
Logic Programming as Hypergraph Rewriting*

A n d r e a Cor rad in i , Francesca Ross i

Universita di Pisa
Dipartimento di Informatica

Corso Italia 40
56125 Pisa - ITALY

Francesco Paris i -Presicce

Universit~ dell'Aquila
Dipartimento di Matematica

1-67100 L'Aquila - ITALY

Abs t r ac t Logic Programming and (Hyper-)Graph Rewriting are two well known fields of Computer Science. In

this paper we show how to model logic program computations through algebraic techniques familiar to the

graph rewriting community. Clauses of a logic program are represented by graph productions, goals by suitable

hypergraphs (called jungles), and resolution steps by an algebraic construction involving three pushouts. The

correspondence between the two formalisms is further analyzed by providing a precise algebraic

characterization of specialization and unfolding of clauses.

1 Introduction
The "theory of graph-grammars" basically studies a variety of formalisms which extend the theory of formal

languages in order to deal with structures more general than strings, like graphs and maps. A graph-grammar

allows to describe finitely a (possibly infinite) collection of graphs, i.e., those graphs which can be obtained

from an initial graph through repeated application of graph productions. The form of graph productions, and

the rule stating how a production can be applied to a graph and what the resulting graph is, depend on the

specific formalism.

The development of this theory, originated in the late 60s, is well motivated by many fruitful applications in

different areas of computer science: among them we recall data bases, software specification, incremental

compilers, and pattern recognition (cf. [CER79, ENR83, ENRR87, EKR91], the proceedings of the first four

international workshops on graph-grammars).

* Research supported by the GRAGRA Basic Research Esprit Working Group n. 3299.

276

Although there is a fairly natural correspondence between some notions of logic programming and the basic

ingredients of graph-grammars, to our knowledge the relationship between these two areas has not been

considered in depth yet. Actually, the concepts of goal, clause and refutation are very close to the notions of

graph, graph production and graph derivation, respectively. This correspondence has been exploited for

example in [RM88], where the graph-grammar behaviour is implemented in logic programming for modeling the

generation and solution of "hierarchical networks of constraints", and in [RM90], where it is used to describe a

relaxation algorithm scheme (for constraint satisfaction problems) in logic programming. Both papers

reformulate a problem, easily expressible in the theory of graph-grammar, as a logic program, taking

advantage of the executability of such programs.

In this paper we take the dual approach of representing goals and clauses of a logic program as suitable graphs

and graph productions, respectively, and we model a resolution step with a clean algebraic construction,

expressed in terms of pushouts in a suitable category. In a recent joint work with Ehrig, L6we, and Montanari

[CMREL91], the first two authors already addressed this problem. However, there they proposed a quite

different representation of clauses (transforming them first into a 'canonical form'), resulting in a less intuitive

correspondence (from the logic programming point of view) between a direct graph derivation and a resolution

step. In this paper, the canonical form of clauses is abandoned, in favour of a more natural representation which

matches the logic programming spirit better.

The meaning and the usefulness of such a mapping (between logic programs and graph grammars) can be

obviously found in a potential 'cross-fertilization' of the two fields. For example,

1) logic programming can provide an efficiently executable representation of a class of graph-grammars;

2) well known graph grammar techniques can be applied to logic programs, providing new tools for program

transformation and metaprogramming;

3) a rich collection of results about parallelism and concurrency in the graph-grammar theory could be

exploited in the logic programming framework, in order to formally analyze and prove properties of

parallel execution frameworks.

This paper represents a first step towards a deeper analysis of the points just stressed. Besides proving the

correctness of our translation, we consider some results of graph-grammar theory, and we apply them to logic

programs in this algebraic framework. For example, we show how program clauses (represented as graph

productions) can be combined in a clean way in order to produce new clauses. These manipulation opera~ons on

clauses have strict relationships with the classic notions of unfolding and partial evaluation.

Among the various formulations of graph rewriting, we consider the so called 'algebraic theory of graph-

grammars' [Eh87], which provides a rich collection of formal results, mainly in the field of concurrent and

parallel rewriting [Eh83, Kr87]. In Section 2 we briefly introduce the main ingredients of this theory, in the more

general variant of hypergraph rewritings. In fact, the atomic formulas appearing in a logic program can be

easily represented by a particular kind of hypergraphs, called jungles. Logic programs are introduced in Section

3, while jungles and their correpondence with terms and formulas are presented in Section 4, toghether with the

representation of program clauses by productions. In Section 5 we discuss in depth how a resolution step is

modeled by an algebraic construction involving three pushouts in the category of jungles. Section 6 is devoted to

the description of some constructions which enrich a program with new clauses, preserving its semantics.

277

2 A short introduction to hypergraph rewriting

In this section we present the basic concepts of the algebraic theory of graph rewriting, as summarized for

example in [Eh87]. However, since the atomic formulas and the terms of a logic programs are easily represented

by some special kind of hypergraphs, we consider the generalization of that theory to hypergraph rewriting

[HK87].

A (directed) hypergraph straightforwardly generalizes a (directed) graph: it includes a set of nodes and a set of

hyperarcs. Every hyperarc has a (possibly empty) list of source nodes and a list of target nodes, instead of

exactly one source and one target node.

2.1 Def in i t ion (hypergraphs)

Let C = (Cv, CE) be a fixed pair of color sets. A (colored, directed) hypergraph G is written as G = (V, E, s, t, m, 1),

where

• V is a set of nodes (or vertices);
• E is a set of (hyper)arcs (or hyperedges),

• s,t: E --~ V* are the source and target function respectively, assigning a tuple of source nodes and target

nodes to each hyperarc, and

• l :V --~ CV and m: E --~ CE are the coloring functions for nodes and arcs respectively.

