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Abst rac t  

In this paper, we provide a behavioural characterization of the class of finite, series- 

parallel pomsets by showing that this simple model based on partial orders is fully- 

abstract with respect to the behavioural equivalence obtained by applying Abramsky's 

testing scenario for bisimulation equivalence, [Ab87], in all refinement contexts, [AH89]. 

This casts the observability of series-parallel pornsets in a purely interleaving framework. 

Moreover, we prove that the order structure of a series-parallel pomset is completely 

revealed by its set of ST-traces, [GIg0], and provide a complete axiomatization of ST- 

trace equivalence over the class of series-parallel pomsets. 

1 I n t r o d u c t i o n  

In recent years, many models of concurrent computation based upon partial orders have 

been proposed in the literature, e.g. Petri Nets [Rei85]~ Event Structures [Win80,87], Pore- 

sets [Pr86] and, more recently, Causal Trees [DD89]. These models are based upon the 

idea that  concurrent, communicating systems are characterized by their causal structure, 

i.e. by the computational events a system performs during its evolution together with the 

causal dependencies amongst them, and that  its proper description is necessary in account- 

ing for the nonsequential behaviour of distributed systems. The mathematical  tractability of 

causality-based models has been investigated in the literature by providing operational and 

denotational semantics for process algebras, such as C C S  [Mi180,89], C S P  [Hoare85] and 

A C P  [BK85], in terms of the above mentioned models. Partial order operational semantics 

for standard process algebras have been presented in e.g. [BC88], [DDM88], [DD89], and 
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denotational semantics are given in e.g. [Win821, [Go88], [Tau89]. Several notions of equiv- 

alence over the above mentioned models, which allow to abstract from the way processes 

evolve, have recently been proposed in the literature (the interested reader is invited to con- 

sult [GV87] and [G190] for a comparison among some of the proposals), thus importing in 

the partial ordering setting some of the abstraction techniques supported by the standard 

interleaving equivalences and preorders [HM85], [H88a], [BHR84]. 

However, not much work has been carried out in studying reasonable testing scenarios, 

[DH84], which justify the use of these models in giving semantics to concurrent programming 

languages. Notions of observability play a fundamental rhle in the study of suitable seman- 

tics for programming languages. Following Milner and Plotkin's paradigm, mathematical 

models for programming languages should be justified by comparing them with some natural 

notion of behaviourally defined equivalence between processes. Models that are in complete 

agreement with the coarsest equivalence over processes induced by the chosen notion of 

observability are called fully abstract in [MU77], [P177], [HP79], [Sto88]. As fully abstract 

semantic models are the most abstract ones which are consistent with the chosen notion of 

observability, it is natural to try to justify the choice of a model for a language by showing 

that it induces exactly all the distinctions that can be made by means of some natural notion 

of observation. 

The main aim of this paper is to provide such a behavioural justification for a simple 

model based on partial orders, namely the class of series-paralld or N-free pomsets [Gi84], 

[Pr86]. Series-parallel pomsets have been extensively studied in the literature, see e.g. [GiS4], 

[BC88], [Ts88], and have a pleasing algebraic and order-theoretic structure that will be ex- 

ploited in the proofs of the main results of this paper. Following Gischer, the algebraic 

structure of the class of series-parallel pomsets will allow us to relate it t o a simple process 

algebra, whose terms axe built from a set of generators by means of the operators of sequen- 

tial and parallel composition. This gives us a syntax for denoting such partially ordered 

structures and will allow us to give a standard LTS semantics for the resulting language. We 

shall define a standard notion of observational equivalence over processes by means of the 

bisimulation technique [PaSl], [Mil83]. The notion of observability underlying such a notion 

of equivalence has been thoroughly investigated in [Ab87] and is called "tightly-controlled 

testing" in [H88b]. Series-paxallel pomsets do not give rise to a fully abstract model with 

respect to standard bisimulation equivalence; however, by enriching the language with a 

refinement operator like the one used in [AH89], [NEL88], [GG88], and closing bisimula- 

tion equivalence with respect to all the contexts built using this new language construct we 

shall be able to make series-parallel pomsets fully observable. In other words, series-parallel 



pomsets are fully abstract  with respect to the coarsest congruence obtained by applying 

Abramsky's  testing scenario in all refinement contexts. By relying on results from [AH89], 

we shall be able to provide a natural behavioural characterization of series-parallel pomsets 

in terms of Hennessy's timed equivalence [H88c]. These results will cast the observability of 

series-parallel pomsets in a well-known interleaving setting. 

A natural notion of basic observation which is widely used in the interleaving models 

for concurrency is that  of trace, [Hoare85]. Indeed, some natural models for concurrency, 

e.g. Hennessy's Acceptance Trees, [H85], and the Failures model, [BHR84], have been shown 

to be fully abstract with respect to behavioural equivalences which are intrinsically based 

on such a notion of observability, [Main88], [H88a]. A natural question to ask is whether 

series-parallel pomsets can be made fully observable by assuming a trace-based notion of 

observation. In this paper, we shall provide a partial answer to this question by showing 

that  the order structure of a series-parallel pomset is totally revealed by its set of ST-traces, 

[GI90]. ST-semantics has been recently proposed in [GV87], [GI90] as a refinement of split- 

semantics, [H88c], in which an explicit link is required between the beginning and the end 

of any event. It  will be shown that  series-parallel pomsets give rise to a fully abstract  model 

with respect to ST-trace equivalence over the simple process algebra considered in this paper. 

As a corollary of this result, we shall be able to give a complete axiomatization of ST-trace 

equivalence over the class of series-parallel pomsets. 

We now give a brief outline of the remainder of the paper. Section 2 is devoted to a review 

of mostly standard material in the theory of pomsets. Two behavioural semantics for series- 

parallel pomsets, based on the notion of blsimulation equivalence, are presented in §3. We 

shall show that  series-parallel pomsets are fully abstract with respect to the finer of the two 

behavioural semantics, which may be seen as arising by applying Abramsky's  testing scenario 

for bisimulation equivalence in all refinement contexts. The proof of this result is algebraic in 

nature and relies on Gischer's axiomatization of the theory of series-parallel pomsets, [Gi84]. 

Section 4 is entirely devoted to providing another behavioural characterization for series- 

parallel pomsets. We shall prove that  ST-trace equivalence coincides with equality over the 

class of SP pomsets, thus giving a trace-theoretic understanding of this simple model based 

on partial orders. We end with a conclusion and a discussion of related work. 

