (x > 0 /\ f(x) = 0)) /\ (x > 0-+ f(x) # 0)

implies

found-+ (J(x) # 0 /\ f(x) = 0)

implies

-ifound.

This information is recorded in the second assertion of the proof outline and
used to establish the last assertion.

The remaining cases in the interference freedom proof are straightforward
and left to the reader.

15

We now apply the rule of parallel composition and get

From this correctness formula it is straightforward to prove the desired par­
tial correctness result (5).

This concludes the proof of (2).

Discussion

(i) In the above proof we first simplified (2) to (3) and then decomposed (3)
into (4) and (5). Clearly we could have decomposed in an analogous way (2).
But this would lead to a much more complicated proof of partial correctness
because S contains more interference points than T. In particular, to deal with
the initialization x := 0 and y := 1 within the parallel composition in S requires
the use of auxiliary variables.

This shows that the Atomicity and Initialization Theorems simplify the task
of proving parallel programs correct.

(ii) To prove (4) we used the Parallelization Theorem. It is useful to note that
we cannot use it to prove (3) directly. Indeed, to apply it we would have to
prove

Ftot {(f(x) = 0 V f(y) = 0) /\found}
x := x + 1;
if f(x) = 0 then found:= true fi
{(f(x) = 0 V f(y) = 0) /\found}

and a similar claim for the second component. However, the above claim does
not hold as the assignment x := x + 1 can invalidate the assertion f(x) = 0.

This shows that the Parallelization Theorem is of limited applicability and
has to be used in conjunction with other methods.

(iii) To prove fair termination of T' in (6) or (7) we could have applied the
Fairness Corollary 7 to T' and proved ordinary termination of the transformed
version of T'. However, we preferred to use the Fair Loop Rule presented in
Step 3 because it allowed us to reason directly about the original program T'.
In this way certain parts of the transformation are handled uniformly and a
generation of several intermediate assertions (for example dealing with random
assignments) is avoided.

16

Appendix

In this appendix we prove Theorems 1 and 2. As a preparation we define
rigorously the program semantics. We use here the operational approach due
to Hennessy and Plotkin [1979]. Its basic concept is a configuration which is
simply a pair < S, u > consisting of a program S and a proper state u. The
semantics is then defined in terms of transitions. Intuitively, a transition

< s, u > _,. < R, T >
means: executing S one step in a proper state u can lead to state r with R
being the remainder of S still to be executed. To express termination we allow
the empty program E inside configurations: R = E in in the above transition
means that S terminates in r. We stipulate that E; Sand S; E abbreviate to
S. Also, we identify

[Ell· .. l!E] := E.

This expresses the fact that a parallel program terminates iff all its components
terminate.

In the following u, r stand for proper states, i.e. mappings from variables
to values. We write u(t) to denote the value of an expression t in u and u f= B
to express that the Boolean expression B evaluates to true in u. Further on,
u[u(t)/u] is a proper state that agrees with u except for the variable u where its
value is u(t). The transition relation _,. is defined by induction on the structure
of programs. We use the following transition axioms and rules:

(i) < skip, u > _,. < E, u >,

(ii) < u := t, u > < E, u[u(t)/u] >,

(iii)

< S1; S, (f > < S2; S, T >

(iv) < if B then 5 1 else S2 fi, u > _,. < S1, u > where u f= B,

(v) <if B then 51 else S2 fi,O" > _,. < S2,u >where u f= -iB,

(vi) <doDZ:1 B;-+S;od,u>-+ <S;; doDi=1 B;-+S;od,O">
where u f= B; and i E {l, ... , n},

(vii) < do Di=i B; _,. S; od, u > _,. < E, O" > where u f= Ai= 1 -.B;.

(viii)

< s, u > _,. * < E, T >
< (S) > -+ < E, T >

17

(ix)

whereiE{l, ... ,n}.

By definition the transitions for while B do Sod are as for do B-+ Sod.
Rule (viii) formalizes the intuitive meaning of atomic regions by reducing each
terminating computation of the "body" S of an atomic region (S) to a one
step computation of the atomic region. Rule (ix) states that a parallel program
[S111-. ·II Sn] performs a transition if one of its component performs a transition.
Thus concurrency is modelled here by interleaving.