In the following we will never consider colored nodes, so a hypergraph will always be written as G = (V, E, s, t,

m), and C -= CE is the fixed set of edge colors.

2.2 Example (graphical representation of hypergraphs)

Consider the hypergraph G = ({nl, n2, n3, n4, ns}, {hl, h2}, s, t, m), where

• S(hl) = ~nl, n2~, s(h2) = <n2, n3~;

• t(hl) = ~n4~, t(h2) = <n4, n5~;

• m(h 1) = a, m(h2) = b.

2 / ~ n2
n~ hi 1 2 n3

n4 ~ h 2

n 5

In the graphical representation of hypergraphs (like G in the above picture), we will take the following

conventions. Black dots represent nodes, while hyperarcs are depicted as boxes with as many "tentacles" as the

total number of source and target nodes. Each tentacle connects one node to the box: tentacles connecting to source

nodes are oriented towards the box, while tentacles connecting to target nodes are oriented towards the node. The

hyperarc color is written inside the box, and each tentacle is numbered to express the ordering in the tuples of

source and target connections. The numbering can be avoided if there is exactly one source or target node.

278

2.3 Def in i t i on (hypergraph morphisms)

A hypergraph m o r p h i s m f : G1 --) G2 consists of a pair of functions between arcs and nodes respectively, which

are compatible with the source and target functions and which are color preserving. More precisely, if G1 = (V1,

El, Sl, tl, ml) a n d G2 = (V2, E2, s2, t2, m2) are hypergraphs, then f = (fv, fE) such that

• fv: V1 --~ V2, and fE: E1 ---) E2;

• s2 ofE = f*v o Sl;

• t2 ofE = f*v o tl;

• m 2 o f E = m l .

where f*v is the obvious extension of fv to lists of nodes. A hypergraph morph i sm f = (f v , fE): G1 --) G2 is

injective iff both fv and fE are injective functions. •

2.4 Def in i t i on (the category of hypergraphs HGraphc)

The category whose objects are hypergraphs colored on C, and whose arrows are hypergraph morphisms will be

called H G r a p h C. •

We need now the categorical definition of pushout , which is extensively used in the algebraic description of

graph grammars .

2.5 Def in i t ion (pushout)

Given any category C and two arrows b: K -q~ B, d: K ---) D of C, an object H together with two arrows h: B ---) H

and c: D ~ H is called a p u s h o u t of b and d if:

• (commutativity property) h o b = c o d;

• (universal property) for all objects H' and arrows h': B --~ H' and c': D --) H', with h' o b = c' o d, there exists

a unique arrow f: H ~ H' such that f o h = h' and f o c = c'. This si tuation is depicted in the following

picture.

b
K ~ B

Moreover, in a pushou t square like this one, the object D (together with arrows d and c) is called a p u s h o u t

complement of b and h. •

2.6 Example (pushouts in Set and in HGraphc)

The paradigmatical example of category is Set, i.e., the category having sets as objects and total functions as

arrows. It is easy to show that the pushout of two arrows in Set always exists, and that it is characterized (up to

isomorphism) as follows. If b: K ~ B and d: K ~ D are two functions, then the pushou t of ~b, d~ is the set H ~-

(B + D) / ~ (where %' denotes disjoint union, and '~" is the least equivalence relation such that for all

k • K b(k) ~ d(k)), together with the two functions h: B --) H and c: D --~ H that send each element to its

equivalence class.

279

Also in category H G r a p h c the pushout of two arrows always exists: it can be computed componentwise (as a

pushout in Set) for the nodes and the edges, and the source and target mappings are uniquely determined. More

precisely, if X = (Vx, EX, sx, tx, mx) for X ~ {K, B, D, H} are objects of HGraph C, and b = (bv, bE): K --~ B and

d = (dr , dE): K ---> D are hypergraph morphisms, then the pushout H of <b, d~ can be obtained as follows.

• VH is the pushout in Set of bv: VK ~ VB and dv: VK --> VD,

* E H is the pushout in Set of bE: EK --> EB and dE: EK --> ED,
. . . . fmB(e) if e ~ EB

• mH~teJJ = ~mD(e) otherwise

~sB(e) = <Vl, ..., Vn> if e e EB
• SH([e]) = <[Vl] [Vn]>, where (sD(e) = <Vl Vn> if e e ED

~tB(e) = <Vl, ..., Vn> if e ~ EB
• tH([e]) = <[Vl] [Vn]>, where (tD(e) = <Vl Vn~ if e E E D

It can be easily shown that this definition is correct, i.e., it does not depend from the choice of the

representative of an equivalence class.

It is worth noting that considering an arbitrary category the pushout of two arbitrary morphisms does not

always exist. This is the case, for example, of the category Junglec introduced in Section 4.

A hypergraph rewriting rule, analogously to term rewriting rules, describes how to replace the occurrence of a

subgraph L of a graph G with another graph R. While in the case of terms the embedding of R inside G is

uniquely determined, this is not true in the more general case of graphs. Thus a third graph K is needed to give

the connection points of R in G.

2.7 Def ini t ion (hypergraph rewriting rule)

A h y p e r g r a p h r e w r i t i n g ru le p is written as p = (L ~ K .L) R), where L, R, and K are hypergraphs and I and r are

hypergraph morphisms+ Also, l is always assumed to be injective. L, K, and R are called the left-hand side

(lhs), the interface, and the right-hand side (rhs) of p, respectively.

To apply a rewriting rule p to a graph G, we first need to find an occurrence of its lhs L in G, i.e., a morphism g

from L to G. Next, to model the deletion of such occurrence of L in G, we construct the pushout complement of g and

1, producing the 'context" graph D where the rhs R has to be embedded. Such an embedding is then expressed by a

second pushout. It must be noticed that such a construction can fail, since the pushout complement of two arrows

does not always exist.