2 Series-parallel pomsets  

This section will be devoted to a brief review of some basic notions of the theory of partially 

ordered multisets (or pomsets in Prat t  and Glscher's terminology) which will find application 



in the remainder of the paper. The interested reader is referred to [Gr81t, [Gi84], [PrS6], 

for more information on pomsets and further references. The following definition introduces 

the main objects of study of the paper. 

Def inRion  2.1 1. A labelled poset • over a label set L is a triple ~ = (P, <, 1), where 

* P is a f ini te  set  of  events, 

* < is a binary, transitive and aeyelic relation over P ,  and 

• I : P -~ L is a labelling function.  

Two L.labelled posers ~ = (P~, <i,l~), i = 1,2, are isomorphic, writ ten 2Pi ~- ~2 ,  i f f  

there exists a bijeetive funct ion h : Px -+ P2 such that, for all u, v E Px, u <1 V i f f  

hCu) <2 hCv) and llCu) = 12(hCu)). 

2. A pomset  over L, a = [P,<,I] ,  is an isomorphism class of  L-labelled posets. For a 

label set L,  Pore[L]  will denote the set of  pomsets  over L and will be ranged over by 

0[, /3 . . . .  

Several operations on pomsets have been defined in the above given references. Since pomsets 

are isomorphism classes of labelled posets, it will be convenient to define operations on them 

by using arbitrary representatives of the isomorphism class. For each operation it will be 

straightforward to establish that the result of the operation is independent of the chosen 

representative and such verifications will be omitted. Let A be a set of observable actions 

ranged over by a, b, a r . . . .  In the remainder of the paper we shall only need the following 

operations over Pore[A] .  

• Empty  pomset.  I will denote the isomorphism class of the A-labelled poset (0, 0, 0). 

• A tomic  actions. For each a E A, a will denote, with abuse of notation, the isomorphism 

class of the one element poser labelled with a. In what follows, A will be used to denote, 

with abuse of notation, the set of all such atomic pomsets. 

• Sequential and parallel composition. Let a = [P1, <1, ll] and/3 = [P2, <2,12] be pomsets 

on A and assume, wlog, that P1 D P2 = 0. Then a;/3, the sequential composition of a 

and/3 is given by 

= [P1 u P2, <1 u <2 u(P1 x P2), Ii u 12] 

and c~1/3, the parallel composition of a and/3, is given by 



( P A R 1 )  x[nil = x 

( P A R 2 )  xly  = Ylx 

(PAR3) (~ lv ) l z  = ~ l (v l z )  

( S E Q 1 )  x ;n i l  = z = n i l ; x  

( S E Q 2 )  ( x ; y ) ; z  : x ; ( y ; z )  

Figure 1: The set of axioms E 

Following Gischer [Gi84], the class S P  of series-parallel pornsets over A may now be defined 

to be the closure of A and I with respect to the operations of sequential and parallel 

compositon. The definition of the class of pomsets S P  has a pleasing algebraic flavour; 

indeed, the class of pomsets S P  is in close correspondence with the set of terms $ fl built 

from the set of observable actions A by means of the operators of sequential and parallel 

composition. More formally, let S P be the set of terms generated by the syntax 

p ::= ,~il I a I P; p I pip, 

where a 6 A. SP will be ranged over by p,q,  f f  . . . .  Following Gischer, the set of terms 5P 

may be interpreted as series-parallel pomsets by defining the semantic map ~.] : S ?  ~ S P  

as follows: 

• ~ i q  = , ,  

• ~ = ~,  

The following theorem, which formalizes the close connection between S P and S P  and gives a 

complete axiomatization of the congruence on S P induced by the above given denotational 

semantics, has been proven in [Gi84] (Theorem 5.2, page 23). Let --E denote the least 

S P-congruence which satisfies the set of axioms E in Figure 1. 

Theorem 2.1 (Gischer )  For each p, q 6 S ? ,  UP~ = Uq~ iff  p =E q. 

The algebraic characterization of the theory of S P  pomsets given by the above theorem 

will provide the key to their behavioural characterization, which will be presented in the 



following section; namely, we shall give a behavioural view of the processes in $ P, based on 

a well-understood testing scenario familiar from the theory of bisimulation semantics, and 

prove that  the denotational semantics for SP given by the map [.] is fully abstract with 

respect to it. Following Mitner and Plotkin's paradigm, this will justify the choice of S P  as 

a denotational model for $ P by showing that  S P  is the most abstract model for S P which 

is consistent with the chosen testing scenario. 

We end this review of standard material on series-parallel pomsets with an order-theoretic 

characterization of the class of pomsets SP. It is well-known that  the class of pomsets S P  

coincides with that  of the so-called N-free pomsets, see e.g. [Gi84] (Theorem 3.2, pp. 14-15) 

and [BC88], where a more general result is proven for Event Structures. Here we only present 

a result from ITs88] giving a characterization of SP pomsets in terms of their order structure 

which will find application in §4. 

P r o p o s i t i o n  2.1 ( T s e h a n t z )  A pomset [P, <,l]  is series-parallel iff the following property 

holds: 

(N) V w , x , y ,  z E P w < y , w  < z and x < z imply y < z or w < x or x < y. 

In what follows, a labelled pose t /P  will be said to be series-parallel (SP)  iff it satisfies the 

above-given property (N). Pos[A] will denote the class of S P  posets labelled on A. 

3 Full-abstraction for series-parallel pomsets  

This section will be entirely devoted to a discussion of a behavioural semantics for the simple 

language S P and to a proof of full abstraction of the denotational semantics given by the 

map [-] with respect to it. Following Milner and Plotkin's approach, the behaviourat view 

of processes we shall present, which is based on the notion of testing characterizing standard 

bisimulation semantics studied in [Ab87], will justify the denotational semantics in terms 

of series-parallel pomsets. In what follows, we shall introduce two operational semantics 

for the set of processes SP and two notions of observational equivalence for it. Relying on 

results from [AH89], we shall study the relationships between the two behavioural theories 

of processes and prove that  the denotational semantics is fully abstract with respect to the 

finer one, the timed equivalence proposed in [H88c]. 

