
The tree inclusion problem

Pekka Kilpel/~inen Heildd Mannila

Department of Computer Science
University of tlelsinki

Teollisuuskatu 23
SF-00510 tIelsinki, Finland

Abs t r ac t

We consider the following problem: Given ordered labeled trees S and T, can
S be obtained from T by deleting nodes? Deletion of the root node u of a subtree
with children (T~,. . . , T=) means replacing the subtree by the trees Ta , . . . , T,,. The
problem is motivated by the study of qnery languages for structured text data bases.
The simple solutions to this problem require exponential time. We give an algorithm
based on dynamic programming requiring O([SIIT D time and space.

1 I n t r o d u c t i o n a n d m o t i v a t i o n

Let T be a tree and u the parent node of a node v in T. Denote by

delete(T, v)

the tree obtained from T by removing the node v. The children of v become children of
u. (See.Figure 1.)

We consider the following problem: Given two trees S and T, can we obtain S by
deleting some nodes from T? Tha t is, is there a sequence ul , . . . , uk of nodes such that
for

To = T

Ti.t. 1 ~- delete(Ti, ui+l), i = 0 , . . . ,k - 1,

we have Tk = S. If this is the case, what are the nodes in T that are not deleted by the
sequence? We call this problem the tree inclusion problem.

Our motivation comes from the study of query languages for structured text databases.
Gonnet and Tompa have defined an elegant data model where instances are parse trees
[GOT87]. Tree inclusion seems to capture essential properties of ordering and hierarchical
containment involved in Gonnet and Tompa's p-string algebra [MAR90]. Therefore it
appears to be a useful concept for expressing the operations of the p-string algebra.
Another application is the processing of queries in object-oriented databases [Bee90]: a
query describes an included subtree of the type structure.

203

T

u

delete (T, v)

Figure h The effect of removing the node v from the tree T

The tree inclusion problem resembles the tree pattern matching problem [Ho082,
Kos89, CPT90, DGM90], which has several applications. In that problem one wants
to find out whether the tree S occurs as a connected component of the tree T, or, using
the terminology above, whether one can obtain a tree having S as a subtree by removing
complete subtrees from T. The resemblance of the problems does not apparently extend
to the algorithms. For the tree pattern matching problem the trivial solution works in
time O([S[[TD, where IS[is the number of nodes in the tree S, and IT[in the tree T.
(This bound has only recently been broken [Kos89, DGM90].) The reason why tree pat-
tern matching is a fairly simple problem is that there are only [T[possible places where
S can be matched in T. Hence the trivial algorithm can simply test all the possibilities.

For the tree inclusion problem, there can generally be exponentially many ways to
obtain the included tree. Thus it is not feasible to check all the possibilities. In this
paper we give a polynomial time algorithm for solving the tree inclusion problem. The
algorithm works in time O([S[[T D. It is based on dynamic programming: to use that
approach we need to develop some results about the properties of tree inclusion. In this
paper we concentrate on these properties and the polynomial time algorithm, and do not
describe the applications in more detail (see [Kil91]).

We start by giving definitions and some properties of tree inclusion in Section 2. In
Section 3 we develop the idea of left embeddings that is the base for our algorithms. Sec-
tion 4 presents the basic algorithm. This algorithm may repeat the same computations
many times, which leads to an exponential behaviour. In Section 5 we develop the algo-
rithm further. The use of a table for storing the results of subcomputations leads to an
algorithm requiring O([S[[T[) running time and storage. Section 6 discusses related work.
Section 7 is a short conclusion.

2 Fores t inc lus ion

Notationally it is useful to be slightly more general and to consider ordered and labeled
forests instead of trees. A forest is a finite ordered sequence of disjoint finite trees. A tree
T consists of a specially designated node root(T) called the root of the tree, and a forest
(/"1,... ,T,~), where n > 0. The trees/11,... , T~ are called the children of the root. The
tree rooted by node u is denoted by tree(u). The root is an ancestor of all the nodes in its

204

children, and the nodes in the children are descendants of the root. The set of descendants
of a node u is denoted by desc(u). A leaf is a node without any descendants.

We sometimes treat a tree T as the forest (T). We may denote the set of nodes in a
forest F by F, too. For example, if we speak of functions from a forest F to a forest G,
we mean functions mapping nodes of F onto nodes of G. The size of a forest F , denoted
by IF[, is the number of nodes in F .