2.8 Def in i t ion (direct rewriting)

Given a hypergraph G, a hypergraph production p = (L ~_1 K -~ R), and an occurrence g: L ---> G, a direct rewriting

from G to H exists if the following two pushouts can be constructed. In this case D is called the context graph, and

we write G ~ p H.

1 r
L~ K ~ R

+l I J
G ~ D ~ H (b

280

2.9 Definition (rewriting)

Given hypergraphs G and H, and a set of hypergraph productions P, a rewri t ing from G to H over P, denoted by

G ~ H, is a finite sequence of direct rewriting steps of the form G ~ pl G I ~ p2 ... ~ pn Gn = H, where Pl, .., Pn

are in P.

3 Logic programming
For an introductory and complete treatment of logic programs, see [L187]. Here we introduce just the concepts

which will be used in the rest of the paper.

Let ~ = Un F-n be a ranked set of function symbols, where F. n is the set of functions of rank n (in particular, Y,0 is

the set of constants). Also, let H = Un Fin be a ranked set of predicate symbols (where I'I n is the set of predicates

with n arguments) , and let X be a set of variables. A term over Z is an element of T~(X), the free X-algebra

generated by X, that is

• a variable in X, or

• a constant in I0, or

• f(tl , tn), if tl tn are terms over ~, and f ~ Y-n.

If tl tn are terms over]~, and p E Hn, then p(tl tn) is an atomic formula over (,~, 17). A (conjunctive)

formula is a list of atomic formulas separated by commas, like BI, . . . , Bn.

A definite clause C is an expression of the form

H :- B1,. . . , Bn (n _> 0)

where ':-' means logic implication (right to left), and ', ' means logical conjunction.

A goal G is a formula of the form

A1 An (n>O)

A logic (or HCL) program P is a finite set of definite clauses.

A logic program can be interpreted in m a n y different but equivalent ways (see [L187] for a formal treatment of all

of them). As a first order theory, its semantics is defined as its least Herbrand model. Under the operational

reading, instead, a resolution rule states how to transform a goal into another. The operational semantics is then

defined as the set of all (ground) atomic formulas which can be t ransformed into the e m p t y goal through a

sequence of resolut ion steps. The equivalence between the operational and model-theoretic semant ics of a

program is proved by showing that the resolution inference rule is both sound and complete for definite clauses.

In this paper, since we are interested in showing that the operational behaviour of a p rogram can be faithfully

s imulated in the graph g r a m m a r context, we will focus on the operational semantics, that is on the answer

substitutions computed by a program for a given goal, as defined in the rest of this section.

Given a set of variables X and a ranked set of function symbols Z, a substitution is a function 0: X --~ Tz(X) which

is the identi ty on all bu t a finite n u m b e r of variables. Thus, 0 can be written as 0 = {x l / t l , Xn/tn}, where

0(xi) = ti for each 1 <_ i _< n, and 0(x) = x otherwise.

The application of a substitution 0 = {Xl/t 1 xn/tn} to a term t produces a new term (written tO) obtained from

t by replacing each occurrence of xi with ti, for I < i < n. This definition, and the corresponding notation, is also

281

used for the application of substitutions to formulas. Given two substitutions 0 and 8, 0 is said to be more general

than 8 if there exists a substitution co such that coo0 = 8 (where c0o0 is such that, for all terms t, t(coo0) = (t0)c0).

Two atomic formulas A and B unify if there exists a substitution 0 such that A0 = B0. In this case 0 is called a

unifier of A and B. The set of unifiers of any two atomic formulas is either empty, or it has a most general

element (up to variable renaming) called the most general unifier (mgu).

Given a clause C = (H :- B1 Bn) and a goal G = (G1, ..., Gn), G' is the resolvent of G and C if

• (unification step) there exists Gi and a substitution 0 which is the mgu of Gi and H;

• (rewriting step) G' is (G1 Gi-1, B1 Bin, Gi+l Gn)0.

In this case we will say that there is a resolution step from G to G" via C and O.

A refutation of a goal G is a finite sequence of resolution steps which starts with G and ends wi th the

empty goal. If the refutation has length n, where step i uses clause Ci and the mgu 0i, then the substitution

0 = (O n o ... o 01)IVar(G) (i.e., the restriction of On o 01 to the variables appearing in G), is called a

computed answer substitution for G. In this case we say that there is a refutation of G via C1 Cn and

O=(On o . o01)IVar(G).

4 Logic programs as jungle rewriting

Jungles were introduced in [HKP88] as special hypergraphs which allow to represent faithfully collections of

terms with possibly shared subterms. A hyperarc of a jungle is colored with an operator of a fixed signature Z,

and the number of its outgoing tentacles must be equal to the arity of the operator. Every node of a jungle uniquely

determines a term built from operators in Z. On the other hand, a term can be represented by many non

isomorphic jungles, since common subterms can be either collapsed or duplicated.

In [HKP88] it is shown how the rules of a term rewriting systems can be represented as productions (as defined in

the previous section), where the left and right hand sides are jungles. Moreover the double pushout construction

described above faithfully models the application of a rewrite rule to a term. Actually, since many occurrences

of the same subterm can collapse in a jungle, a single derivation step can model the application of the same rule

to many distinct subterms of the original term.

It must be mentioned that an alternative representation of terms with graphs could have been considered, using

directed acyclic graphs as defined in [PEM87]. However, by a result presented in [CMREL91] the two

representations are completely equivalent, in the sense that for a given signature ~ the categories Junglex of

jungles over ~, and the category DAGx of dags over]~ are equivalent. A direct consequence of this result is that all

the results about dags automatically hold for jungles, and viceversa.

The presentation in [HKP88] considers many sorted signatures, coloring the nodes of a jungle with sorts. Since we

want to model (collections of) formulas of a logic program, in the following we will consider a fixed two sorted

signature including predicate and function symbols as the set of edge colors. Colors for nodes are not needed,

because in the syntax of a logic program predicate symbols cannot be nested.