Operationally, the constructs in the language for processes $ Y will be interpreted in a 

fairly standard way; following Milner [Mi180,89], nil will be interpreted as the process that  

cannot perform any move. A generator a E A will be interpreted as a process which is capable 

of performing the task represented by a and terminate in doing so. The combinators ; and 



(1) a - -~  nil 

(2) p - -~  p' implies p;q - -~  pt;q 

(3) p~/, q - -~  q' imply p; q __~ qr 

(4) p -2-+ p' implies Plq - -~  P'lq 

qlP --% qlg 

Figure 2: Axiom and rules for - -~  

I will stand for sequential composition and parallel composition (without communication), 

respectively. Both the operational semantics for the language S Y consist of two ingredients: 

1. a termination predicate V/, used in giving an operational account of the sequential 

composition operator, and 

2. a standard LTS semantics for SP given using Plotkin's SOS method, [P181]. 

The termination predicate v / i s  the least subset of S P which satisfies the following axiom 

and rule: 

* n i l e , ~ ,  

* p e r / a n d q C x / i m p l y p ; q E v / a n d p l q E x / .  

In what follows, p E x/will  be often written as Px/. Using this termination predicate we 

may now give the first Labelled Transition System semantics for SP; this semantics will be 

based on the assumption that processes evolve by performing actions which are atomic. For 

each a E 2k, -2-+ will denote the least binary relation over S P which satisfies the axiom and 

rules given in Figure 2. A standard notion of observational equivalence over SY may now 

be defined by means of the bisimulation technique [Pa81], [Mi183]. The relation --,C_ Sp2 is 

the largest symmetric relation which satisfies, for all p,q E SP, p ~ q if, for all a E A, 

P a ~ p~ implies q - -~  q~ and p~ N q~, for some q~. 

The following proposition is then standard. 

P r o p o s i t i o n  3.1 ,,- is a $ P-congruence. 

The testing scenario which is needed to characterize ,,~ as a testing equivalence has been spelt 

out by S. Abramsky in lAb87]; a tutorial exposition of Abramsky's testing characterization 

of the equivalence ,,, may be found in [H88b]. The main import of Abramsky's results is 



that,  by using ,~ as our basic notion of equivalence, we automatically have a testing scenario 

justifying it; in the remainder of this section we shall behaviourally characterize the class of 

S P  pomsets by means of the testing scenario presented in [Ab87]. However, as it is stated in 

the following proposition, there is still a mismatch between the denotational semantics for 

SP given by ~.] and the behavioural semantics given in terms of N. In fact, the denotational 

semantics is sound, but not complete, with respect to the behavioural one. 

P r o p o s i t i o n  3.2 (i) For all p,q C t P ,  ~p~ = ~q~ implies p ~ q. 

(ii) a; a ~ aJa, but ~a; a~ # ~ala ~. 

The import of the above proposition is that,  not surprisingly, series-parallel pomsets do 

not give rise to a fully-abstract model with respect to standard bisimulation equivalence. 

The remainder of this section is devoted to showing how to define a behavioural semantics 

for the language t P with respect to which the denotational model S P  is fully abstract. 

Following the system-testing approach discussed in [H88b], the discriminating power of the 

testing scenario which induces the equivalence ~ over ,q P may be increased by enriching the 

language with some computationally meaningful constructs and by applying the basic tests 

presented in [Ab87] to processes in all language contexts built using the new combinators. In 

what follows, we shall apply this philosophy by enriching the language S P with a refinement 

operator p like the ones considered in e.g. [NEL88], [GGSS], [AH89]. 

Def in i t ion  3.1 (i) A refinement map is a funct ion p : A ~ t P. 

(ii) The closure of ,~ with respect to all refinement contexts, ~P, is given by 

p ~P q iff, for all refinement maps p, pp ~ qp, 

where pp and qp are the terms (in S P} obtained by syntactically replacing p(a) for each 

occurrence of a in p and q, respectively. 

By construction, ~P is the largest $ P-congruence contained in -~ which is preserved by all 

refinements of actions by processes. As pointed out before, this notion of equivalence may 

be seen as arising by applying Abramsky's testing scenario in all refinement contexts. We 

shall now show that  ~P is indeed the behavioural counterpart of the denotational model SP, 

i.e. that  series-parallel pomsets are fully abstract with respect to the behavioural semantics 

induced by , J .  The proof of this claim proceeds in two steps. First of all, relying on work 

presented in [AH89], we shall give a behavioural characterization of NP in terms of Hennessy's 

timed equivalence [H88c], ~t .  Secondly, we shall prove that the set of equations E in Figure 



1 completely axiomatize ~t  over $ P. The result will then follow as N~ and the congruence 

induced over S P by the denotational semantics have a common axiomatization. 

It  is easy to see tha t  ,~ is strictly weaker than ,-~P. For instance, as previously remarked, 

a; a ~ a)a; however, (a; a)p 7 ~ (ala)p , where p is any refinement map such tha t  p(a) = b; c. 

In fact, (ala)p = (b; c)I(b; c) can perform two b-moves in a row, whilst (a; a)p = (b; c); (b; c) 

can not.  Hence a; a ¢5p al a and this implies tha t  ~ itself is not  preserved by the refinement 

combinator  over SP.  As pointed out  in e.g. [AH89], this is not  at all surprising as the 

definition of ~ is based on the assumption tha t  processes evolve from one state to another by 

performing actions which are atomic. This behavioural view of processes becomes inadequate 

in the presence of a refinement operator  like p and a more refined behaviourat description 

of the processes in SP  is needed. If actions are no longer atomic, a minimal consequence 

is tha t  they have a beginning and an ending. This is exactly the intuition underlying the 

t imed view of processes presented in [H88c]. By assuming tha t  beginnings and endings of 

actions are distinct events and that  they may be observed, a new behavioural description of 

processes may be obtained. Formally, for each a E A,  S(a) and F(a)  are used to denote the 

beginning and the termination of action a, respectively. Ev  -'-d~I {S(a) ,  F(a)  ] a E A}  will 

be the new set of observable events and will be ranged over by e. 

As pointed out in [H88c], the language for processes is not sufficiently expressive to 

describe a possible state a process may  reach by executing the beginning of an action. To 

overcome this problem, a new symbol S(a) for each a E A is introduced into the language. 

S(a) will denote the state in which action a is being executed but  is not terminated yet. 

The set of process states $ is the least set which satisfies: 

i) p e S P i m p l i e s p E $  

ii) a E A implies S(a) E $ 

iii) s E $, p E  SP imply 8;p E $ 

iv) sl ,  s2 E S imply si182 E S. 

