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1. In t roduc t ion  

Tree isomorphism and matching is widely studied. Aside from its mathematical interest, the 
problem has a number of important motivations in the theory of programming [4] and in 
molecular biology [9]. Three recent papers in this field are particularly innovative by a 
computational point of view. Given a pattern tree P and a text tree T, M/~kinen [7] shows how 
to determine all the exact occurrences of P as subtree of T, in time O(IPI+ITI), using a proper 
string representation for trees, and applying a fast string matching algorithms on such a string. 
In [5] Kosaraju solves a generalization of the same problem, generally called tree pattern 
matching, where the leaves of P may match with subtrees of T (instead of single nodes). The 

time required by the algorithm of [5] is O(ITIIPl0"75polyloglPl) against the O(ITIIPI) of the naive 
bound. In fact the algorithm of [5] solves the more general problem of determining whether P 
is isomorphic to a subtree T' of T, where an arbitrary number of subtrees may be cancelled 
from T'. The result of [5] has been improved in [1], to O(n']m polylog(m)). Zhang and Shasha 
[9] measure the edit distance between ordered trees (weighted number of insert, delete and 
modify operations to trasform one tree into another), and consider several approximate tree 
matching problems based on this distance, or other weighted distances derived from subtree 
removal or pruning. Due to the intrinsic difficulty of their problems, all their algorithms run in 
more than linear time. Among the classical contributions, Hoffmann and O'Donnell [4] 
propose several algorithms for the subtree replacement problem in an ordered ranked tree. 
Unless for special cases, the algorithms of [4] are at least quadratic in the size of the input. 

In this paper we consider ordered h-ary trees, that is trees whose nodes have exactly h 
sons; and arbitrary ordered trees. The former appear, for example, in biochemical structures 
such as glycogen [8]; the latter are encountered in term rewriting systems and in RNA 
comparisons. We define the subtree distance between two ordered h-trees T1, T 2 as the number 
of subtrees to be inserted or deleted in T 1 to obtain T2, and introduce an approximate tree 
matching problem (Problem 1), that consists of finding all the occurrences of P in T, with 
bounded distance k. On one side, this problem is an extension of the general problem solved in 
[5], where P may contain subtrees which are not present in T (note however the h-ary 
restriction on P and T). On another side, it is an extension of the approximate string matching 
problem [2,6] to h-ary trees. We give an algorithm to solve this problem in time O(hlPI + 
max(h,k)lTI). 

For arbitrary ordered trees we solve an extension of the tree pattern matching problem. We 
define the leaf distance between two trees T I, T 2 as the total number of subtrees to be inserted 
in T 1 in place of its leaves, or to be deleted from T1, leaving leaves in their place, to obtain T 2. 
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Our new problem (Problem 2) consists of determining all the occurrences of P as a subtree of 
T, with bounded distance k. Note that, unlike in the tree pattern matching problem, P is not 
necessarily contained in T. The complexity of our algorithm is O(IPI+klTI). With an obvious 
restriction, the algorithm can be adapted to solve the tree pattern matching problem with the 
same complexity. If k is chosen independently of IPl, as it is normally assumed in approximate 
string matching, our algorithm compares favourably with the previous ones. 

Problems 1 and 2 are defined for unlabelled trees; the extension to labelled trees require 
minor modifications of  the algorithms. If up to k 1 label differences are allowed between the 
matching nodes of P and T, the two problems are solved in time O(hlPl+max (h, k, kl)lTI ), and 

O(IPl+max (k, kl)lTI), respectively. 

2. Matching h-ary trees 

Our study begins with a definition of tree distance. Let an ordered h-ary tree T be 
completed by the insertion of (h-1)lTl+l external nodes, in place of  the empty sons of  the 
original (internal) nodes. If ITI = 0 (i.e., T = 0)  one external node is placed at the root. For a 

node N~ T, N internal or external, let T[N] denote the subtree of T rooted at N. We define the 
following operations on T: 

1) for N~ T, N external, insert a new tree T 1 in T as a subtree rooted at N. This is 
denoted by: Ins (T1,T[N]); 

2) for Ne T, N internal, delete T[N] from T (i.e., substitute TIN] with an external 
node). This is denoted by: Del (T[N],T). 