4.1 Def ini t ion (the category of jungles over (2~, FI))

In the following, let (]~, I-I) be a fixed two sorted signature, where ~ is a (ranked) set of function symbols, and FI is

a (ranked) set of predicate symbols. A hypergraph G = (Vc, EC, sG, tG, mG) is a jungle over (Z, I'l) iff

282

• G is acyclic 1

• outdegreeG(v) < 1 for each v 6 VG 2

• for each e 6 EG, raG(e) 6 ~; u H. Moreover,

if raG(e) ~ F-n then #sG(e) = I and #tG(e) = n;

if mG(e) ~ IIm then #sG(e) = 0 and #tG(e) = m, (where #t denotes the length of the tuple t).

A jungle m o r p h i s m h: G --~ G' is s imply a hypergraph morphism. We denote by Jungle~,l'i the category including

jungles over (~;, 11) as objects, and jungle morphisms as arrows. #

Intuitively, the outgoing tentacles connect an edge to the arguments of the (function or predicate) symbol coloring

it, while the ingoing tentacles are used to compose subterms. The fact that edges colored by predicate symbols

have no source nodes corresponds to the requirement that an atomic formula cannot appear as a proper subterm.

4.1 Representing formulas with jungles

In this subsection we decribe how both terms and formulas can be represented as jungles. First we show how to

extract a term from each node of a jungle. Indeed, by the second condition in the definition of a jungle, each node

has either exactly one outgoing tentacle, or none. In the former case it is the root of a sub-jungle which represents

a term, while in the latter ease it represents a variable in itselL Analogously, an atomic formula can be

extracted from every edge colored by a predicate symbol.

4.2 Def in i t ion (from nodes to terms, from edges to atomic formulas)

Let G be a jungle. The set VarG of variables of G is defined as

VarG - {v ~ VG I outdegreeG(v) = 0}.

The function termG associates to each node in G a term in Tx(VarG), and is defined as follows:

• termG(v) ffi v if v ~ Vat G

• termG(v) = op(termG(Vl) termG(Vn)) if there exists e ~ EG with sG(e) = v, tG(e) = <Vl...Vn~,

and raG(e) = op e ~ .

The function formG associates to each edge colored by a predicate symbol an atomic formula over T~(VarG), and

it is defined as

• formG(e) = pred(termG(Vl) termG(Vm)) if raG(e) = pred e Urn, and tG(e) = <Vl Vn~.

The (multi-) set of all formulas which can be extracted from a jungle G is denoted by FORMG, i.e.,

• FORMG = {f0rmG(e) I e e EG and rag(e) ~ rI}. •

4.3 Example (a jungle of category Jungle F~FI)

In the following jungle we have function symbols cons ~ F~2, and nil ~ ~ (a constant) 3, and the predicate symbols

reverse ~ FI 2 and append E I I 3 (notice that the edges with bold labels have no ingoing tentacle, thus by

1 For a hypergraph (3, its underlying bipartite graph U(G) includes all nodes and hyperarcs of G as nodes, and the tentacles
of G as arcs. Then G is acyclic iff U(G) is acyclic.

2 Informally, the outdegree of a node is the number of tentacles outgoing from it.

3 Throughout the paper we use functional notation for the list constructors. A PROLOG programmer should read n//as [],
and cons(X, Y) as IX I Y].

283

Definition 4.1 their labels are predicate symbols). There are four variable nodes (vl, v3, v 4 and v6), and the

functions term and form are defined as follows:

term(vi) = vi for i = 1,3,4, 6

term(vs) = cons(v4, nil)

form(el) = reverse(v1, v3)

term(v2) = cons(v4, Vl)

term(vT) = nil

form(e2) = append(v3, cons(v4, nil), v6)

e 3 e 4 e 5 4,

Although from nodes and (predicate colored) edges of a jungles one can extract in a unique way terms and atomic

formulas respectively, each term or formula can have many (possibly non isomorphic) representations as jungles.

In fact common subterms can either be collapsed in a unique representation, or can be replicated for each

occurrence 4. For example, the term f(a,a,a) can be represented in five ways, three of which are depicted here

(more precisely, in all the jungles below we have term(v) = f(a,a,a)).

v 3

l v

Among the many possible representations of a term (or formula) as a jungle, there are two which are special, as

described in the following definition.

4.4 Defini t ion (representing terms and formulas as jungles)

Let t be a term in T~(X). Then its variable-collapsed tree [HKP88] is its most redundant representation as jungle,

in which two subterms are collapsed iff they are occurrences of the same variable. We denote the function which

assigns to each term its variable-collapsed tree by j: Tx(X) --) Junglez,Fl. Function j can be extended in the obvious

way to sets of terms and /o r formulas.

On the other hand, we denote by J: T~(X) -~ JnngleE,l-I the function which assigns to a term t its fully collapsed

tree J(t), i.e., its less redundant representation where there are no distinct nodes v and v' such that term(v) =

term(xO. J can be extended to sets of terms an d / o r formulas, too. Note that if X is the set of variables occurring in

t, then X is exactly the set of variable nodes in j(0 and J(0.

For example, among the three possible representations of the term f(a,a,a) depicted above, the teftmost is

j(f(a,a,a)), while the rightmost is J(f(a,a,a)). It is easy to check that for a given term t, j(t) and J(t) are uniquely

defined (up to isomorphism), and that these two representations enjoy the following property: if G is any

4 In this discussion we consider jungles which include just the nodes and edges needed to represent a given term or
formula.

284

representation of the term t, then there is exactly one morphism from j(t) to G, and exactly one from G to J(0. In

other words, j(t) is initial and J(0 is final among all the representations of t.