The operational semantics for process states may  be defined following s tandard  lines. For 

each e E Ev ,  the transit ion relation :=~  over $ is defined as the least binary relation over $ 

which satisfies the axioms and rules in Figure 3. The defining rules of = ~  use a termination 

predicate on process states, x/s, which is induced on $ by the one previously defined on $P ;  

namely, s~/s iff s E $ P  and s~/. A s tandard  behavioural equivalence over process states 

may now be defined using the notion of bisimulation. A relation )~ C_ $~ is a t-bisimulation 

iff it is symmetr ic  and, for each (sl, sz) E ~,  e E Ev ,  
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sca  s(a) 

2. ,s'@ 

3. s ==~ d implies s ; p ~  d ;p  

4. sV/S, p = ~  d imply s; p :=~ ~' 

5. sx = ~  s t implies sl[s2 ~ s~]82, s2[s~ ==~ s2]~ 

Figure 3: Axioms and rules for =A~ 

sl ==~ s t implies, for some s~, s2 = ~  s~ and (sl, s2) e £.  

Let ut  denote the maximum t-bisimulation. The following theorem from [AH89] states 

that  "~t gives a behavioural characterization of the relation , J  defined previously by purely 

algebraic means. 

T h e o r e m  3.1 (AH89)  For all p ,q 6 SP ,  p u t  q if f  p up q. 

The behavioural characterization of ,-~P given by the above-stated theorem will be the touch- 

stone for relating Np to the denotational semantics for S P in terms of series-parallel pomsets. 

The proof of full-abstractness of the denotational semantics with respect to ~P relies on Gis- 

chef's axiomatization of the congruence induced by ~.U over SP stated in Theorem 2.1. Let 

us recall, for the sake of clarity, that = z  denotes the least congruence over S P that  satisfies 

the set of equations E in Figure 1. The key to the full-abstraction result is then provided 

by the following theorem, whose proof, which is rather long and involved, may be found in 

the full version of the paper [Acg0]. 

T h e o r e m  3.2 ( E q u a t i o n a l  c h a r a c t e r i z a t i o n  of  ~t ) For all p, q 6 S P,  p N, q iff p =E q. 

The full-abstractness of series-parallel pomsets with respect to ~P now follows fairly straight- 

forwardly from the results stated above. 

T h e o r e m  3.3 ( F u l l - a b s t r a c t i o n  for  se r ies -para l le l  p o m s e t s )  For all p ,q C S P, ~p~ = 

~q~ iff p uP q. 

P r o o f :  Assume p, q 6 S P. Then: 

p =~ q by Theorem 2.1 

p u t  q by Theorem 3.2 

p ~P q by Theorem 3.1. D 
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We end this section with a few comments on the equational characterization of ~t  provided 

by Theorem 3.2. First of all, it is interesting to remark that  the equational characterization 

of Nt, and consequently of ~P, is finite and does not make use of any auxiliary operator.  

This is not in contrast  with F. Moller's results on the non-finite axiomatizability of "strong 

bisimulation'-l ike equivalences because ~t ,  when considered over S P, does not satisfy his 

"reasonableness criterion". See [Mol89] for more details. Moreover, we can prove a stronger 

version of Theorem 3.2 stating that  the above-given equational characterization of ,~  is also 

w-complete [Mo189], i.e. complete for the open term theory. 

We shall now present a proof of the w-completeness of the set of equations E with respect 

to Nt. Let Var be a countable set of variables ranged over by x , y , z .  SP(Var)  will denote 

the set of expressions built by adding the clause 

• x 6 Vat implies x E SP(Var)  

to the formation rules for S P. SP (Var) will be ranged over by t , t ' ,  t l , . . . .  The equivalence 

~t  can now be extended to S2(Yar)  in the s tandard way as follows: 

D e f i n i t i o n  3.2 Let t, t' E S P (Var). Then t " t  t' iff  for all closed substitutions a : Var --* 

$ P, ta  ~ t  t'a. A n  equational theory E Q  over the signature of S P is then called w-complete 

with respect to N t iff for all open terms t , t '  C $P(Var) ,  t ~ t  t' iff  E Q  ~ t = t'. E Q  ~ t = t' 

will also be written as t =E¢ t'. 

We shall now prove that  the set of axioms E presented in Figure 1 is indeed w-complete 

with respect to ~t  over $ P (Var). In the proof we shall make use of a novel technique for 

proving the w-completeness of a set of equations developed by J.F. Groote in [Gro90]. For 

the sake of clarity, we shall now briefly outline Groote 's  proof-technique for showing the 

w-completeness of a set of equations. Assume that  t and t '  are open terms in $ P (Vat) and 

t ~ t  t ' ,  i.e., by  Theorem 3.2, t a  =E t ' a  for all closed substitutions a.  The application of 

Groote 's  technique requires the isolation of a closed substi tut ion p : Var --* $ fl, mapping 

each variable occurring in t and t' to a distinguished closed term representing this variable, 

and of a translation map R : SP --, SP(Var) ,  which replaces each subterm representing 

a variable by the variable itself. This pair of functions is required to satisfy the following 

conditions: 

(1) t =E R(p( t ) )  and t '  =E R(p(t ' ) ) ,  

(2) for each ® e {; , I} and P:,P2, q:,q~ C $ 2 ,  R(pl  ® Pz) =E, R(q: ® qz), where E '  = 

Z U {R(pl) = R(q~) ] i = 1, 2}, and 
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(3)  for each axiom t l  = t2 in E and closed subs t i tu t ion  a ,  R ( a ( t : ) )  =E R(u(t2)) .  

Having found such a pair  of maps  p and R sat isfying condit ions (1)-(3) above,  we could 

then  ob ta in  the  w-completeness of E with  respect  to  "~t by  apply ing  the following instance 

of Theorem 3.1 f rom [Grog0], page 317. 

T h e o r e m  3 .4  If for each t , t '  E SP(Var )  such that ta =E t'a, for all closed substitutions 

a, there exist a closed substitution p : Vat  --~ SP  and a map R : S 2  --~ S ? ( V a r )  satisfying 

(1)-(3) above then E is w-complete. 

We shall now apply  the  technique described above to prove tha t  E is indeed w-complete 

wi th  respect  to ~ t  over $ P .  

T h e o r e m  Z.5 ( w - C o m p l e t e n e s s )  For each t , t '  E SP(Var ) ,  t ~t  t' iff t =E t'. 