Let F = (T1,...,Tn) be a forest. The preorder of a forest F is the order of the
nodes visited during the preorder traversal. The preorder traversal of a forest (T1, . . . , T~)
is defined as follows: Traverse the trees T I , . . . , T~ in ascending order of the indices in
preorder. To traverse a tree in preorder, first visit the root and then traverse the children
of the tree in preorder. The postorder is defined similarly, except that the root is visited
after traversing the children in postorder. The preorder and postorder numbers of a node
u are denoted by pre(u) and post(u).

The following lemma binds the ancestorship and the preorder and postorder together.

L e m m a 1 Let u and v be nodes in a forest F. Then u is an ancestor of v if and only if
pre(u) < pre(v) and post(v) < post(u).

Proof . See Exercise 2.3.2-20 in [Knu69]. []

Let E be a set of labels and N a set of nodes. A labeling for N is a function from N
to E.

Def in i t ion 1 Let F and F ' be forests, N and N t the sets of their nodes, and I a labeling
for N IJ N t. An injective function

f : N ~ N '

is an embedding o fF into F', if for all nodes u, v E N

1. f preserves Zabels, i.e., l(y(u)) = l(u).

2. / preserves preorder, i.e., pre(u) < pre(v) ~ pre(/ (u)) < pre(f(v)).

3. f preserves ancestors, i.e., f(u) E desc(f(v)) ¢e~ u e desc(v).

If there is an embedding of F into F ~, we say that F ~ includes F, denoted F _ FL F is an
included forest of F r, and F t is an including forest of F. Forests F and F' are isomorphic,
if there is a bijective embedding of F into F'. []

Using Lemma 1 one can show that we get an equivalent definition for embeddings if we
replace condition (2) or condition (3) above by the requirement that for all nodes u and v

4. f preserves postorder, i.e., post(u) < post(v) 1=> post(f (u)) < post(f (v)).

E x a m p l e 1 The included forests of the forest (a(b, c)) are 0 , (a), (b), (c), (b, c), (a(b)),
(a(c)), and (a(b, c)). []

L e m m a 2 The relation _ is a partial ordering (up to isomorphism), i.e., it is reflexive,
transitive, and antisymmetric, o

The next lemma justifies the formulation of the tree inclusion problem given in the
introduction.

205

L e m m a 3 A forest G includes a forest F if and only if a forest isomorphic to F can be
obtained from G by deleting nodes. (The deletion of a node v replaces tree(v) by the
children of v.) D

The proof of Lemma 3 is based on the fact that if u and v are nodes in G, the removal of
a third node does not change the relative ordering of u and v.

A forest may have exponentially many included forests, as shown in the next lemma.

* A (';') i ' dod of m .

Proof . If every node in F has a different label, we get a non-isomorphic included
forest of size m for every possible selection of IF[- ra nodes to be deleted. The number
of such selections is (Ill). []

E x a m p l e 2 The forest (a(x, b(y(d, e), f) , c)) has 8 nodes with different labels. Therefore
it has 256 non-isomorphic included forests. If the labels are similar, the number of non-
isomorphic included forests is smaller. For example, the forest (a(a, a(a(a, a), a), a)) has
same size and form as the previous one, but it has only 68 non-isomorphic included forests.

[]

3 L e f t e m b e d d i n g s

In this section we develop concepts that help us to solve the tree inclusion problem
efficiently. Throughout the rest of the paper, let l be a labeling for the nodes of the trees.

We concentrate on searching root preserving embeddings.

Def in i t ion 2 Let S and T be trees. A root preserving embedding of S into T is an
embedding f of S into T such that f(root(S)) = root(T). []

The following simple lemma states that the we do not lose generality by concentrating
on the root preserving embeddings.

L e m m a 5 Given forests F and G, let S and T be trees such that l(root(S)) = l(root(T))
and the children of root(S) form the forest F and the children of root(T) form the forest
G. Then F _E G if and only if there is a root preserving embedding of S into T. []

There may be exponentially many ways to embed the children of a tree S into the
children of a tree T. In order to limit the search among these embeddings, we develop
algorithms that search for a root preserving embedding of S into T by trying to embed
the subtrees of S as deep and as left as possible in T.

tn order to discuss the order of images of sibling nodes in an embedding we define the
right and left relatives of a node.