It must be stressed that the results presented in the following sections do not depend on the actual representation

chosen for formulas and terms. This fact provides a degree of freedom which can be exploited, for example, for

increasing the efficiency of an implementation.

Let us continue the analysis of the correspondence between the category Junglez, l-I and the world of terms and

formulas over (Z, H). We show that from a morphism in Junglez,arI a term substitution can be extracted, and that

pushouts in]'unglez, II are strictly related to most general unifiers.

4.5 Definit ion (the substitution associated to a morphism)

Let G and G' be jungles, and h: G --> G' be a jungle morphism. Then the node components of h (i.e., hv) induces a

substitution oh: VarG --~ Tz(VarG'), defined as

Oh(X) = termG'(hv(x)).

As a consequence, the morphism h maps every term or formula of G to an instantiation of it in G'. In particular,

we define the extension of h to formulas of G, hF. FORMG --> FORMG; as

hF(formG(e)) = formG'(hE(e)). *

It is important to note that the correspondence between jungle morphisms and term substitutions is preserved by

composition, in the following sense: if h: G -~ G' and k: G' --) G" are jungle morphisms then ohoh = ok o oh, where

ct k o ¢~h: VarG --> Tz(VarG") is the composition of term substitutions. Analogously to the fact that the

representation of terms as jungles is not unique, given a jungle G and a term substitution if: Vat G --> TZ(X), there

exist in general many pairs <G', h: G --~ G'~ such that (~ m tT h.

Although Junglez,Fl is a sub-category of HGraphZ,lI (i.e., the category of hypergraphs with edge labels in

(Z, I-l)), not every pair of morphisms has a pushout in]'unglez, FI (but the pushout always exists in HGraphZ, l-i, cf.

Example 2.6). For example, let V be the jungle containing just one variable node v, and let fl: V --> J(a) and f2: V

J(b) be two morphisms (J is as in Definition 4.4). Then the pushout of <fl, f2 ~ exists in HGraph~,i'i (as it is depicted

in the diagram below), but not in Junglez,l~. In fact, the hypergraph closing the square in the picture is not a

jungle because it does not satisfy the second condition of Definition 4.1.

V J(a)

J(b) ~

Even if the pushout of two arrows exists in Junglez, n it does not necessarely coincides with the pushout of the

same two arrows in HGraph~,Fl. For example, if we consider the pair of morphisms <fl, fl ~, its pushout object in

Junglez, FI is J(a), while its pushout in HGraphX,rl is the hypergraph

285

The next result shows that the existence of a pushout in Junglel~,FI can be stated in terms of the existence of

suitable term unifiers.

4.6 Proposit ion (existence of pushouts in Jungle z, H)

1) Let r: K --> R and d: K --> D be two morphisms in Junglez,i i . Let at: VarK -~ Tz(VarR) and Cd: VarK --)

Tz(VarD) be the associated substitutions. Then the pushout of <r, d> exists in Junglez,I1 iff there exist two

substitutions 0: VarR ---> Tz(X) and 0': Var D ---> Tz(X) which "unify" for, ¢3d>, in the sense that 0 ocr r = 0' o COd.

r
K ~ R

D f__..!__~H

2) If ~g, f~ is a pushout of <r, d> in Junglez,l'l, as in the above diagram, then ~Cg, cp is the most general unifier of

<fir, Cd>, i.e., for each pair of substitutions c0, 0'> such that 0 o Or = 0' o Cd, there exists a unique a such that ¢~ o ag =

0 and o o o f = 0'.

Proof sketch. For point 1) the only if part is obvious (consider the substitutions associated to the pushout

morphisms and apply the commutafivity property), while the if part follows from the fact that in category

Junglez, l'I there exist all colimits over consistent diagrams (i.e., diagrams for which a cocone exists: cf. [Ke91]).

Point 2) follows from the observation that the universal property of pushouts perfectly corresponds to the

defining property of mgu's. *

It is worth noting that the relationship between most general unifiers and categorical universal constructions

has been stressed in many places. For example, mgu's are characterized in [RB85] (resp. [Go88]) in terms of

coequalizers (resp. equalizers, due to the dual approach), and also as pullbacks in [AM89]; in these papers terms

and substitutions are represented as arrows of a category. On the contrary, our characterization is much closer to

the one in [PEM87], where terms are ol~ects and mgu's are pushouts.

The following result gives a sufficient condition for the existence and the uniqueness of pushout complements in

the category Jungle~:,H: because of the additional structure these conditions are slightly different from the

corresponding ones for hypergraphs, stated in [Ha89].

4.7 Proposit ion (existence of PO-complement in JungleZ, Fl)

Let h K ---> L be an injective jungle morphism.

1) If g: L --> G (as in the diagram below), then the pushout complement of <l,g> exists iff

• dangling condition: all the nodes of L which are mapped by g to a node of G connected to an edge which

is not in the image of g, are in the image of 1. Formally,

VvE VL (3e E EG\gL s.t. (e = sG(gV(v)) v e ~ tG(gV(v))) ~ 3v'c VK s.t. 1V(V') = v.

• identifying condition: all pairs of distinct nodes (or predicate-colored edges) of L which are identified

by g are in the image of I. Formally,

l/v, v'e VL (v ~ v' A gv(v) = gv(v')) ~ 3V" e VK such that 1V(V") = v,

t/e, e 'e EL (e ~ e' ^ mL(e) e FI A gE(e) = gE(e')) ~ 3e" ~ E K such that 1E(e") = e.

286

1
K L ~

G

2) For any morphism g: L --~ G, such that the above conditions are satisfied, the pushout complement of d,g> is

unique if for each node v e VarK, 1V(V) E VarL.

3) If 1 is a bijection on nodes, in any pushout complement (K -~ H --) G) of d, g> the morphism H --~ G is a

bijection on nodes, too.

