
SIMPLE SOLUTIONS FOR APPROXIMATE TREE MATCHING PROBLEMS

Fabrizio Luccio Linda Pagli
Dipartimento di Informatica, Universit~t di Pisa

Corso Italia 40, 56100 Pisa, Italy

1. In t roduc t ion

Tree isomorphism and matching is widely studied. Aside from its mathematical interest, the
problem has a number of important motivations in the theory of programming [4] and in
molecular biology [9]. Three recent papers in this field are particularly innovative by a
computational point of view. Given a pattern tree P and a text tree T, M/~kinen [7] shows how
to determine all the exact occurrences of P as subtree of T, in time O(IPI+ITI), using a proper
string representation for trees, and applying a fast string matching algorithms on such a string.
In [5] Kosaraju solves a generalization of the same problem, generally called tree pattern
matching, where the leaves of P may match with subtrees of T (instead of single nodes). The

time required by the algorithm of [5] is O(ITIIPl0"75polyloglPl) against the O(ITIIPI) of the naive
bound. In fact the algorithm of [5] solves the more general problem of determining whether P
is isomorphic to a subtree T' of T, where an arbitrary number of subtrees may be cancelled
from T'. The result of [5] has been improved in [1], to O(n']m polylog(m)). Zhang and Shasha
[9] measure the edit distance between ordered trees (weighted number of insert, delete and
modify operations to trasform one tree into another), and consider several approximate tree
matching problems based on this distance, or other weighted distances derived from subtree
removal or pruning. Due to the intrinsic difficulty of their problems, all their algorithms run in
more than linear time. Among the classical contributions, Hoffmann and O'Donnell [4]
propose several algorithms for the subtree replacement problem in an ordered ranked tree.
Unless for special cases, the algorithms of [4] are at least quadratic in the size of the input.

In this paper we consider ordered h-ary trees, that is trees whose nodes have exactly h
sons; and arbitrary ordered trees. The former appear, for example, in biochemical structures
such as glycogen [8]; the latter are encountered in term rewriting systems and in RNA
comparisons. We define the subtree distance between two ordered h-trees T1, T 2 as the number
of subtrees to be inserted or deleted in T 1 to obtain T2, and introduce an approximate tree
matching problem (Problem 1), that consists of finding all the occurrences of P in T, with
bounded distance k. On one side, this problem is an extension of the general problem solved in
[5], where P may contain subtrees which are not present in T (note however the h-ary
restriction on P and T). On another side, it is an extension of the approximate string matching
problem [2,6] to h-ary trees. We give an algorithm to solve this problem in time O(hlPI +
max(h,k)lTI).

For arbitrary ordered trees we solve an extension of the tree pattern matching problem. We
define the leaf distance between two trees T I, T 2 as the total number of subtrees to be inserted
in T 1 in place of its leaves, or to be deleted from T1, leaving leaves in their place, to obtain T 2.

194

Our new problem (Problem 2) consists of determining all the occurrences of P as a subtree of
T, with bounded distance k. Note that, unlike in the tree pattern matching problem, P is not
necessarily contained in T. The complexity of our algorithm is O(IPI+klTI). With an obvious
restriction, the algorithm can be adapted to solve the tree pattern matching problem with the
same complexity. If k is chosen independently of IPl, as it is normally assumed in approximate
string matching, our algorithm compares favourably with the previous ones.

Problems 1 and 2 are defined for unlabelled trees; the extension to labelled trees require
minor modifications of the algorithms. If up to k 1 label differences are allowed between the
matching nodes of P and T, the two problems are solved in time O(hlPl+max (h, k, kl)lTI), and

O(IPl+max (k, kl)lTI), respectively.

2. Matching h-ary trees

Our study begins with a definition of tree distance. Let an ordered h-ary tree T be
completed by the insertion of (h-1)lTl+l external nodes, in place of the empty sons of the
original (internal) nodes. If ITI = 0 (i.e., T = 0) one external node is placed at the root. For a

node N~ T, N internal or external, let T[N] denote the subtree of T rooted at N. We define the
following operations on T:

1) for N~ T, N external, insert a new tree T 1 in T as a subtree rooted at N. This is
denoted by: Ins (T1,T[N]);

2) for Ne T, N internal, delete T[N] from T (i.e., substitute TIN] with an external
node). This is denoted by: Del (T[N],T).