Def in i t ion 3 Let F be a forest, N the set of its nodes, and u a node in F. The set of
right relatives of u is defined by

rr() = {x e N I < pr (x) ^ po t() < post(x)},

i.e., the right relatives of u are those nodes that follow u both in preerder and in postorder.
(See Figure 2.)

The set of left relatives of a node u, denoted by lr(u), is the set of nodes that precede
u both in preorder and in postorder. []

206

Figure 2: The right relatives of the node u

L e m m a 6 Let u, v, x be three nodes in a forest. Then it is not possible that

< < ^

wst(x) < post(u) < post(.)

P r o o f . The above conditions imply by Lemma 1 that

u and v are ancestors of x, and
neither u nor v is an ancestor of the other,

but this is not possible in a forest, o

The next simple lemma states that the descendants of a right relative are also right
relatives.

L e m m a 7 Let u and v be nodes, and assume v e rr(u). Then desc(v) C rr(u). []

The next lemma states that the right relatives of a node v are contained in the right
relatives of the nodes that precede v in postorder. This fact is the justification for the
strategy of embedding the trees as early as possible in postorder, when searching for an
embedding of a forest.

L e m m a 8 Let u and v be nodes in a forest. If post(u) <_ post(v), then rr(v) C rr(u). []

Lemmas 7 and 8 follow directly from Definition 3, Lemma 1, and Lemma 6.

L e m m a 9 Let F = (Tx,.. . ,Tk) and G be forests. There is an embedding of F into G
if and only if for every i = 1 , . . . , k there is an embedding fl of Ti into G, such that
f~+l(root(Ti+l)) is a right relative of fi(root(T~)), whenever 1 < i < k.

P r o o f . 'Only if': Let f be an embedding of F into G. It is obvious that restricting f
into each Ti gives embeddings fl satisfying the lemma.

'If': We show by induction on k that the union of the embeddings fi is an embedding
of F into G. Inductive step: Let g be an embedding of (T1,.. . , Tk-x) into G such that
g(root(Tk_l)) is a left relative of fk(root(Tk)) and let f = g U fk. It suffices to show
that f preserves the relative order of any two nodes x E T1 U . . . U Tk-1 and y E Tk.
Now root(Tk_l) is the last node of (T~, . . . , Tk-z) in postorder. Therefore, .by Lemma S
we have root(Tk) e rr(x) and Lemma 7 states that y E rr(x) also for y ~ root(Tk).
Then f (y) E rr(f(x)) by the same argument applied to the nodes f (x) , f(root(Tk_l)),
f(root(Tk)), and f(y). []

207

Def in i t i on 4 Let F = (T1, . . . , T~) and a be forests, and let C(F, G) be the collection
of embeddings of F into G. An embedding f E C(F, G) is a left embedding of F into G
if for every g E C(F, G)

post(f(,.oot(Td)) <_ st(g(,-oot(Td)), i =

[]

T h e o r e m 1 A forest F is an included forest of a forest G if and only if there is a left
embedding of F into G.

Proof . 'If': It is obvious that the condition is sufficient.
'Only if': Assume that F __. G. If F is an empty forest, its inclusion into G is the only

embedding in C(F, G), and thus a left embedding.
Let F = (T1, . . . , T~), (n > 1). We prove the statement by induction on n. For the

base case, let F = (T). Since there is an embedding of F into G,

V = {f(root(T)) E G I f ~ C(F, V)}

is a non-empty finite set of nodes. Therefore

min{post(x) l x E V} = post(f (root(T)))

for some f E C(F~ G). Such f is a left embedding.
For the inductive step, let F = (T1, . . . , T=), (n > 2). Since (T1, . . . , T,,-I) E F , we

know by Lemma 2 that (T1,..., T,~-I) E G. By the inductive assumption there is a left
embedding f of the forest (T1,... ,T,~-I) into G. Let g be an embedding of F into G. Its
restriction into TI U . . . U T=-I is an embedding of the forest (T1,.. . ,T=_I) into G, and
thus

post(f (root(T=_~))) <_ post(g(root(T,~_~))). (1)

By Lemma 9 we know that g(root(Tn)) E rr(g(root(T=_l))), and by Lemma 8 we get from
(1) that g(root(T~)) e rr(f(root(T=_x))). Therefore