The transformation from T 1 to T2, denoted by T 1 m S T 2, is a sequence S of insert or delete 

operations on T 1. In this transformation we establish a correspondence between pairs of 

internal nodes NI~ T1, N2~ T2, denoted by NI-=N 2. Let R1,R 2 be the roots of TI,T2, 
respectively. The sequence S is such that: 

1) i fT l=T2=0  then S=0; 

2) if T I=0  (R 1 is an external node) and T2~0 , then S = Ins(T2,TI[R1]); 

3) i f T l ~ 0  and T2=0, then S = Del (TI[R1],T1); 
4) if T I ~ J  and T2~O, then R 1 =- R 2 and S =  S1...S h, where 

transformation: Tl[(i-th)son(R1)] ocSi T2[(i-th)son(R2)], 1 < i < h. 

S i defines the 

Note the transformation from T 1 to T 2 is uniquely determined. We can now pose: 

Definition 1. For two ordered h-ary trees T1, T2, with T 1 ¢~S T2, the subtree dinstance 
ds(T1,T2) is given by tSI. 

For h=2, consider the binary trees T 1, T 2 of fig. 1 (external nodes are denoted by A). The 
transformation sequence is the following: 

S = Ins (T213],Tl[*]), Del (TI[3],T1), Del (TI[7],T1), Ins (T216],Tl[@]). 
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We then have ds(T1,T2) = 4, while the node correspondences 1=-1, 2=-2, 5---4, 6-=-5 are 
established. 

i TI I T2 

/ \ / \ 

2- 5" 2- -4 

/ \  / \  / \  / \ 

* A • 3 6 • A @ 3 • A • 5 "6 

/ \  / \  / \  / \  / 
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A A A A A A 

\ 
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/\ 

A A 

position 1 2 3 4 5 6 7 8 9 I0 I! 12 13 14 15 16 17 

z' 

Z 1 1 1 0 1 ! 0 0 0 1 1 1 0 0 0 0 

LAST ! 15 8 0 8 7 0 0 0 15 14 13 0 0 0 0 

Z 2 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 

LAST 2 17 6 5 0 0 0 17 i0 0 0 17 14 0 0 17 0 0 

Fig. 1 

An ordered h-ary tree T can be represented with a binary Zaks sequence Z, obtained by 
labelling the internal nodes of T by 1, and the external nodes by 0, and then visiting T in 
preorder [7]. Z has n ones and (h-1)n+l zeroes, and no prefix of Z has n' ones and (h-1)n'+l, 
n'<n. Moreover, each subtree T' of T corresponds to a subsequence Z' of Z, which is the Zaks 
sequence for T'. See for example fig.l,  where Z 1 and 7z 2 are the Zaks sequences for T 1 and 
T 2, respectively. The Zaks subsequence Z' of Z 1 corresponds to T 1 [2]. 

We now pose: 

Problem I. Given two ordered h-ary trees P, T, and an integer k20, find all the nodes Ne T 
such that ds(P,T[N] ) < k. 

For k=0 and h=2 this problem becomes the well known subtree isomorphism problem 
between ordered binary trees. For k>0 we have an approximate tree matching problem. As 
noted in [9], such a problem can be seen as a generalization of the approximate string matching 
problem applied to trees. 

We solve problem 1 using the Zaks representation of the trees, and a suffix tree built on it. 
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Recall that, for a given sequence X of n elements, the suffix tree on X allows to compute, in 
time O(I), the lenght PREFIX(X, i, j) of the longest common prefix between the subsequences 
X(i) ..... X(n) and X(j) ..... X(n) [3]. 