A transition < S, er > -+ < R, r > is possible if and only if it can be
deduced in the above transition system.

Definition 9 Let S be a parallel or nondeterministic program and er a proper
state.

(i) A transition sequence of S starting in er is a finite or infinite sequence of
configurations< S;, er;> (i ;=:: 0) such that

<S,er>=<So,ero>-+ <S1,er1> ---> ••. ---> <S;,er;> ---> •••

(ii) A computation of S starting in er is a transition sequence of S starting in
er which cannot be extended.

(iii) A computation of S is terminating in r (or terminates in r) if it is finite
and its last configuration is of the form< E, r >.

(iv) A computation of Sis diverging (or diverges) if it is infinite. Scan diverge
from er if there exists an infinite computation of S starting in er.

0

Let ___.• stand for the transitive, reflexive closure of --->. We now define three
semantics of parallel or nondeterministic programs by putting for a proper state
er

M[S](er) = {r I< S,er > --->* < E, r > },

Mtoi[S](er) = M[S](er) U {j_ IS can diverge from er},

Mfair[S](er) = M[S](er) U {J. IS can diverge from er by a fair computation.}

18

The corresponding notions of partial, total and fair total correctness of pro­
grams can be defined as inclusion properties of sets of states. For partial cor­
rectness we put

F {p} s {q} iff M[S]([p]) ~ [q]

where [p] is the set of all proper states satisfying the assertion p and analogously
for q. The definitions for Ftot and Ffair refer to Mtot and MJair instead.

Proof of Theorem 1. We proceed in 6 steps.

Step 1 We consider the case when S and T have no initialization part So
and introduce a subset of computations of T. To this end, observe that in an
arbitrary finite or infinite transition sequence

e :< T,a >=< T1,a1 > - ... - < T;,a; > - ...

ofT, each transition< 1j, a;> - < T;+1 1 a;+1 >in e is ofone of the following
three types.

It can be a B;-transition passing succcessfully the loop condition B in the
i-th component so that

Tj _ [.. -llwhile B do (S;} odll ...] and <r; F= B,

TJ+i _ [.. -ll(S;}; while B do (S;} odll· ..] and a;+1 = u;;

it can be an Si-transition executing the loop body S; as an atomic action so
that

Tj - [.. ·ll(Si}; while B do (S;} odll· ..],

TJ+1 - [.. -llwhile B do (S;~ odll· ..];

or it can be an E;-transition terminating the loop of the i-th component so that

T; = [... llwhile B do (S;} odll ...] and <r; F= -.B,

T;+1 = [.. ·llEll· ..] and CTj+l = u;.

We say that ~ is delay free if each B;-transition is immediately followed by
the corresponding Si-transition.

Nate that in a delay free computation of T for each S;-transition < T;, a; >
- < TJ+1, C1j+l >

T; := [while B do (S1} odll ...
ll(S;}; while B do (S;} odll· ..
llwhile B do (Sn} odll ...]

19

and

'.I~Hl = [while B do (S1} odll· ..
!lwhile B do (S;} odll· ..
II while B do {Sn} odll· ..]

:T.

Also, after an £;-transition only Ertransitions for i ::j:. j can take place.

Step 2 To compare the computations of S and T, we use the following notion
of equivalence. Two computations are called i/o equivalent if they start in the
same state and either both diverge or both terminate in the same state.

Step 3 We prove the following two claims:

• every (fair) computation of S is i/o equivalent to a delay free (fair) com­
putation of T,

• every delay free (fair) computation of T is i/o equivalent to a (fair) com­
putation of S.