V = {h(root(T~)) C G Ih E C(T~, G) A h(root(T~)) E rr(f(root(T,~_~)))}

is a nonempty finite set. Thus

min{post(x) l x E V} = post(h(root(Tn))) (2)

for some h E C(Tn, G). Now f U h is a left embedding o f F into G: Let £ be an embedding
of F into G. Then

post(f (root(T,))) < post(£(root(T~))) (3)

for all i = 1 , . . . , n - 1. The node £(root(T,)) is a right relative of £(root(Tn_l)), and
by (3) and Lemma 8 it is also a right relative of f(root(T=_~)); therefore ~(root(T=)) E V,
and by (2)

post(h(root(Tn))) <_ post(£(root(T,))).
[]

208

4 T h e b a s i c a l g o r i t h m

Now we are ready to give an algorithm for testing whether there is a root preserving
embedding of tree(u) into tree(v). Let T1, . . . ,Tk be the children of the node u. First
our algorithm searches for the image f(root(T1)) under a left embedding f of TI into the
children of the node v, if there is any. The algorithm uses a pointer p for traversing the
descendants of the node v. After finding a left embedding f for the forest (T1,. . . ,Ti),
the pointer p points at the node f(root(Ti)). In order to extend f to a left embedding
of (T1, . . . , Ti+l) into the children of v we find the next right relative x of p in postorder,
such that there is a root preserving embedding of T~+I into tree(x), and x is a descendant
of v. (The construction used is the same as in the proof of Theorem 1.)

The algorithm manipulates nodes as postorder numbers. For example, the rain of a
set of nodes is the first node of the set in postorder. The algorithm refers to auxiliary
nodes 0 and oo. Node 0 precedes every node of tree(v) in preorder and in postorder, and
every node of tree(v) precedes node oo in both orders. Especially, all nodes of tree(v) are
right relatives of node 0.

A l g o r i t h m 1 Finding a root preserving left embedding of S into T.

I n p u t : Nodes u and v (u = root(S), v = root(T)).

O u t p u t : t r u e if and only if there is a root preserving embedding of S into T.

M e t h o d :

1. f u n c t i o n emb(u,v);
2. i f l(u) ~4 l(v) t h e n r e t u r n false ;
3. e ls i f u is a leaf t h e n r e t u r n t r u e ;
4. else
5. let u z , . . . , uk be the roots of the children of u;
6. p := m (de e(v) u {oo}) - 1;
7. i := 0;
8. whi le i < k a n d p < v d o
9. p :---- min({x E rr(p) I emb(ui+l,X)} U {oo});
10. i f p E desc(v) t h e n
11. i := i + 1;
12. fi ;
13. od ;
14. i f i = k t h e n r e t u r n t r u e ;
15. else r e t u r n f a l s e ;
16. fi ;
17. fi ;
18. e n d ;

The correctness of the algorithm is based on the loop invariant stating that the forest
~tree(ul), . . . , tree(u~)} has a left embedding f into the children of v, and p = f(ul). If
node v is a leaf but u has children, tree(u) can not be embedded into tree(v). In this

209

case p gets value oo on line 6 of the algorithm, which prevents the execution of lines 8-
14. Otherwise p gets the value min(deac(v)) - 1, which is the closest left relative of v.
(The descendants of v are as postorder numbers {p + 1, p + 2 , . . . , v - 1 }.) By Lemma 7,
desc(v) C rr(p). These observations mean that the first execution of line 9 finds the first
subtree of v, such that tree(u1) has a root preserving embedding into it, if there is any.

The primitive operations of moving to the first descendant node or to the next or
previous node in postorder can be performed in constant time, after a linear time prepro-
cessing of tree T. Note that the tests p E deac(v) and x E rr(p) can be realized as simple
comparisons of preorder and postorder numbers. (See Lemma 1 and Definition 3.)

The algorithm above may still need exponential time in the size of the trees. Consider
trees S~ = r (a (a (. . , a(a(b))...))) (a b-leaf with n a-ancestors below root r) and T,~ =
r(a(a(.., a(... a(a)...), b) . . .))) (a chain of 2n a-nodes below root r; the n th a has also

a b-leaf as a child). The algorithm tries in the recursive calls on line 9 a total of (2~)
embeddings before it finds the right images for the a-nodes and an embedding for the
whole tree.