The transformation from T 1 to T2, denoted by T 1 m S T 2, is a sequence S of insert or delete

operations on T 1. In this transformation we establish a correspondence between pairs of

internal nodes NI~ T1, N2~ T2, denoted by NI-=N 2. Let R1,R 2 be the roots of TI,T2,
respectively. The sequence S is such that:

1) i fT l=T2=0 then S=0;

2) if T I=0 (R 1 is an external node) and T2~0 , then S = Ins(T2,TI[R1]);

3) i f T l ~ 0 and T2=0, then S = Del (TI[R1],T1);
4) if T I ~ J and T2~O, then R 1 =- R 2 and S = S1...S h, where

transformation: Tl[(i-th)son(R1)] ocSi T2[(i-th)son(R2)], 1 < i < h.

S i defines the

Note the transformation from T 1 to T 2 is uniquely determined. We can now pose:

Definition 1. For two ordered h-ary trees T1, T2, with T 1 ¢~S T2, the subtree dinstance
ds(T1,T2) is given by tSI.

For h=2, consider the binary trees T 1, T 2 of fig. 1 (external nodes are denoted by A). The
transformation sequence is the following:

S = Ins (T213],Tl[*]), Del (TI[3],T1), Del (TI[7],T1), Ins (T216],Tl[@]).

195

We then have ds(T1,T2) = 4, while the node correspondences 1=-1, 2=-2, 5---4, 6-=-5 are
established.

i TI I T2

/ \ / \

2- 5" 2- -4

/ \ / \ / \ / \

* A • 3 6 • A @ 3 • A • 5 "6

/ \ / \ / \ / \ /

4 - A 7 - A A A A A • 7

/\ /\ /\

A A A A A A

\

8 .

/\

A A

position 1 2 3 4 5 6 7 8 9 I0 I! 12 13 14 15 16 17

z'

Z 1 1 1 0 1 ! 0 0 0 1 1 1 0 0 0 0

LAST ! 15 8 0 8 7 0 0 0 15 14 13 0 0 0 0

Z 2 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0

LAST 2 17 6 5 0 0 0 17 i0 0 0 17 14 0 0 17 0 0

Fig. 1

An ordered h-ary tree T can be represented with a binary Zaks sequence Z, obtained by
labelling the internal nodes of T by 1, and the external nodes by 0, and then visiting T in
preorder [7]. Z has n ones and (h-1)n+l zeroes, and no prefix of Z has n' ones and (h-1)n'+l,
n'<n. Moreover, each subtree T' of T corresponds to a subsequence Z' of Z, which is the Zaks
sequence for T'. See for example fig.l, where Z 1 and 7z 2 are the Zaks sequences for T 1 and
T 2, respectively. The Zaks subsequence Z' of Z 1 corresponds to T 1 [2].

We now pose:

Problem I. Given two ordered h-ary trees P, T, and an integer k20, find all the nodes Ne T
such that ds(P,T[N]) < k.

For k=0 and h=2 this problem becomes the well known subtree isomorphism problem
between ordered binary trees. For k>0 we have an approximate tree matching problem. As
noted in [9], such a problem can be seen as a generalization of the approximate string matching
problem applied to trees.

We solve problem 1 using the Zaks representation of the trees, and a suffix tree built on it.

196

Recall that, for a given sequence X of n elements, the suffix tree on X allows to compute, in
time O(I), the lenght PREFIX(X, i, j) of the longest common prefix between the subsequences
X(i) X(n) and X(j) X(n) [3].

Let Z(i) denote the i-th element of a Zaks Z, and N i be the tree node corresponding to Z(i).
Define the new sequence LAST, with ILASTI = IZl, as follows. For Z(i)=0 (N i external),
LAST(i)=0. For Z(i)=l (N i internal), LAST(i)=j, where j is the last position in Z of the
subsequence Z' corresponding to the subtree rooted at N i. For example, the sequences LAST 1,
LAST 2 for the trees T 1, T 2 are shown in fig.1. Similarly define the sequence PROX, with
IPROXI = IZ1, as follows, if Z(i)=0, then PROX(i) = 0; if Z(i)=l, then PROX(i) = j, where j>i
is the minimum value for which Z(j)=I (if Z(j) = 0 for all j>i, then PROX(i) = IZI+I).