First consider a (fair) computation~ of S. We construct an i/o equivalent delay
free (fair) computation of T from~ by replacing

• every loop entry transition

< S,u >-+ < S;; S,u >

with the B;-transition

< T, a> -+ < [while B do (S1} odll· ..
ll(S;); while B do S; odll· ..
llwhile B do Sn odll· .. , a>,

• every transition subsequence

< S;; S, u > -+ ... -+ < S, r >,

forming the stepwise execution of the loop body S;, with the S;-transition

< [while B do (S1} odll· ..
ll(S;}; while B do S; odll· ..
llwhile B do Sn odjj ... , O' > -+ < T, r >,

20

• every loop exit transition

< S,u >--+ < E,u >

with a sequence of n final Bi-transitions, i E {1, ... , n}, dealing with the
state u.

Now consider a delay free (fair) computation T/ ofT. By applying the above
replacement operations in reverse direction, we construct an i/o equivalent (fair)
computation of S from T/·

Step 4 To compare computations of T, we introduce the following variant of
i/ o equivalence. Two computations are called q-equivalent if they both start in
the same state and either both diverge or both terminate in a state satisfying
assertion q.

Step 5 By a p-computation we mean a computation starting in a state satisfying
the assertion p. Suppose that every terminating delay free p-computation of
T terminates in a state satisfying the assertion q. We prove that under this
assumption every (fair) p-computation of T is q-equivalent ·to a delay free p­
computation of T.

Consider a (fair) computation

e :< T,u >=< T1,u1 >--+ ... --+ < T;,u; >--+ ...

ofT with u F= p.

Case 1Vj~1 : u; F= B.
Then e is infinite. Let

be the sequence of all $;-transitions in e. Then there exists an infinite delay free
(fair) p-computation T/ of T which starts in u and has the same sequence of Si­
transitions. We can construct T/ by performing the corresponding B;-transitions
immediately before the S;-transitions of this sequence. This is possible because
in the present case the B;-transitions are everywhere enabled.

Case 2 3j ~ 1 : u; F= -.B.
Let io be the smallest such j. Consider the prefix

of e. By the choice of j 0 , the last transition in ea is an Si-transition.
We first show that u;0 F= q. To this end, we argue in a similar way as above.

Let

21

be the sequence of all Si-transitions in eo. Then there exists a finite delay
free transition sequence 7Jo of T starting in <r, running through the same S;­
transitions as e0 , and ending in the configuration < T, u;0 >. Note that we
indeed obtain here the program T thanks to the observation about S;-transitions
in delay free transition sequences stated in Step 1. Since <rjo I= -iB, the only
transitions which are possible after < T, <r io > are Bi-transitions, i E { 1, ... , n}.
By adding all these transitions, we obtain a delay free p-computation 1J of T
terminating in <r ; 0 • By the assumption of this step, <r io I= q.

Thus q ; 0 I= q /\ -iB. This information is sufficient to see how the original
computation e of T continues after the prefix fo. In fo there may be some
Bi-transitions without a corresponding $;-transition. Since by assumption

these remaining S;-transitions all yield states satisfying q /\ -iB. Thus these
S;-transitions and n final E;-transitions are the only possible transitions in the
remainder of e. Thus also e terminates in a state satisfying q. Consequently, e
and the delay free computation 1J are q-equivalent.

Step 6 By combining the results from Step 3 and 5, it is easy to prove the claim
of the theorem for the case when S and T have no initialization part So. The
first claim of Step 3 implies the "if" -part. The second claim of Step 3 together
with the result of Step 5 imply the "only-if" -part. Indeed, suppose

I= {p} s {q},

i.e. every terminating p-computation of S terminates in a state satisfying q.
Then by the second claim of Step 3, every terminating delay free p-computation
of T terminates in a state satisfying q. Thus by the result of Step 5, every
terminating p-computation of T terminates in a state satisfying q, i.e.

I= {p} T {q}.

Similar arguments deal with l=tot and l=tair . The case when S and T have
an initialization part So is left to the reader. D

Proof of Theorem 2. We treat the case when S has no initialization part So
and T results form S by splitting {R1; R2} into {R1}; (R2}. Our presentation
follows the 6 steps outlined in the previous proof.