Proof sketch. 1) The dangling and identifying conditions are the standard conditions for the existence of pushout

complements for graphs, hypergraphs and other structures (c£ [Eh87, Ha89, EHKP90]). Here the identifying

condition is slightly relaxed: it is not necessary (for the existence of at least one pushout complement) for E-

colored edges, because they are in one-to-one correspondence with their source nodes. 2) If 1V(v) is a variable of L

whenever v is a variable of K, then it can be shown that the identifying condition holds for Z-colored edges, too,

and thus the PO-complement is unique. 3) The nodes of the pushout complement are the pushout complement in

Set of the restriction to nodes of the above diagram. Thus since 1V is a bijection, (H --) G)V has to be a bijection

too. •

This result will be exploited in the next subsection, where program clauses will be represented as jungle rewriting

rules in such a way that the two conditions just stated are always satisfied.

4.2 Representing clauses as jungle rewriting rules

After understanding how to represent a collection of terms or atomic formulas as jungles, we show how a program

clause can be represented by a jungle rewriting rule, i.e., a hypergraph rewriting rule with the following shape,

but where arrows and objects are in category Jungley.,Fl:

1 r
L ' ~ K ~ R

4.8 Def ini t ion (representing clauses as rewriting rules)

Let C = H :- B1 Bn be a program clause, and let H = p(tl tin). Then the representation of C as jungle

rewriting rule, J(C), is defined as follows:

• L is the fully collapsed tree of H, i.e., L = J(H).

• K is obtained from L by removing the unique edge colored by the predicate symbol p. Morphism 1 is the

obvious inclusion.

• R is the fully collapsed representation of the union of the atomic formulas B1, ..., Bn, and the terms tl, ...,

tm. Morphism r is the obvious inclusion. •

It could appear unnatural that the arguments t l , ..., tm of the predicate p in the head of the clause H are

represented also in the interface jungle K and in the right hand side R. However, this is necessary for two

reasons. First, by Proposition 4.7 2), this guarantees the uniqueness of the PO-complement when applying the

rewriting rule in a direct rewriting step. Second, terms tl, ..., t m could be mapped to a shared term in ~ goal G. If

we remove one of them, say ti, from both K and R, in a rewriting step we could delete from the goal G not only the

287

occurrence of t i from the selected atomic formula, as it would be correct, but also some occurrences of the same term

in other formulas of the goal, which is obviously incorrect.

4.9 Example (jungle representation of a clause)

The following diagram shows the jungle production representing the clause

reverse(cons(x, y), z) :- reverse(y, w), append(w, cons(x, nil), z)

The morphism 1: K --) L is the obvious inclusion, while the morphism r: K --) R is uniquely determined by the two

dotted arrows.

" 1 r
L ~ K ~ R

5 Res o l u t i o n as jungle pushout + rewriting

We recall here the definition of resolution step given in Section 3. Suppose we have the following goal G and

clause C:

G: G1, % .

C: H:- t31 Bm.

Then G' is the resolvent of G and C if

• (unification step) there exists Gi and a substitution 0 which is the mgu of Gi and H;

• (rewriting step) G' is (G1 Gi-1, B1,..., Bm, Gi+l Gn) 0.

We will now show that both the above steps can be faithfully modelled in the jungle rewriting framework

introduced in the above sections. In particular, the unification step will be represented by a pushout in the

category Junglex, H, while the rewriting step will be expressed as a double pushout in the same category.

5.1 Unification as jungle pushout

As a byproduct of Proposition 3.6 in Section 3.1, which states the conditions for the existence of the pushout object

in the category Junglex,17I, we have the following corollary.

5.1 Corollary (pushout and unification)

Suppose that in the diagram below W is an arbitrary jungle, while L' is a jungle consisting of only one arc (e)

colored by p ~ II m with m tentacles going to m distinct nodes. Also, let L be a jungle representing a single atomic

formula, i.e., containing only one predicate colored hyperarc, whose color is p, and let r: L' --¢ L be the obvious

morphism. Then the pushout of l' and d exists iff the atomic formula dF(form L,(e)) in W unifies with the atomic

formula l'F(formL,(e)) in L. In this case FORMQ = (FORMw)O', where 0' is the restriction to Vat w of 0 =

mgu(dF(formL,(e)), rF(form L,(e))).

288

l I
U ~ L '1 1'

f
W ~.Q ,

Let us rephrase the statement of the Corollary for the case we are interested in, that is for the unification

performed during a resolution step: if L represents the head of clause C (i.e., L = J(H)), W represents a goal G

(i.e., F O R M W = G), and d selects the atomic goal G i of G (i.e., dF(formL'(e)) = Gi), then the above pushout exists

iff clause C is applicable to the goal G, being 0 the mgu of H and G i. In this case, Q represents GO (i.e., FORMQ =

GO), and gF maps H to Gi 0.

5.2 Example (unification step)

The diagram below shows the unification step performed in order to apply the clause of Example 4.9 to the goal

reverse(v, cons(a, nil)). The diagram forms a pushout in the category Junglez,II, and the substitutions associated

to each morphisms are made explicit. For sake of simplicity, global names are given to the variables.

d ~ z/cons(a, nil)
g z/cons(a, nil)

• - - , vlcor~(x, y)
f ~ x t 2 e.~[-n- ~

5.2 Goal rewriting as jungle rewriting

We showed in Section 4.2 how to represent a program clause C as a jungle rewriting rule J(C). We will now show

that the rewriting of a goal G via C can be represented by the application of J(C) to J(G).

Consider the following double pushout diagram.