Problem 1 can be solved with the following method, consisting of a preprocessing phase
followed by algorithm 1:

Preprocessing
1. build the Zaks sequences Zp, Z T for P and T;
2. build the LAST sequences LASTp, LAST T for P and T;
3. build the sequence PROX for T;{note: PROX contains

successive nonvoid subtrees, in preorder};
4. build the suffix tree for the string X=ZT$Z P& ($,& are markers).

pointers to the

Algorithm 1

t:=l;

while tSIZTI do

begin

j:=l; i:=t; d:=0;

while i< LAST T(t) and j<IZpl and d_<k do

if ZT(i)=Zp(j)

1 : then begin r :=PREFIX (X, i, j+ I Z T I +i) ;

i:=i+r; j:=j+r end

2: else if zT(i)=0 and Zp(j)=I

then begin i:=i+l; j:=LASTp(j)+I; d:=d+l end

else begin i:=LAST T(i)+l; j:=j+l; d:=d+l end;

if d<k then PRINT(t); {we have ds (P, T [t])_<k }

t : =P ROX (t)

end

end algorithm i.

Theorem 1. Problem 1 is solved in time O(h-lPl+max(h,k)-lT1)), using preprocessing and
algorithm 1.
Proof. Correctness. Let N t be the node of T corresponding to ZT(t), The inner while loop
of algorithm I computes the distance between P and T[Nt]. The outer while loop iterates such

197

a computation to all the nonvoid subtrees of T, pointed by the function PROX[t].
Complexity. Preprocessing. Steps 1 and 2 can be executed in time O(h(IPI+ITI)) (size of the
output from preprocessing), since Zp, Z T, LASTp and LAST T can be directly built visiting the
two trees. Step 3 amounts to scanning Z T, hence takes time O(hlTI). Step 4 takes time
O(h(IPI+ITI)) [3]. The total time of preprocessing is therefore O(h(IPI+ITI)). To analyze
algorithm 1, consider the inner while loop first. The else statement, labelled 2, is executed at
most k+l times (at this point the while is terminated). When a then statement, labelled 1, is
executed, the function PREFIX bring the indices i, j to two values for which ZT(i)~Zp(j). That
is, at the next while iteration, the else statement is again executed. Therefore, the then
statement is executed at most as many times as the else statement. Since PREFIX can be
computed in O(1), the total time required by the inner while loop is O(k), for k>0. For k=0
the while loop is executed exactly once, with a single computation of PREFIX. Each iteration
of the outer loop performs a comparison between P and a subtree ofT, and this comparison is
repeated for all the internal nodes of T. Therefore, the outer loop is executed O(ITI) times, and
the overall time complexity of algorithm 1 is O(klTI) for k>0, or O(ITI) for k=0. []

If the internal nodes of the two trees are labelled, another distance may be considered in

addition to d s. Let E be a finite alphabet, 0~ Y., and let ~.(N)~ Y~ be the label of a node N.

Disregarding the labels, consider the transformation T 1 (~s T2, and let A 1 Aha T 1 and

B 1 B h~ T 2 be the ordered sets of nodes put into correspondance in the trasformation. That
is A i -=- B i, l~<h. (Note that A i and B i belong to the common portion o f T 1 and T2). We pose:

Definition 2. For two labelled ordered h-ary trees T 1, T2, the mismatch distance dm(T1,

T 2) is given by the number of pairs Ai, B i such that ~.(Ai)#~(Bi).

Problem 1'. Given two labelled ordered h-ary trees P,T, and two integers k, k 1 > 0, find all

the nodes N~ T such that ds(P,T[N]) < k, dm(P,T[N]) < k 1.

Problem 1' can be solved with a variant of algorithm 1, using the labelled Zaks sequences
ZXT, Z~.p, that is, Zaks sequences with the l's replaced by the internal node labels; and taking
into account that Z~.T(i)~ Zkp(j) may occur for a label mismatch. With an argument similar to
the one used in theorem 1, it can be easily shown that the inner while loop of the algorithm is
executed at most 2(max (k, kl)+l) times. Therefore we have:

Corollary 1. Problem 1' can be solved in time O(h.lPl+max(h, kl, k2).lTl).