Step 1 By an Rk-transition, k E {l, 2}, we mean a transition occurring in a
computation of T which is of the form

22

We call a fragment ~ of a computation of T good if in e each R1-transition is
immediately followed by the corresponding R2-transition, and we call e almost
good if in e each R 1 -transition is eventually followed by the corresponding R 2-

transition.
Observe that every fair and hence every finite computation of T is almost

good.

Step 2 To compare the computations of S and T, we use the i/o equivalence
introduced in Step 2 of the proof of Theorem l.

Step 3 We prove the following two claims:

• every (fair) computation of S is i/ o equivalent to a good (fair) computation
ofT,

• every good (fair) computation ofT is i/o equivalent to a (fair) computation
of S.

First consider a (fair) computation e of S. Every program occurring in a config­
uration of e is a parallel composition of n components. Let for such a program
U the program split(U) result from U by replacing in the i-th component of U
every occurrence of (R1; R2) by (R1); (R2). For example, split(S) = T.

We construct an i/o equivalent good (fair) computation of T from e by
replacing

• every transition of the form

< [U1IJ ... Jl(R1; R2); U,JJ ... JIUnJ, o- >
-+ < [Uill· · ·llU;JI ... IJUn], r >

with two consecutive transitions

< split([U1ll· . . IJ(R1; R2); Udl· .. JIUn]), u- >
-+ < split([U1ll·· .Jl(R2); U;ll···llUn)),0-1 >
-+ < split([U1ll· . . JIU;JI . .. JIUn]),r >

where the intermediate state u-1 is defined by

23

• every other transition

< U, u > -+ < V, r >

with

< split(U), u > -+ < split(V), r > .

Now consider a good (fair) computation TJ of T. By applying the above
replacement operations in reverse direction we construct an i/ o equivalent (fair)
computation of S from 'f/·

Step 4 For the comparison of computations of T we use i/o equivalence, but
to reason about it we also introduce a more discriminating variant of it called
"permutation equivalence".

First consider an arbitrary computation e of T. Every program occurring in
a configuration of e is the parallel composition of n components. To distinguish
between different kinds of transitions in e, we attach labels to the transition
arrow -+ . We write

Rk < U, (J' > -+ < V, T >

if k E {1, 2} and< U, u > -+ < V, r > is an Ri.:-transition of the i-th component
of U,

i < U, <J' > -+ < V, r >

if< U, <J' > -+ < V, r > is any other transition caused by the activation of the
i-th component of U, and

< U, (}" > .!..,. < v, T >

if j f. i and < U, u > -+ < V, r > is a transition caused by the activation of
the j-th component of U.

Hence with each transition arrows in a computation of T there is a unique
label associated. This enables us to define:

Two computations 17 and e of T are permutation equivalent if

• T/ and e start in the same state,

• for all states O', T/ terminates in O' iff e terminates in IJ',

• the possibly infinite sequence of labels attached to the transition arrows
in T/ and e are permutations of each other.

24

Clearly, permutation equivalence of computations of T implies their ijo
equivalence.

Step 5 We prove the following claim: every (fair) computation of T is i/o
equivalent to a good (fair) computation of T.

To this end, we establish two simpler claims.

Claim 1 Every (fair) computation of T is i/o equivalent to an almost good
(fair) computation of T.

Proof of Claim 1. Consider a computation { of T which is not almost good.
Then by the observation stated in Step 1, €is not fair and hence diverging. More
precisely, there exists a suffix €1 of e which starts in a configuration < u, q >
with an R1-transition and then continues with infinitely many transitions not
involving the i-th component any more, say

(: u R, TT ii u h ._1:< ,u>-+<vo,uo>-+< 1,u1>-+ ...

where J1c :ft i fork ;?:: 1. By the definition of semantics of while-programs we
conclude the following: if R1 is disjoint from S; with j :ft i, then there is also
an infinite transition sequence of the form

(: u ii v; i2 ._2 :< , q > --+ < 1i T1 > -+ · · .,

and if R2 is disjoint from S; with j :ft i, then there is also an infinite transition
sequence of the form

c U R1 lJ, R, tr j, V, h ._3 :< ,u > --+ < o,uo > --+ < vo,ro > --+ < 1,r1 > -+ ...