P r o o f :  Let  t , t '  E SP(Var )  be such tha t  t ~ t  t ' .  By Theorem 3.4, in order  to  prove tha t  

E is w-complete,  it is sufficient to find p : Vat  --~ $ P  and R : $ P  --~ SP(Var )  satisfying 

condit ions (1)-(3) above. Define p : Vat  --+ SP  by p(x) = a~ E A ,  where,  for each x , y  E Var, 

• a= does not  occur in t and t ~, and 

• a~ = a~ implies x = y. (Note tha t  such a map  can be found because A is infinite) 

The  t rans la t ion  map  R : $ P  --+ SP(Var )  is defined by induct ion on the  s t ruc tu re  of p E SP  

as follows: 

• R(n i t )  = nil,  

f x if a = a~ 
R(a)  

a otherwise,  

• R iP  ® q) = R(p) ® R(q) ,  for ® e {;,  l}. 

We are now left to  prove tha t  p and R satisfy condit ions (1)-(3). We examine  each of the  

condi t ions in turn .  

(1)  We prove tha t ,  for all ~ • SP(Var )  not  containing act ions of the  form a , ,  ~ =E R(p(~)). 

The  proof  is by  s t ruc tura l  induct ion on L We only examine two of the  cases. 

• i = a. Then  Rip(a))  = R(a) = a because a # a , ,  for all x. The  c la im now follows 

by the reflexivity of = s .  
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• t = tl;t2. Then we have that 

R(p(tl; t2)) = 

-~E 

RCP(tl);p(t2)) 

R(PCtl)); RCPCt2) ) 

tl; t2 by induction. 

( 2 )  Let  ® C {; ,I}  and Pl,P2,ql,q2 C SP.  Then, letting E ' =  E U ( R ( p i )  = R(q,)li = 1 ,2 } ,  

we have that 

n(p~ 0 p2) = R(pl) ® R(p,) 

= n(q, ® q~). 

(3) Let t~ = t2 be an equation in E and a be a closed substitution. Then it is easy to see 

that R(a(Q))  =~ R(a(t2)).  For instance, 

RCaCC~lY)lZ)) = RCCoC~)laCY))laCz)) 
= (R(a(x)) lR(a(y)) )]R(a(z))  

=z  R(a(x) ) l (R(a(x) ) lR(a(Y)) )  by (PAR1) 

= R(a(xl(y lz))  ). 

As p and R satisfy conditions (1)-(3), by Theorem 3.4 we have that E is indeed w- 

complete. [3 

4 S e r i e s - p a r a l l e l  p o m s e t s  a n d  S T - t r a c e s  

In the previous section we showed that series-parallel pomsets are fully-abstract with respect 

to the equivalence obtained by applying Abramsky's testing scenario for bisimulation in 

all refinement contexts. The observability of S P  pomsets was then cast in a well-known 

interleaving setting. The aim of this section is to investigate to what extent the model S P  

can be made fully observable by assuming a trace-based basic notion of observation. It will 

be shown that the causal structure of an N-free pomset is totally revealed by its set of ST- 

traces [G190], i.e. that  S P  pomsets are fully abstract with respect to ST-trace equivalence 

over the set of processes $ P. ST-semantics has recently been proposed in [GV87], [G190] as a 

refinement of the timed behavioural view of processes outlined in §3. This more refined view 

of processes is obtained by requiring a link between the beginning and the end of any event; 

this allows one to express that a start-action S(a) and an end-action F(a) represent the 

beginning and the end of the same occurrence of action a. Notions of ST-bisimulation and 
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ST-trace equivalence have been proposed and studied in [GV87], [G190] for Petri  Nets and 

Event Structures, respectively, and the interested reader is invited to consult these references 

for more details on ST-semantics. 

In what follows we shall mainly work with labelled posets rather than pomsets; this will 

make the technical development slightly less cumbersome. All the results will be lifted to 

pomsets and the process language SP in a straightforward way. Our first aim is to give 

the class of labelled SP posers the structure of a labelled transition system following the 

intuitions underlying the timed view of processes described in [I-I88c] and §3. In order to 

provide an LTS semantics for the class of A-labelled posers, we shall have to extend the class 

of labelled posets in order to express those intermediate stages in the evolution of a process 

in which some actions have started but have not yet terminated. 

Def in i t ion  4.1 Let A s = A tO {S(a) [ a E A}. A n  As-labelled poser JP = ( P , < , I )  is 

sensible iff, for all u E P,  l(u) = S(a) ,  for some a E A ,  implies u is minimal in if'. 

Pos[As]  wilt denote the class of sensible, series-parallel As-labelled posets. 

Note that  each h ° ~ Pos[A] is a sensible, series-parallel As-labelled poset. Intuitively, A s -  

labelled posers (P, < , l )  in which l(u) E A,  for all u E P ,  are the model-theoretlc counterpart 

of the processes in SP and those with at least a minimal element labelled S(a) ,  for some 

a G A, correspond to proper states in S, i.e. states in which some actions will have started, 

but have not yet terminated. The following definition introduces the transition relations 

over Pos[As] .  

Def in i t ion  4.2 ( T r a n s i t i o n  r e l a t i ons  for  pose t s )  Let ~ = (P, < , I )  E Pos[As] .  Then: 

(a) u is minimal in JP, 

(b)  = a, a . d  

(e) h ~' = (P, <,l ') ,  where, for each v E P,  

i l .  = 
l'(v) 

L l(~t) otherwise. 

(ii) P (v(_~u) P1 iff  

(a) u is minimal in IP, 

(b)  = S (a ) ,  a . d  
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(c) ~1 = (P~, <~,ll),  where P1 = P - {u}  and <1, l~ are the restrictions of < and l 

to P1, respectively. 

The following fact, whose proof follows easily from the definition of the transition relations 

(/Y~, e E Ev, and is thus omitted, states that Pos[As] is indeed closed under derivation. 

Fac t  4.1 (C losure  u n d e r  de r iva t ion )  L e t / P  E Pos[As] and e E Ev .  Then 119 ~ • '  

implies .~t E Pos[As] .  

Using the above-given operational semantics for Pos[As] ,  it is now possible to define a 

natural notion of complete trace of a poset L ° E Pos[As].  Intuitively, a complete trace "~ 

of a poset ~o E Pos[As] records a possible linear history of the evolution of the process 

denoted by JP, i.e. the set of events the process involves in together with their relative order 

of execution. In what follows we shall only be interested in this notion and the ones derived 

from it for S P  posets h ° E Pos[A]. 