3. Matching arbitrary ordered trees

If the node degree is arbitrary, the transformation of a tree into another by inserting and
deleting subtrees becomes less obvious. For a nonvoid ordered tree T, and a node

N~ T, we newly define these operations as follows:

1) for Ne T, N leaf, insert a non void tree T 1 in T in the place of N. Denoted by:
Ins(T1,T[N]);

198

2) for N~ T, N non leaf, delete T[N] from T by replacing TIN] with the single node N (N
becomes a leaf). Denoted by Del (T[N],T).

Note that we do not use now the concept of extenal and internal nodes. Let a sequence S of
insert and delete operations determine the transformation of a tree T 1 into another treeT2,

denoted by T 1 13 s T 2. Letting R1, R 2 be the roots of T1,T 2, respectively, S is such that:

1) R I -= R 2,

2) if ITII=IT21=I then S=t3;

3) if ITII=I and IT2I>I, then S = Ins(T2,TI[R1]);

4) if ITII>I and IT21=l, then S = Del (TI[R1],T1);
5) if ITII>I and IT21>l, and deg R 1 =deg R 2 = h, then S = S1...S h, where S[defines the

transformation: T 1 [(i-th)son(R1)] [3Si T2[(i-th)son(R2)], 1 < i < h.
S is undefined if ITII>I, IT21>1, and deg R 1 ~ deg R2; or ITII>I, IT21>l, and deg RI= deg

R 2, but one of the sequences S i of point 5 is undefined. In this case 13 s does not exist, that is,
T 1 cannot be transformed into T 2 by insert or delete operations. If S is defined, the
transformation is uniquely determined. We now pose:

Definition 3. For two ordered trees T 1 , T2, with T 1 [~S T2, the leaf distance dl(TI,T2) is
given by ISI.

In the sample trees T, P of fig.2 we have dI(T,P)=2, dl(T[2],P)=0, while dI(T[1],P) is
undefined.

T

/ \

• i .2
/ \ / \

/ 1 \ / \

/ \

/ \

P

pos. 1 2 3 4 5 6 7 8 9 10 i! 12 13 14 15 16 17 18 19 20 21 22 23 24

W T 1 1 1 1 0 1 0 1 0 0 1 0 0 1 i 1 0 1 0 0 1 0 0 0

LST T 24 13 i0 5 0 7 0 9 0 0 12 0 0 23 20 17 0 19 0 0 22 0 0 0

PROX 2 3 4 6 0 8 0 II 0 0 14 0 0 15 16 18 0 21 0 0 25 0 0 0

Wp 1 1 1 0 1 0 0 1 0 0

LSTp i0 7 4 0 6 0 0 9 0 0

Fig. 2

199

An ordered tree T can be represented by a binary sequence W, obtained visting T in

preorder. A 1 is entered in W for each node encountered in the visit, and a 0 is entered for each
return to the previous level. The syntactic stucture of the sequence W is the following:

W::= 1 W * 0
where a term W occurs for each subtree of the root. In fact, each subtree T' of T corresponds
to a subsequence W' of W. Clearly W has the following properties:
i . W has ITI ones and ITI zeroes;
2. all prefixes of W have a number of ones greater than the number of zeroes.
For example, see the sequences W T, Wp for the trees T and P reported in fig.2. An easy
inductive argument shows that here is a one to one Correspondence between ordered trees and
sequences W. We denote by W(i) the i-th position of W, and define the sequence LAST as for
problem 1 (see fig.2).

We then pose:

Problem 2. Given two ordered trees P, T, and an integer kP_0, find all the nodes N~ T such
that dl(P,T[N]) < k.

If we compute d I excluding case 4 from the definition of S (that is we consider S to be
undefined for IPI>I and ITI=I), and take k=lPI, then problem 2 becomes the tree pattern
matching defined in [5].