1 r
K P R L 4

l
Q 9 D ~ Q '

Let us assume that (L ~_1 K -~ R) = J(C) for some clause C, and that Q has been obtained as a pushout object as

described in the previous subsection, and thus it represents the instantiated goal GO. We know, by the

280

construction of J(C), that I is bijective over nodes, and that the hypotheses of point 2) of Proposition 4.7 are

satisfied. Therefore the pushout complement D exists and it is unique. It is easy to check that, if GO =

(G1 Gn)0 and the morphism g: L --~ Q maps L to Gi0, as described above, then D represents the "context" goal

(G1 Gi-1, Gi+l Gn)0.

Now, let us consider the second pushout. By applying Proposition 4.6, we can easily show that this pushout

always exists. In fact, by construction, the substitution c~ r associated to arrow r is the identity substitution, and

thus it is possible to unify it with any other substitution (in particular with the one induced by the arrow

K --> D), in the sense of Proposition 4.6. Moreover, it can be easily shown that FORMQ, = (G1, ..., Gi-1, B1 Bin,

Gi+l Gn)0, i.e., Q' represents exactly the resolvent G' of G and C.

Thus we can conclude that a resolution step can be represented by a triple pushout construction, as follows.

1 r
~ L ~ K ~ R L'

PO1 PO2 PO3

W f ~ Q < h D g ~ Q '
k,., k = g Ol~Ofv j

The above discussion provides an informal proof of the following theorem.

5.3 Theorem (resolution step as triple pushout)

Let C = (p(tl tk) :- B1, ..., Bin) be a clause, J(C) = (L 6 -1 K -~ R) be its jungle representation (as in Definition

4.8), and let L' --) L be the obvious injection of L' -~ J(p(xl Xk)) in L (where x 1 , x k are fresh, distinct

variables). Moreover let G = (G1 Gn) be a goal. Then there is a resolution step from G to G' via C and 0 if and

only if for each jungle W such that F O R M w = G there is a morphism d: L' --~ W such that the three pushout

diagram above can be constructed.

In this case we say that J(C) can be applied to W through d yielding Q'. Moreover we have that

• FORMQ = GO, where 0 = mgu(H, Gi);

• FORMD = (G1, ..., Gi-1, Gi÷l, ..., Gn)0;

• FORMQ, = G', where G' = (G1 Gi-1, B1 Bin, Gi+l Gn)0; thus Q' is a jungle representation of the

resolvent of G and C.

• Since h: D --) Q is a bijection on nodes (by Proposition 4.7), its node component has an inverse hv -1. Let k =

gv o hv-1 o fv; then Ok is the restriction of 0 to the variables of G. ¢

As formally stated above, PO1 exists iff H and Gi unify. After the construction of POI, the construction of PO2

and PO3 is always possible. This reflects the resolution in logic programming, where the unification step is the

only one involving possible failure and nondeterminism.

Obviously, such a representation of resolution steps in terms of jungle pushout + direct rewriting can be

straightforwardly extended to entire refutations. In our framework, the termination condition of a derivation

(corresponding to an empty goal) can be stated as the generation of a jungle including just arcs colored over ~;. By

composing the substitutions computed at each step (that is ok of the above Theorem), one gets exactly the answer

290

substitution computed by the refutation, corresponding to a morphism from the nodes of the jungle representing

the initial goal to the terms represented by the last jungle of the derivation.

The result proved in this section is similar to the one presented in [CMREL91], where a different representation

of program clauses as graph productions is used. The two solutions manifest different advantages. Indeed, the

representation proposed in [CMREL91] (which first transforms the clauses in a canonical form) allows to mimic a

resolution step with a double pushout construction, and thus a refutation corresponds to a derivation in the

traditional sense of graph-grammars. However, the unification and rewriting parts of a resolution steps are

performed simultaneously, unlike the usual behaviour of interpreters for logic languages. On the contrary, with

the representation proposed in this paper, the triple pushout construction used to mimic a resolution step

perfectly matches its operational definition, although a new notion of derivation should be defined for the

grammars representing logic programs, where each step is composed by three (instead of two) pushouts.

6 Manipulating clauses through algebraic constructions

In this section we briefly suggest how some well known results in the graph grammar theory can be applied to

the representation of logic programs described above.

The representation of a resolution step through three pushouts in the category JungleZ,Fl allows one to exploit

general results of category theory for proving the correctness of some operations on clauses. In the following

examples we will show how new (not necessarely definite) clauses can be generated from the original clauses of a

logic program. These clauses can be added to the program without changing its semantics, in the sense that the

effect of their application to a goal can be obtained by one or more applications of the original clauses.

6.1 Specializing clauses

As a first example, it could be noticed that in the jungle representation of a resolution step (as described in the

previous section) the lower part of the diagram, containing the arrows which represent the derivation of the

goal G' from G via C and 05, i.e.,

G 0 ~ G 0 ~ D ~ G '

has exactly the same shape of the upper part of the diagram, which contains the representation of clause C and

the inclusion of the predicate symbol in the head of C, i.e.,

1 r
J(C) = L' ~ L ~ K ~ R

The following theorem states that we can safely take the goal derivation as a new, original (in general non

definite) clause of the program, and that whenever we can apply it to a goal G1, we get the same result we would

obtain by the application of the original clause C to G1. First we need a well known result of category theory.

5 Sometimes in the rest of the paper, we will improperly denote the jungle representation of a goal G by G itself, and the
arrow inducing a substitution 0 by 0 itself.

291

6.1 Lemma (property of pushouts)

In the following diagram, if squares (1) and (2) are pushouts, then also the outermost square is a pushout [ML71].

6.2 The•zero (specializing clauses)

If G' can be derived from G via C and 0 (where 0 = 01u 02, as in the diagram below), then

1) if gl: G --~ G1 is a morphism, and <al, (s2~ is the pushout of <gl, 0p (square 4 below), then the rewriting rule

(G" e- H --> G') can be applied to G"I, producing the graph G'I, in the sense that the pushout complement 5

and the pushout 6 can always be constructed.