Def in i t ion  4.3 ( C o m p l e t e  t races )  Let /P = (P ,< , I )  E Pos[A]. A sequence ff = 

(el, Ul) . . .  (ek, Uk) E (By x P)*, k > O, is a complete trace of 1l 9 iff there exist IPo, . . . ,  J~ak in 

Pos[As] such that 

(i) ~o = ~ ,  ~P~ = (0, 0, O) and 

(ii) £v/("+22~+') JPi+l,/or all i < k. 

CT(1P) will denote the set of complete traces of £:~. The projection maps will be homomor- 

phieally extended to strings over (Ev  × P)*, i.e. for 7 = ( e l , U 1 ) " ' "  (ek, uk), 7r l ( ' / )  = e l ' "  "ek 

and ~r2('I) = u l ' "  uk. 

It is easy to see that if "y = (el, u l ) . . .  (ek, uk) is a complete trace of h ~ = (P, < , l )  E Pos[A] 

then P = {u~, . . . ,  Uk}, k = 2m where [P] = m and, for all u E P,  there exist unique i , j  such 

that 1 < i < j < k, (ei, ui) = (S(a) ,u)  and (ej ,uj)  = (F(a) ,u ) ,  with a = l(u).  By using the 

above notion of complete trace it is now possible to define two key notions of trace equivalence 

over Pos[A].  The first one, which is based on the operational intuition underlying the timed 

operational semantics defined in §3, is (complete) split trace equivalence [Va88], [G190]. Split 

trace equivalence is just standard interleaving trace equivalence, [Hoare85], but based on 

interleavings of beginnings and endings. ST-trace equivalence, [G190], will then be defined 

as a refinement of split trace equivalence by requiring that beginnings and endings of the 

same occurrence of an action a E A are explicitly connected in a complete trace. 

Def in i t ion  4.4 (Spl i t  and  S T - t r a c e  equivalence)  Let ff},~l, n92 ~ Pos[A].  
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(i) A sequence a E Ev* is a split trace of J~ iff there exists "y E CT(• )  such that 7rx('y) = a. 

S(K*) will denote the set of split traces of IP. Then J~l and 1P2 are split trace equivalent, 

~, ~2, ~2, i;y S ( ~ )  = S(~2). 

(ii) PI  and F= are ST-trace equivalent, J~l ~-'ST .~2, iff the following conditions hold: 

(a) for each ~/x = (¢x,•l)... (ek, uk) E CT(~Pl) there exists "1= = ( h , v l ) " "  (fh, Vh) e 

CT(JF2) such that 

• h = k ,  = a n d  

• for all 1 < i < j < k, ul = uj iff vl = vj (ST-condition); 

(b) vieeversa, with the r61es of J~l and J~2 interchanged. 

The following fact states two basic properties of the above-given notions of equivalence over 

Pos[A].  The first justifies our choice of working with labelled posets rather than pomsets by 

showing that the notions of equivalence given above may be consistently lifted to pomsets. 

The second states that ~ST is at least as strong as split trace equivalence. For the sake of 

clarity, we recall that isomorphism between labelled posets is denoted by -~ (see Definition 

2.1). 

Fac t  4.2 Let IP1, IP2 e Pos[A]. Then: 

(i) /Px ~- IP2 implies Fx ~2t TP2 and ~1 ~sT ~2. 

(ii) T1 ~ST ~2 implies 1P1 ,~2t 1P2. 

In the light of the statement above, ~--2t and ~ST may be now extended to S P  in a rather 

straightforward way. 

Def in i t ion  4.5 Let a = [P1,<1,ll],3 = [P2,<~,12] E S P .  Then a ~.2t 3 ( a ~ S T 3 ) i f f  

<1, ll) <2,12) <1,11) (P2, <2,12)). 

The remainder of this section will be entirely devoted to showing that  ST-trace equivalence 

coincides with isomorphism over Pos[A] (and thus with equality over SP) .  This implies 

that SP pomsets can be made fully observable by assuming a trace-like notion of observation, 

albeit one in which beginnings and endings of the same occurrence of an action axe explicitly 

linked. The following standard example shows that ~ST does not coincide with isomorphism 

over general labelled posets and pomsets. 

E x a m p l e  4.1 Let a and f3 denote the following pomsets: 

• ~ = ~(a;b)]Ca;b)] and 
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• 8 = [P,<,I],  where P = {1,2,3,4}, 1 < 2, 3 < 4 and 1 < 4,/C1) = I(3) = a and 

l (2)  = l (4)  = b. This pomsa is j ~ t  Ciseher's NCa, b,a,b), [GiSt~. 

Then a ~ST 8, but obviously a ~ 8. Note that 8 is not a series-parallel pomset. 

The following lemmas, which analyze basic properties of the transition relations (e'ul, e E E v ,  

will be useful in the proof of the main result of this section. The following lemma states that 

sequences of sta~-moves are made up of independent transitions; such transitions may then 

be performed in any order without influencing the resulting target state. A similar property 

holds for end-moves. 

L e m m a  4.1 ( C o m m u t i n g  s t a r t  and  end  moves)  Let ]P = (P, <, l) E Pos[As].  Then 

the following properties hold. 

(i) JP ~s(a).,) ~ ,  ~S(b),~) F "  implies JP (S(b_~},~) JP1 (S(,)~) ~ , , ,  /or some ~ E Pos[As].  

(ii) F (e(a).u) ~o' (e(b),v) IF" implies ~ (F(b!,v) P I  (e(.~u) jp,,, for some IF~ E Pos[As] .  

The following lemma states that end-moves and start-moves corresponding to events which 

are not causally related may be performed in any order without influencing the resulting 

target state. 

L e m m a  4.2 Let ~ = (P ,< , I )  E Pos[As].  Then ~ (F(a)~u) ~ ,  (S(b!.~) ~p,, and u ~ v imply 

(S(b),u) ~o 1 (F(~)~u) jp, ,  for some IFI E Pos[As].  

The following result presents a basic consistency requirement on the complete traces of a 

poser J/~ -- (P, < , l )  e Pos[A]; namely that,  for each v C P,  the end of each event u < v 

must precede the start of v in every linear history of ~ .  

L e m m a 4 . 3  Let /P = (P ,< , I )  E Pos[A]. Assume that u, v E P and u < v. Then q = 

(el, u x ) . . .  (e~,uk) E C T ( ~ ) ,  (F(a) ,u)  = (e,,ui) and (S(b) ,v)  = (ey,uy), with l(u) = a and 

l(v) = b, imply i < j .  