5 A d y n a m i c p r o g r a m m i n g s o l u t i o n

In the worst case the previous algorithm repeats same computations an exponential num-
ber of times. To avoid this, we use an m × n table (m = ISI, n = ITI) to store results
of subcomputations. As before, we test for the existence of a root preserving embedding
of tree(u) into tree(v) (u E S, v E T) by trying to find a left embedding of u's children
into v's children. The key idea is to organize the evaluation so that the step that extends
the left embedding of (T1 , . . . , T~-I) into an embedding of (T1 , . . . , T~) can find the image
node of root(Ti) in constant time.

Let us define a table e having rows 1 , . . . , m and columns 0 , . . . , n - 1. As before, we
refer to the nodes of S and T by their postorder numbers; the numbers of S are used as
row indexes of the table, and the numbers of T are used as column indexes and contents
of the table. Denote by R(S, T) the collection of root preserving embeddings of a tree S
into a tree T. We compute into table e values (u E S, v E T)

e(u, v) = mi ({x e 13 f e R(tree(u), tree(x))} U {oo})

The initial value for the entries of e is oo. The result of the computation can be found
on row root(S) of the table. There is a root preserving embedding of S into tree(v)
for every v E T that appears on row root(S), and S can be embedded into T only if
e(root(S), 0) < oo.

Let T1 , . . . ,Tk be the children of node u E S. Like before, we use a pointer p for
• finding the images of the root(Ti)'s in T under a left embedding. When a root preserving

embedding of tree(u) into tree(v) is found, another pointer q is used for writing value v
into e(u, q) for those nodes q that satisfy equation (4). (Note that those nodes q are left
relatives of node v. Therefore colmzms 0 . . . n - 1 suffice for the table, since node n has
no right relatives except co.)

210

A l g o r i t h m 2 Evalua te table e.

I n p u t : T h e nodes of S and T as pos torder numbers,
e(u,v) = co for all 1 < u < m, 0 < v < n - 1.

o u t p u t : v) = mi ({x e r,'(,,) 13 f n(tree(), U

M e t h o d :

1. f o r u : = l , . . . , m d o
2. let u l , . . . , uk be the roots of the children of u;
3. q := 0;
4. f o r v := 1 , . . . , n d o
5. i f l(u) = l(v) t h e n
6. p := min(desc(v) U {oz}) - 1;
7. i := 0;
8. w h i l e i < k a n d p < v d o
9. p := e(ui+l,p);
10. i f pEdesc(v) then i : = i + l ; f i ;
11. o d ;
12. i f i = k t h e n
13. w h i l e q e l r(v) d o
14. e(u,q) := v;
15. q := q + 1;
16. o d ;
17. fi ;
18. fi ;
19. o d ;
20. o d ;

As an example, consider how Algor i thm 2 finds the embedding of a tree S = A(C, E)
into a tree T = A(B(C), A(B(D), A(B(E)))) . The trees and the result of the computa t ion
can be seen in Figure 3. Each column of table e is shown to the r ight of the corresponding
node of tree T. (E m p t y elements of the ar ray denote co.)

First, u = 1, the leaf of S labelled by C, and v = 1, the similar leaf of T. Since the
labels ma tch and u has no children (i = k = 0), we have an embedding. T h e value of
v = 1 is wri t ten into e(1, 0) only, since 0 is the only left relative of v. After tha t , no more
match ing labels are found for u = 1 in nodes v = 2 , . . . , 9 of T.

Next u = 2, the second leaf of S. T he first node v of T such tha t l(v) = l(u) = E is
node 5. As above, we have an embedding, and the value of v = 5 is wri t ten into e(2, q)
for the left relatives q = 0 , . . . , 4 of v. Then again the remaining nodes v = 6 , . . . , 9 are
scanned wi thou t encounter ing any match ing labels.

Final ly u = 3 = root(S). Node v = 7 is the first node of T with l(v) = l(u) = A. T h e
node p preceeding desc(v) in pos torder is node 4. T h e first child of u is node number 1.
Its image in rr(p) D desc(v) is looked up f rom e(1, 4); value c~ means t h a t there is no
embedding of the child in to desc(v). Next, a similar failure occurs with v = 8 and p = 2.
Final ly v = 9 = root(T), I(v) = l(u) = A, which leads to tes t ing the embedding of the
children of u by executing p := 0, p := e(1,0) = 1, and p : = e(2,1) = 5. T h e a lgor i thm

211

1
S /%2

3

1

0 T 9

1 @

Figure 3: The result of applying the algorithm to trees S and T

has found a root preserving embedding of S into T. The value of v -- 9 is written as the
final result into e(3, 0). Since 0 is the only left relative of 9, the computation ends.