ProbIem 2 is solved with the preprocessing phase and algorithm 2 reported below (refer to
the example of fig.2). We have:

Theorem 2. Problem 2 is solved in time O(IPI+k.ITI)), using preprocessing and algorithm 2.
Proof. Correctness. The inner while loop of algorithm 2 cheks the matchings of P with a
subtree of T. A point of mismatch, e. g. WT(i)=I, Wp(j)=0, is reached via a PREFIX or a
LAST computation. In both cases, WT(i-1)=Wp(j-1). If these carachters are 0, we are
attempting to matching internal nodes of P and T of different degrees. Hence P is not found
(defined=false). If WT(i-1)=Wp(j-1)= 1, then WT(i-1) corresponds to an internal node N of T
and Wp(j-1) corresponds to a leaf L of P. Then, the process goes on matching the subtree
routed in N with the leaf L, and increasing d. The case WT(i)=0, Wp(j)=l is symmetrical. The
outer while loop iterates the procedure, matching P with to all the nonvoid subtrees ofT.
Complexity. Preprocessing takes time O(tPI+ITI) (see the proof of theorem 1). The inner
while loop of algorithm 2 is executed at most 2k+l times. In fact, < k+l times for the
common subsequences starting at WT(i)=Wp(j), interleaved with the determinations of < k
mismatches between a leaf and a subtree. If a forbidden mismatch occurs (defined=true) the
loop is forcibly terminated. Each iteration of the outer while loop performs a comparison
between P and a subtree of T, hence this loop is executed O(ITI) times. The complexity of
algorithm 2 is then O(krTI). []

We can consider labelled ordered trees, extend the definition of mismatch distance drn
(Definition 2) to this case, and apply an obvious extension of algorithm 2. We have:

Problem 2'. Given two labelled ordered P,T, and two integers k, k 1 > 0, find all the nodes

N~ T such that dl(P,T[N]) < k, dm(P,T[N]) < k 1.

Corollary 2. Problem 2' can be solved in time O(IPl+max(k, kl).lTI).

200

Preproeessing
1. build the sequences Wp, W T, LASTp, LAST T for P and T and the sequence

PROX for T;
2. build the suffix tree for the string X=WT$W P& ($,& are markers).

Algorithm 2

t : =i;

while t<_[W TI do

begin

j:=l; i:=t; d:=0;

while iSLAST T (t)

if WT(i)=Wp(j)

defined : =true;

and j<lWp [and d_<k and defined do

then begin r:=PREFIX(X,i, j+IWT[+I) ;

i:=i+r; j:=j+r end

else if WT(i)=I and Wp(j)=0

then if W T(i-1)=l

then begin i:=LASTT(i-I)+I;j:=j+I;d:=d+I end

else defined: =false

e l s e i f Wp (i - 1) =1 {We have WT(i)=0 and Wp(j)=l }

then begin j:=LASTp(j-1)+l;i:=i+l;d:=d+l end

else defined:=false;

if d_<k and defined then PRINT(t); {we have dl(P,T[t])<_k}

t : =P ROX (t)

end

end algorithm 2.

Acknowledgment.
This work has been partially supported by M.U.R.S.T. of Italy.

References

[1] M. Dubiner, Z. Galil and E. Magen, Faster tree pattern matching, Proc. 31-st 1EEE
Syrup. on Found. of Comp. Sc.(1990) 145-149.

[2] Z. Galil and R. Giancarlo, Data structures and algorithms for approximate string
matching, J. Complexity 4 (1988) 33-72.

[3] D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common ancestors,
SlAM J. Comp.13 (1984) 338-355.

[4] C.M. Hoffmann and M.J. O'Donnell, Pattern matching in trees, J. ACM 29
(1982) 68-95.

201

[5] S.R. Kosaraju, Efficient tree pattern matching, Proc. 30-th IEEE Symp. on
found, of Comp. Sc.(1989) 178-183.

[6] G.M. Landau and U. Vishkin, Introducing efficient parallelism into approximate
string matching and a new serial algorithm, Proc. 18-th ACM Symp. on Theory
of Comp. (1986) 220-230.

[7] E. M/ikinen, On the subtree isomorphism problem for ordered trees, Inf. Proc.
Let. 32 (1989) 271-273.

[8] L. Stryer, Biochemestry, 3-rd edition, W.H.Freeman and Co., New York, NY
1988.

[8] K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between
trees and related problems, SIAM J. Comp. 18 (1989) 1245-1262.