Let Z(i) denote the i-th element of a Zaks Z, and N i be the tree node corresponding to Z(i). 
Define the new sequence LAST, with ILASTI = IZl, as follows. For Z(i)=0 (N i external), 
LAST(i)=0. For Z(i)=l (N i internal), LAST(i)=j, where j is the last position in Z of the 
subsequence Z' corresponding to the subtree rooted at N i. For example, the sequences LAST 1, 
LAST 2 for the trees T 1, T 2 are shown in fig.1. Similarly define the sequence PROX, with 
IPROXI = IZ1, as follows, if Z(i)=0, then PROX(i) = 0; if Z(i)=l, then PROX(i) = j, where j>i 
is the minimum value for which Z(j)=I (if Z(j) = 0 for all j>i, then PROX(i) = IZI+I). 

Problem 1 can be solved with the following method, consisting of a preprocessing phase 
followed by algorithm 1: 

Preprocessing 
1. build the Zaks sequences Zp, Z T for P and T; 
2. build the LAST sequences LASTp, LAST T for P and T; 
3. build the sequence PROX for T;{note: PROX contains 

successive nonvoid subtrees, in preorder}; 
4. build the suffix tree for the string X=ZT$Z P& ($,& are markers). 

pointers to the 

Algorithm 1 

t:=l; 

while tSIZTI do 

begin 

j:=l; i:=t; d:=0; 

while i< LAST T(t) and j<IZpl and d_<k do 

if ZT(i)=Zp(j) 

1 : then begin r :=PREFIX (X, i, j+ I Z T I +i) ; 

i:=i+r; j:=j+r end 

2: else if zT(i)=0 and Zp(j)=I 

then begin i:=i+l; j:=LASTp(j)+I; d:=d+l end 

else begin i:=LAST T(i)+l; j:=j+l; d:=d+l end; 

if d<k then PRINT(t); {we have ds (P, T [t] )_<k } 

t : =P ROX (t) 

end 

end algorithm i. 

Theorem 1. Problem 1 is solved in time O(h-lPl+max(h,k)-lT1)), using preprocessing and 
algorithm 1. 
Proof. Correctness. Let N t be the node of T corresponding to ZT(t ), The inner while loop 
of algorithm I computes the distance between P and T[Nt]. The outer while loop iterates such 
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a computation to all the nonvoid subtrees of T, pointed by the function PROX[t]. 
Complexity. Preprocessing. Steps 1 and 2 can be executed in time O(h(IPI+ITI)) (size of the 
output from preprocessing), since Zp, Z T, LASTp and LAST T can be directly built visiting the 
two trees. Step 3 amounts to scanning Z T, hence takes time O(hlTI). Step 4 takes time 
O(h(IPI+ITI)) [3]. The total time of preprocessing is therefore O(h(IPI+ITI)). To analyze 
algorithm 1, consider the inner while loop first. The else statement, labelled 2, is executed at 
most k+l  times (at this point the while is terminated). When a then statement, labelled 1, is 
executed, the function PREFIX bring the indices i, j to two values for which ZT(i)~Zp(j). That 
is, at the next while iteration, the else statement is again executed. Therefore, the then  
statement is executed at most as many times as the else statement. Since PREFIX can be 
computed in O(1), the total time required by the inner while loop is O(k), for k>0. For k=0 
the while loop is executed exactly once, with a single computation of PREFIX. Each iteration 
of the outer loop performs a comparison between P and a subtree ofT,  and this comparison is 
repeated for all the internal nodes of T. Therefore, the outer loop is executed O(ITI) times, and 
the overall time complexity of algorithm 1 is O(klTI) for k>0, or O(ITI) for k=0. [] 

If the internal nodes of the two trees are labelled, another distance may be considered in 

addition to d s. Let E be a finite alphabet, 0~ Y., and let ~.(N)~ Y~ be the label of a node N. 

Disregarding the labels, consider the transformation T 1 (~s T2, and let A 1 ..... Aha T 1 and 

B 1 ..... B h~ T 2 be the ordered sets of nodes put into correspondance in the trasformation. That 
is A i -=- B i, l~<h.  (Note that A i and B i belong to the common portion o f T  1 and T2). We pose: 

Definition 2. For two labelled ordered h-ary trees T 1, T2, the mismatch distance dm(T1, 

T 2) is given by the number of pairs Ai, B i such that ~.(Ai)#~(Bi). 