T h e o r e m 2 Algorithm 2 fills table e correctly.
P roof , Keep node u fixed. We outline the proof that all columns of row u get correct

values in the whi le -loop on lines 13-16 of the algorithm. First, the precondition that all
columns up to q have got the right values is initially true. The following invariant holds
on line 14:

3 f E R(tree(u), tree(v)) A v e rr(q) A (5)

v 1 < x < v: (3 g e n(tr~e(~), ~rce(x)) ~ • ¢ ~ (q)) . (6)

The invariant tells that the loop writes correct values into e(u, q). Since q only increases
in the loop, the t ruth of the invariant maintains the precondition for the subsequent
executions of the loop.

Assume that u is a leaf. Then e(u, q) should be assigned the number of the first node
v in rr(q) such that l(v) = l(u). It is clear that (5) holds when we are on line 14. (Note
that q E lr(v) and v E rr(q) are equivalent.) When line 14 is executed for the first time
(6) must be true. By Lemma 8 we can strengthen (6) into

V 1 <_ x < v, V y > q: (3 g E R(tree(u), tree(x)) =~ x • rr(y)). (7)

When we finish the loop, we know that v ¢ rr(q), which allows us to deduce from (7)

v 1 < z < v, v y > q: (3 g e R(tree(~), tree(z)) ~ z ¢ r~(y)). (S)

This ~ostcondition makes (6) true on the subsequent executions of the loop. It also tells
that the writing is complete, i.e., value v must not be written into e(u, y) for any column
y>_q.

212

Next, assume that u is a non-leaf node, and the rows of the table e corresponding to
the children of u have been correctly computed. Then, as in Algorithm 1 the while -loop
on lines 8-11 finds a left embedding of the children of u into the children of v, if there is
any. The correctness of the while -loop on lines 13-16 is verified as in the base case. []

Theo rem 3 A!gorithm 2 requires O(mn) time and space.
Proof. Space: Table e requires O(mn) space.
Time: During every execution of the outermost loop q may increase in steps of one

from 0 to n. Therefore the while -loop incrementing q requires O(n) steps per one
outermost loop. One execution of the while -loop on lines 8-11 requires time O(1 + k~),
where k~ is the number of the children of node u. We get total time

m ~ W~

o (S] (- + + k.))) = o (. + k.)).
u = l v = l u = l

"~ k The sum ~ = i ~ equals the number of edges in tree S, which is m - 1. Therefore the
total time is O(n(3m - 1)) = O(mn). []

6 Related problems

The tree inclusion problem can be found in Excercise 2.3.2-22 of [Knu69]. Knuth gives a
sufficient condition for the existence of an embedding.

The tree inclusion problem can be considered to be a special case of the editing distance
problem for trees [Tai79, ZhS89]. In [ZhS89] Zhang and Shasha give an algorithm for
computing the edit distance. It can also be used for solving the tree inclusion problem.
Their algorithm requires time

O(]S] . ITI . rain(depth(S), leave~(S)) . rain(depth(T), leave~(T))).

Thus their solution is slower than ours by a factor of

rain(depth(S), leaves(S)), rain(depth(T), leaves(T)).

Shasha and Zhang have recently presented new sequential and parallel algorithms for the
editing distance problem with unit cost edit operations [ShZ90].

The tree inclusion problem is a generalization of the subsequence problem for strings
("Can the string x be obtained from the string y by deleting characters?"), and a special
case of the graph minor problem ("Can the graph H be obtained from a subgraph of G by
contracting edges?") [ROS86, Joh87]. The subsequence problem can be solved in linear
time by a straightforward scan. The minor problem for graphs and even for unordered
trees is NP-complete, when both H .and G are given as inputs}

The classification above suggests some further problems. It is possible to compute
a maximal common subsequence for two strings in quadratic time and in linear space
[Hir75]. The corresponding problem of finding a maximal common included tree of two
trees can be solved by Zhang and Shasha's editing distance algorithm [ZhS89]. Our

1For every fixed planar graph H (and therefore for every forest) there is a polynomial time algorithm
for testing whether H is a minor of a given graph G.