We now have all the technical material which is needed to prove the main theorem of this 

section, namely that ~ST coincides with isomorphism over Pos  [A]. 

T h e o r e m  4.1 ( S T - t r a c e  equ iva lence  -- i s o m o r p h i s m  ove r  Pos[A])  

L a  ~ ,  = (P,, <,,l,) ~ PosD,] ,  i = 1,2. Then ~ ~- ~ iiT ~ ~ s r  ~ .  

Proof :  The "only if" implication follows by Fact 4.2. We shall now concentrate on the proof 

of the "if" implication. Assume that ~ , ~  ~ Pos[A] and that IP~ ~ST ~P~; we will show 

that/P~ ~ ~2. The proof proceeds in two steps: 
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1. first of all, we shall show that  ~s,  i = 1, 2, may be recovered from a part icular  7~ E 

CT(~,); 

2. secondly, we shall construct  an isomorphism between IP1 and £P2 by making use of the 

information on the order s t ructure of the posets obtained in the previous step and the 

fact tha t  IP1 ~,sT IP2. 

Following ITs88], let << be the ordering relation over C T ( ~ I )  obtained by lexicographically 

extending the one over E v  × P1 given by 

(S (a ) ,u )  << (F(b) ,v ) ,  for all a,b E A and u ,v  E P1. 

Let ql = ( e l , u l ) . . .  (ek, u~), k >_ O, be minimal in C T ( ~ I )  with respect to <<. Then  there 

e x i s t / P I , - - . ,  J~Pk-1 such tha t  

r = ~ ( ~ )  ~ i  < ~ ) . . . z ' k _ l  ~ )  (0,0,0). 

As previously remarked, P1 = {ux , . . . ,Uk} ;  we shall now show that  the ordering relation 

<1 and the labelling function ll of P1 may be recovered from 71. By the definition of the 

transit ion relations over P o s [ A s ] ,  it is easy to see that ,  for each u E PI, Ix(u) = a iff 

(S(a),  u) = (ei, us) for some 1 < i < k. We shall now concentrate on showing how <1 may be 

recovered from 71. As we are dealing with finite partial orders, <1 is completely determined 

by the covering relation over JP1; for all u ,v  E P1, u is covered by v iff u <1 x <1 v, for no 

x E P1. Intuitively, 71 begins with a block of start-moves followed alternately by blocks of 

end-moves and blocks of start-moves and then ends with a final block of end-moves. Then 

the events in P1 appearing in the first block of start-moves will correspond to the minimal 

elements in/F1,  those appearing in the last block to the maximal elements of/F1 and, for 

each intervening block of end-moves followed by a block of start-moves,  the events appearing 

in the block of end-moves will correspond to events in J~l covered by those appearing in the 

block of  start-moves. We shall thus be able to recover from 71 the covering relation in 1FI; 

this is sufficient to recover < 1. 

Let -<1 be the relation over P1 such that ,  for all u, v E P1, u ~1 v iff 

( F S )  there exists a subword (eh, uh) • -- (eh+~, uh+~)(eh+~+l, uh+~+l) --- (e,, u,) of 71, with h < 

l and r > 0, such tha t  

(i) uh = u and ut = v, 

(ii) for all i < r, eh+s = f (as )  for some as E A,  and 

(iii) for all h ÷ r ÷ 1 <_ j <_ l, ei = S(b~) for some bi C A.  
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Let -<+ denote the transitive closure of "<1. We claim that  

, , < i v .  (11 

* We prove, first of all, tha t  u "<+ v implies u <1 v, i.e. tha t  "<+ is sound  with respect to  

<1. Assume tha t  u , v  6 t"I and u "<1 v. Then there exists a subsequence of r 

with h < t, r > 0, such tha t  uh+l = u, uL+1 = v and 

( F ( a h + l ) ,  u h + l )  " " ( F ( a h + ~ + i ) ,  Uh+r+ l )  <S(bh+,+2) ,  uh+~+2) " " (S(b,+l), u,+l> 

satisfies the proper ty  (FS). Assume, towards a contradiction, tha t  u ~1 v. Then, by 

repeatedly applying lemma 4.1, we have that ,  for some £p, and J~P", 

with wl = <F(a,+2), uh+2> "- • <F(ah+r+l), Uh+,+l} and w2 = (S(bh+~+2), u,+~+2> • -- (S(b,), u,) 

As u :£1 v, by lemma 4.2 there exists fP such tha t  

ZP' (s(k~ +~)'") ~' (~(~h-t~ +~)'") ~". 

Thus q = <el, U1).-.  (eh, uh)wl<S(b,+,) ,v)(F(ah+l) ,u}w2(e,+2,u,+2>. . .<ek,  uk> E 

CT(~O1) and ~/<< ~1. However, this contradicts the minimality of ~/1 in CT(2P1) with 

respect to <<. Hence u "<1 v implies u <1 v; by transitivity, u -<+ v implies u <1 v. 

. We now prove that  u <1 v implies u -<+ v, i.e. tha t  -<+ is complete with respect to <1. 

The  proof  of this fact will depend on the assumption that  2P1 is a series-parallel poset. 

Assume tha t  u is covered by v in/P1. Then, by lemma 4.3, (F(a ) ,  u} = <¢h, Uh) and 

(S(b) ,  v) = <¢,, u,), for some h, l  such that  h < I. If the subword of q 

u , , ) .  • • 

has the (FS) property then we have that  u "<1 v. Otherwise, there exist hi and h2, 

with h < hi < h2 < l, such that  eh, = S(ahl),  eh2 = F(ah2),  for some ah,, ah2 E A,  and 

(oh, uh) . . . (eh~, Uh~} and (eh2, U~) . . . (eL, u,) have the (FS) property.  By the definition 

of "<1, we have tha t  u = uh "<1 Uh, and u~2 "<1 u~ = v. By the soundness of "<1 with 

respect to <1~ we have tha t  u <1 Uh, and Uh2 <1 v. Hence we have tha t  

u <1 v, u <1 uh~ and uh~ <1 v. 

As ~1 is a series-parallel poset, by applying the (N) proper ty  in proposit ion 2.1 we 

der ive  tha t  
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a) Uhl <~1 ?] o r  

(b)  ~ <1 uh~ or 

(e)  uh~ <x uh,. 

We examine each possibility in turn, showing tha t  each of them leads to a contradiction. 