Problem 1'. Given two labelled ordered h-ary trees P,T, and two integers k, k 1 > 0, find all 

the nodes N~ T such that ds(P,T[N]) < k, dm(P,T[N]) < k 1. 

Problem 1' can be solved with a variant of algorithm 1, using the labelled Zaks sequences 
ZXT, Z~.p, that is, Zaks sequences with the l's replaced by the internal node labels; and taking 
into account that Z~.T(i)~ Zkp(j) may occur for a label mismatch. With an argument similar to 
the one used in theorem 1, it can be easily shown that the inner while loop of the algorithm is 
executed at most 2(max (k, kl)+l ) times. Therefore we have: 

Corollary 1. Problem 1' can be solved in time O(h.lPl+max(h, kl,  k2).lTl ). 

3. Matching arbitrary ordered trees 

If the node degree is arbitrary, the transformation of a tree into another by inserting and 
deleting subtrees becomes less obvious. For a nonvoid ordered tree T, and a node 

N~ T, we newly define these operations as follows: 

1) for Ne T, N leaf, insert a non void tree T 1 in T in the place of  N. Denoted by: 
Ins(T1,T[N]); 
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2) for N~ T, N non leaf, delete T[N] from T by replacing TIN] with the single node N (N 
becomes a leaf). Denoted by Del (T[N],T). 

Note that we do not use now the concept of extenal and internal nodes. Let a sequence S of 
insert and delete operations determine the transformation of a tree T 1 into another treeT2, 

denoted by T 1 13 s T 2. Letting R1, R 2 be the roots of T1,T 2, respectively, S is such that: 

1) R I -= R 2, 

2) if ITII=IT21=I then S=t3; 

3) if ITII=I and IT2I>I, then S = Ins(T2,TI[R1]); 

4) if ITII>I and IT21=l, then S = Del (TI[R1],T1); 
5) if ITII>I and IT21>l, and deg R 1 =deg R 2 = h, then S = S1...S h, where S[ defines the 

transformation: T 1 [(i-th)son(R1)] [3Si T2[(i-th)son(R2)], 1 < i < h. 
S is undefined if ITII>I, IT21>1, and deg R 1 ~ deg R2; or ITII>I, IT21>l, and deg RI= deg 

R 2, but one of the sequences S i of point 5 is undefined. In this case 13 s does not exist, that is, 
T 1 cannot be transformed into T 2 by insert or delete operations. If  S is defined, the 
transformation is uniquely determined. We now pose: 

Definition 3. For two ordered trees T 1 , T2, with T 1 [~S T2, the leaf distance dl(TI,T2) is 
given by ISI. 

In the sample trees T, P of fig.2 we have dI(T,P)=2, dl(T[2],P)=0, while dI(T[1],P ) is 
undefined. 

T 

/ \ 

• i .2 
/ \  / \  

/ 1 \  / \ 

/ \ 

/ \ 

P 

pos. 1 2 3 4 5 6 7 8 9 10 i! 12 13 14 15 16 17 18 19 20 21 22 23 24 

W T 1 1 1 1 0 1 0 1 0 0 1 0 0 1 i 1 0 1 0 0 1 0 0 0 

LST T 24 13 i0 5 0 7 0 9 0 0 12 0 0 23 20 17 0 19 0 0 22 0 0 0 

PROX 2 3 4 6 0 8 0 II 0 0 14 0 0 15 16 18 0 21 0 0 25 0 0 0 

Wp 1 1 1 0 1 0 0 1 0 0 

LSTp i0 7 4 0 6 0 0 9 0 0 

Fig. 2 
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An ordered tree T can be represented by a binary sequence W, obtained visting T in 

preorder. A 1 is entered in W for each node encountered in the visit, and a 0 is entered for each 
return to the previous level. The syntactic stucture of the sequence W is the following: 

W::=  1 W * 0  
where a term W occurs for each subtree of the root. In fact, each subtree T' of T corresponds 
to a subsequence W' of W. Clearly W has the following properties: 
i .  W has ITI ones and ITI zeroes; 
2. all prefixes of W have a number of ones greater than the number of zeroes. 
For example, see the sequences W T, Wp for the trees T and P reported in fig.2. An easy 
inductive argument shows that here is a one to one Correspondence between ordered trees and 
sequences W. We denote by W(i) the i-th position of W, and define the sequence LAST as for 
problem 1 (see fig.2). 