We say that 6 is obtained from {i by deletion of the initial Ri-transition and
{ 3 is obtained from 6 by insertion of an R2-transition. Replacing the suffix {i
of {by 6 or 6 yields an almost good computation of T which is ijo equivalent
to€- D

Claim 2 Every almost good (fair) computation of T is permutation equivalent
to a good (fair) computation of T.

Proof of Claim 2. By the definition of semantics of while-programs the
following: if R1c with k E {1, 2} is disjoint from S; with j :ft i, then the relations
Rk d j t . --+ an --+ commu e, i.e.

where o denotes relational composition. Repeated application of this commu­
tativity allows us to permute the transitions of every almost good fragment €i
of a computation of T of the form

25

c U R1 ii j,,. R2 V
.. 1 :< , Cf > -+ 0 -+ O ••. o -+ O -+ < , T >

with j,. =f. i fork E {l, .. ., m} into a good order, i.e. into

c U ii j,,. R1 R2 V
.. 2 :< , Cf > -+ O ••• 0 -+ O -+ O -+ < , T >

or

R1 R2 ii j,,. 6 :< U, (f > -+ 0 -+ 0 -+ 0 .•. 0 -+ < v, T >

depending on whether R1 or R2 is disjoint from S; with j -:j:. i.
Consider now an almost good computation e of T. We construct from e

a permutation equivalent good computation e* of T by successively replacing
every almost good fragment of e of the form 6 by a good fragment of the form
6 or ea.

Note that a computation 1/ ofT is fair iffthere exists a configuration< U, <J" >
such that every sequential component of Uhas either terminated or is activated
infinitely often in the suffix of 1J starting in < U, <J" >. Since this property is
preserved by the above construction of a permutation equivalent computation
e· from e, we conclude: if e is fair, also e· is fair. 0

Claims 1 and 2 together imply the claim of Step 5.

Step 6 By combining the results of Step 3 and 5, we get the claim of the theorem
for the case when S has no initialization part So and T results fromS by splitting
(R1; R2} into (R1}; (R2). The cases when S has an initialization part So and
where T results from S by splitting the atomic region (if B then R1 else R2 fi}
are left to the reader. D

The proof of the Initialization Theorem follows the same lines as the proof
of the Atomicity Theorem and is therefore omitted.

References

[1] E. Ashcroft and Z. Manna, Formalization of properties of parallel pro­
grams, Ma chine Intelligence 6, pp. 17-41, 1971.

[2] K.R. Apt and E.-R. Olderog, Proof rules and transformations dealing with
fairness, Science of Computer Programming 3, pp. 65-100, 1983.

[3] R.J .R. Back, A method for refining atomicity in parallel algorithms, Lec­
ture Notes in Computer Science 366, Springer-Verlag, 1989.

26

r

L

[4] M. Chandy and J. Misra, A Foundation of Parallel Program Design,
Addison-Wesley, 1988.

[5] E. W. Dijkstra, Guarded commands, nondeterminacy and formal deriva­
tion of programs, Communications of the ACM 18, pp. 453-457, 1975.

[6] L. Flon and N. Suzuki, The total correctness of parallel programs, SIAM
Journal of Computing, pp. 227-246, 1978.

[7] N. Francez, Fairness, Springer-Ver lag, 1986.

[8] M.C.B.Hennessy and G.D. Plotkin, Full abstraction for a simple program­
ming language, Lecture Notes in Computer Science 74, Springer-Verlag,
1979.

[9] L. Lamport, Proving the correctness of multiprocess programs, IEEE
Transactions on Software Engineering SE-3:2, pp.125-143, 1977.

[10] R. Lipton, Reduction: a method of proving properties of parallel programs,
Communications of the ACM 18, pp. 717-721, 1975.

[11] E. R. Olderog and K. R. Apt, Fairness in parallel programs, the transfor­
mational approach, ACM TOP LAS 10, pp. 420-455, 1988.

[12] S. Owicki and D. Gries, An axiomatic proof technique for parallel pro­
grams, Acta Informatica 6, pp. 319-340, 1976.

27