If  (a) holds then we have tha t  u <1 uh, <1 v, contradicting the hypothesis tha t  u is 

covered by v in F1. Similarly, if (b) holds. If  (c) holds then u ~  <~ uhl, but  this 

contradicts  the assumption tha t  hi  < h2, i.e. tha t  the s tar t  of event uhl occurs before 

the end of event uh2 in ~h. Hence we have shown tha t  if u is covered by v in/P1 then 

u -<1 v; by transitivity, u <1 v implies u -<+ v. 

Thus we have shown tha t  u < i  v i f fu  -<+ v, for all u , v  E P1. As /P1 ~ST ~ ,  there exists 

"~2 : (f l ,  v l ) . . .  (f~, v,) e CT(~2)  such that:  

( i )  k : = a n d  

(ii) for a l l l ' ~ i < j < k ,  u i = u  i i f f v i = v  i. 

Again, we have tha t  P~ = ( v l , . . . , v , ) .  We may now define -<2 from if2 as we did for -<1 

f rom ffl and, as "Y2 is also minimal in CT(IP2), by symmet ry  and (1) we obtain tha t  x <2 Y 

iff x -<+ y, for all x, y E P~. Let us now define ¢ : Px "-~ P~ by ¢(u) = x iff there exists 

1 < i < k such tha t  ui = u and vl = x. Then,  ¢ is a well-defined function by clause (ii) 

above and it is label-preserving by clause (i) and the definition of the transit ion relations. 

It  is easy to see tha t  ¢ is also bijective by clause (ii). Moreover, by construction, ¢ is such 

tha t  u -<1 v iff ¢(u) ~<~ ¢(v),  for all u, v E PI- Hence, by claim (1) and transitivity, we have 

that  u <1 v i f f¢ l  <2 ¢(v),  for all u , v  C P1. Thus J~Pl = JP2. Q 

The following result is an immediate corollary of the above theorem. 

C o r o l l a r y  4 .1  Let a, ~ E S P .  Then a = ~ iff  a ~ST ~. 

ST-trace equivalence can be inherited by SP via the semantic map H in a straightforward 

way; for each p, q E SP,  we write p ~ z r  q iff ~p]] ~ s r  ~q~. By using the results presented in §3 

and the above theorem and corollary, it is now possible to provide a complete axiomatization 

of ST-trace equivalence over SP.  Moreover, as stated by the following theorem, ~ST gives yet  

another characterization of the largest congruence over SP  which is preserved by refinement 

and is contained in --~. 

Theorem 4.2 For all p,q E S P, p ~ sT  q iff  p ..~P q i f f  p ---t~ q. 
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P roo f :  The claim follows by the above corollary, Theorem 2.1 and theorem 3.3. [] 

ST-trace equivalence, ~sz ,  could be defined directly on the language SP without much 

difficulty; however, the proof of the main result of this section has been greatly simplified 

by working with labelled posers rather than with terms in $ P. 

5 C o n c l u s i o n s  

In this paper, we have presented a behavioural characterization of the class of series-parallel 

pomsets, [Gi84], based on a natural interleaving testing scenario. This has been obtained 

by showing that the model of series-parallel pomsets is fully-abstract with respect to the 

behavioural equivalence obtained by applying Abramsky's testing scenario for bisimulation 

equivalence, [Ab87], in all refinement contexts, [AH89], [GG88], [NEL88]. Following Milner 

and Plotkin's paradigm, this result justifies the use of this simple mathematical model based 

on partial orders in giving semantics to the basic process algebra studied in this paper. 

Moreover, we have shown that  identity over the class of SP pomsets coincides with ST-trace 

equivalence, [G190]. Thus SP pomsets can be made fully abstract by assuming a trace-based 

notion of observation, albeit one in which beginnings and ends of the same occurrence of 

an action are explicitly linked. This retrievability result has allowed us to give a complete 

axiomatic characterization of ST-trace equivalence over the class of SP pomsets. A natural 

question to ask is whether SP pomsets are completely characterized by their set of split 

traces, see [Va88], [G190] and §4. The following conjecture naturally suggests itself. 

Con j ec tu r e :  For all a, ~ E SP ,  a = fl iff a ~2t ~. 

All the author's attempts to prove or disprove the above conjecture have so far failed. 

It is interesting to note that the validity of the above conjecture would have some striking 

consequences. First of all, it would imply that, for all p, q E S P, p ~t q iff p ~2~ q, i.e. that 

tlmed-bisimulation and split trace equivalence coincide over S P. As it is well-known, this 

result is not true of standard strong bisimulation and trace equivalence because the processes 

in SP are not deterministic, [Mi189], [Va88]. Moreover, by following the proof of the results 

presented in [AH89], it would be possible to show that equality between SP pomsets is the 

largest congruence contained in standard interleaving trace equivalence which is preserved 

by refinement. 

The work presented in this paper may be seen as an embryonic at tempt at defining a 

natural testing scenario which justifies the use of partial order semantics without assuming 
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any notion of "causal observation ~. We have shown that such a testing scenario does exist 

for the simple model considered in the paper; however, as work by R. van Glabbeek on 

ST-bisimulation semantics shows, [G190], a notion of system testing based on the refinement 

operator does not suffice to reveal the full-distinguishing power of partial order semantics. 

The search for a testing scenario which justifies models like Event Structures and Causal 

Trees seems to be a very interesting topic for future research. 

We end this conclusion with a brief discussion of related work. Precursors of the work 

presented in §3 are [Gi84], [Ts88], where language equivalence for pomsets and series-parallel 

pomsets are studied in detail, and recent papers in the literature studying notions of equiv- 

alence for concurrent systems which are perserved by refinement of actions [AH89], [GG88], 

[NEL88], [G190]. In all these references, the authors present semantic theories for processes 

which support refinement of actions. The reference [GG88] gives a good survey of the work 

in this area; [NEL88] gives a natural fully abstract model for a language incorporating a re- 

finement operator and [AH89] characterizes the largest congruence contained in bisimulation 

equivalence which is preserved by refinement over a simple process algebra and gives a finite, 

complete axiomatization for it. In [G190], the author studies notions of ST-bisimulation and 

ST-trace equivalence over prime Event Structures [Win87] and proves that they are both 

preserved by refinement. 

Retrievability results like the one presented in §4 for SP pomsets have been shown in, e.g., 

[Va88]. There the author shows that deterministic Event Structures are characterized, up to 

isomorphism, by their set of step-sequences. A similar result is shown for split-traces; this 

implies that the causal structure of a deterministic concurrent system can be reconstructed 

by observers which are capable of observing the beginning and the end of events. 
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