We then pose: 

Problem 2. Given two ordered trees P, T, and an integer kP_0, find all the nodes N~ T such 
that dl(P,T[N]) < k. 

If we compute d I excluding case 4 from the definition of S (that is we consider S to be 
undefined for IPI>I and ITI=I), and take k=lPI, then problem 2 becomes the tree pattern 
matching defined in [5]. 

ProbIem 2 is solved with the preprocessing phase and algorithm 2 reported below (refer to 
the example of fig.2). We have: 

Theorem 2. Problem 2 is solved in time O(IPI+k.ITI)), using preprocessing and algorithm 2. 
Proof. Correctness. The inner while loop of algorithm 2 cheks the matchings of P with a 
subtree of  T. A point of mismatch, e. g. WT(i)=I, Wp(j)=0, is reached via a PREFIX or a 
LAST computation. In both cases, WT(i-1)=Wp(j-1 ). If  these carachters are 0, we are 
attempting to matching internal nodes of P and T of different degrees. Hence P is not found 
(defined=false). If  WT(i-1)=Wp(j-1)= 1, then WT(i-1) corresponds to an internal node N of T 
and Wp(j-1) corresponds to a leaf L of P. Then, the process goes on matching the subtree 
routed in N with the leaf L, and increasing d. The case WT(i)=0, Wp(j)=l is symmetrical. The 
outer while loop iterates the procedure, matching P with to all the nonvoid subtrees ofT.  
Complexity. Preprocessing takes time O(tPI+ITI) (see the proof of theorem 1). The inner 
while  loop of algorithm 2 is executed at most 2k+l times. In fact, < k+l  times for the 
common subsequences starting at WT(i)=Wp(j), interleaved with the determinations of < k 
mismatches between a leaf and a subtree. If a forbidden mismatch occurs (defined=true) the 
loop is forcibly terminated. Each iteration of the outer while loop performs a comparison 
between P and a subtree of T, hence this loop is executed O(ITI) times. The complexity of 
algorithm 2 is then O(krTI). [] 

We can consider labelled ordered trees, extend the definition of mismatch distance drn 
(Definition 2) to this case, and apply an obvious extension of algorithm 2. We have: 

Problem 2'. Given two labelled ordered P,T, and two integers k, k 1 > 0, find all the nodes 

N~ T such that dl(P,T[N] ) < k, dm(P,T[N] ) < k 1. 

Corollary 2. Problem 2' can be solved in time O(IPl+max(k, kl).lTI ). 
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Preproeessing 
1. build the sequences Wp, W T, LASTp, LAST T for P and T and the sequence 

PROX for T; 
2. build the suffix tree for the string X=WT$W P& ($,& are markers). 

Algorithm 2 

t : =i; 

while t<_[W TI do 

begin 

j:=l; i:=t; d:=0; 

while iSLAST T (t) 

if WT(i)=Wp(j) 

defined : =true; 

and j<lWp [ and d_<k and defined do 

then begin r:=PREFIX(X,i, j+IWT[+I) ; 

i:=i+r; j:=j+r end 

else if WT(i)=I and Wp(j)=0 

then if W T(i-1)=l 

then begin i:=LASTT(i-I)+I;j:=j+I;d:=d+I end 

else defined: =false 

e l s e  i f  Wp ( i -  1 ) =1 {We have WT(i)=0 and Wp(j)=l } 

then begin j:=LASTp(j-1)+l;i:=i+l;d:=d+l end 

else defined:=false; 

if d_<k and defined then PRINT(t); {we have dl(P,T[t])<_k} 

t : =P ROX (t) 

end 

end algorithm 2. 
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