213

algorithm specialized for the tree embedding problem is simpler and more efficient than
Zhang and Shasha's algorithm. It is not clear yet if the algorithm can be extended to
solve the largest common included tree problem also.

A related problem is the tree pattern matching problem. (See e.g. [Ho082, CPT90].)
In tree pattern matching one is given a pattern tree, possibly with variables standing for
arbitrary subtrees, and a subject tree. The problem is to locate the subtrees of the subject
tree that are isomorphic to some tree presented by the pattern. The O(mn) time bound
of the naive algorithm has been difficult to improve for the general case. A recent paper
of Kosaraju [Kos89] presents an O(nm°'Vhpolylog(m)) algorithm. Dubiner, Galil and
Magen improve this result in their paper [DGM90] by presenting an O(nv~polylog(m))
algorithm. Checking whether an unordered tree is a subtree of another one can be done
in time O(mn 3/2) using maximal matching [Rey77].

7 C o n c l u s i o n s

We have considered the tree inclusion problem, which arises from database query process-
ing. We have given a dynamic processing solution requiring O(mn) time, where m and n
are the sizes of the trees. The algorithm is faster than the previous ones.

There are several open problems. One is improving the running time of the method.
Breaking the ran-barrier seems rather hard, however. Another promising area is trying
to reduce some matching problems to the tree inclusion problem; this could give upper or
lower bounds for the complexity of this problem.

A c k n o w l e d g e m e n t s

We thank Kari-Jouko R~ih£ for useful comments.

R e f e r e n c e s

[BeegO]

[CPT90]

[DGM90]

[GoT87]

[HOO82]

Beeri, C., A formal approach to object-oriented databases. Data & Knowledge
Engineering 5 (1990), 353-382.

Cai, J., Paige, R., Tarjan, R., More efficient bottom-up tree pattern match-
ing. In: Proc. of the 15th Colloqium on Trees in Algebra and Programming
(CAAP'90), p. 72-86.

Dubiner, M., Galil, Z., Magen, E., Faster tree pattern matching. In: Proc. of
the Symposium on Foundations of Computer Science (FOCS'90), p. 145-150.

Gonnet, G., Tompa, F., Mind your grammar - a new approach to text
databases. In: Proc. of the Conference on Very Large Data Bases (VLDB'87),
p. 339-346.

Hoffman, C.M., O'Donnell, M.J., Pattern matching in trees. J. ACM, 29, 1
(January 1982), 68-95.

[Joh87]

[Hir75]

[Kil91]

[Knu69]

[Ko889]

[MAPS0]

[Rey77]

[ROSS6]

[ShZg0]

[Tai79]

[ZhS89]

214

Johnson, D.S., The NP-completeness column: an ongoing guide. J. Algorithms
8 (1987), 285-303.

Hirschberg, D.S., A linear space algorithm for computing maximal common
subsequences. CACM 18, 6 (June 1975), 341-343.

Kilpel~inen, P., Query languages for structured text databases. Ph.D. Thesis,
University of Helsinkl; in preparation.

Knuth, D.E., The Art of Computer Programming, Vol. 1. Addison-Wesley
1969.

Kosaraju, S.R., Efficient tree pattern matching. In: Proc. of the Symposium
on Foundations of Computer Science (FOCS'89), p. 178-183.

Mannila, H., R~ih£, K.-J., On query languages for the p-string data model.
In: Information Modelling and Knowledge Bases, H. Kanga,ssalo, S. Ohsuga,
H. Jaakkola (eds.), I0S Press, 1990, p. 469-482.

Reyner, S.W., An analysis of a good algorithm for the subtree problem. SIAM
J. Computing 6, 4 (December 1977), 730-732.

Robertson, N., Seymour, P.D., Graph Minors. II. Algorithmic aspects of tree-
width. J. Algorithms 7 (1986), 309-322.

Shasha, D., Zhang, K., Fast algorithms for the unit cost editing distance be-
tween trees. J. Algorithms 11 (1990), 581-621.

Tai, K.-C., The tree-to-tree correction problem. J. ACM 26, 3 (July 1979),
422-433.

Zhang, K., Shasha, D., Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 18, 6 (December
t989), 1245-1262.