2) if the conditions of point 1) are satisfied, then G'I can be derived from G1 via C and 0' = or1 u ((~2 o 02).

J(C) = L') L ~ 1 K r) R

G 01 ~ G"~ H ~ G'

G1 (~ ~ G ~ H~ ~ Cq

Proof sketch. The result can be easily proved by applying Lemma 6.1 to the pairs of pushouts 1 and 4, 2 and 5, and

3 and6.~

The second line in the above diagram can be interpreted as a specialization of the original clause C. In general,

it is applicable to a goal G1 only if it is "more instantiated" than goal G, otherwise a morphism gl cannot be

found.

6.2 Unfolding clauses

The unfolding of clauses is another technique that can be used to enrich a logic program by improving its

'efficiency' and without changing its semantics. Let C ~- H :- A1, ... , A n and C --- H' :- B1, ..., B m be two clauses of

a logic program P, and 0 be an mgu of I-r and an atomic goal of C, say A i. Then the unfolding of C and C" (via Ai, 8)

is a clause C" having as body the resolvent of A1 An and C', and as head the head of C instantiated by 0, i.e.,

C' -~ H0 :- (A1 Ai-1. B1 Bm, Ai+l An)0

For example, consider the standard program for the append predicate:

append(nil, x, x),

append(cons(y, z), w, cons(y, v)) :- append(z, w, v).

292

The first clause applies when we have to concatenate two lists the first of which is empty. In that case the

resulting list is just the second one. The second clause applies instead when the first list contains at least one

element, represented by the variable y. The unfolding of the two clauses is

append(cons(y, nil), x, cons(y, x)).

which is a new clause (with empty body) applicable only when the first list has exactly one clement.

A relevant fact of (positive) definite clauses is that they are closed w.r.t, unfolding, i.e., the unfolding of two

clauses is again a definite clause. This is not true for many extensions of Horn Clause Logic, including the so

called concurrent logic languages (cf. [Le88]).

We show now that the unfolding of definite clauses corresponds (in the jungle rewriting framework) to a specific

version of the well known concurrency theorem for graph grammars [Eh83, EHKP90]. More precisely, we first

describe how to construct a new jungle production from two given productions representing program clauses (cf.

Definition 4.8), and then we show that the new production can be applied to a jungle iff the two given

productions can be applied to it in the given order.

6.3 Proposition (concatenating jungle productions)

Let J(C) - L +- K --> R and J(C) - L' <-- K' ~ R' be the jungle productions representing two definite clauses C and C'

respectively (cf. Definition 4.8), and let P' = J(p(x I xn)) he the jungle containing just one hyperedge colored

with the predicate symbol of the head of C', connected to n distinct nodes. Moreover, let k: P' --~ R he a jungle

morphism and P' --~ L' be the obvious mapping. If the pushout (3) of k and P' --> L' and the pushout complement

(2) of K -) R --~ W exist, then the following construction is uniquely determined (up to isomorphisms) and defines

a new jungle production L" (-- K" ---> R".

p.

L~ K ~ R L '~ K' ~ R'

~ (1) ~ (2) ~ O / (4) / (5) l PO PO-C PO-C PO

L"~ ~ R" W' ~ W ~ W"

Proof sketch. By hypothesis squares (2) and (3) are pushouts, the pushout complement (4) exists and it is unique

by Proposition 4.7, the pushouts (1) and (5) exist by Proposition 4.6, and since it can he shown that all pairs of

arrows with common target have a pullback [ML71] in JungleZ,l-b square (6) can be constructed as a pullback. The

statement follows by uniqueness of universal constructions. Finally, the new rule L" +- K" --~ R" is obtained by

taking the composite arrows L" ~- W' ~-- K" and K" -~ W" --~ R".*

The requirement of the existence of pushout (3) in the last proposition is dear: it means that the head of C has

to unify with the atom of the body of C selected by k. The second condition (existence of the pushout (2)) is not so

evident from the logic programming point of view, and is discussed at the end of the section.

293

The next theorem states that the application of the new production L" ~-- K" --~ R" to a jungle is equivalent to the

sequential application of J(C) and J(C').

6.4 Theorem (concurrency theorem for jungles)

Let J(C), J(C'), and L" ~ K" --4 R" and be as in Proposition 6.3. Then

1) If the jungle production L" (-- K" --) R" can be applied to a jungle G yielding jungle H (in the sense of Theorem

5.3), then J(C) can be applied to G yielding G', and J(C') can be applied to G' yielding H' isomorphic to H.

2) Viceversa, if J(C) can be applied to G yielding a jungle G', and J(C') can be applied to G' yielding H, and the

predicate-colored edge of G' rewritten by J(C') is the image in G' of kP', then production L" (-- K" ~ R" can be

applied to G yielding a jungle H' isomorphic to H.

Proof sketch. The theorem is a (weaker) version (for the specific case of jungle rewriting) of the concurrency

theorem that has been proved in literature for many rewriting systems based on pushout constructions. Recently a

very general version of that theorem has been proved in [EHKg0] for a class of High Level Replacement

Systems, namely for the so-called HLR2-categories. These are categories equipped with a distinguished class of

morphisms M, and satisfying various conditions of existence of limits and colimits, and of closure w.r.t, suitable

constructions. It is cumbersome but not too difficult to check that JungleE, Fl is indeed a HLR2-category, if M is

chosen as the collection of all injective morphisms such that the associated substitution is a renaming of

variables. Thus the concurrency theorem follows by the arguments in [EHKg0]. •

Finally, we briefly comment the second hypothesis of Proposition 6.3, that is the requirement of the existence of

the pushout complement (2). This condition can be interpreted as follows from the logic programming viewpoint:

the mgu of the head of clause C' and the atom selected by k in the body of clause C cannot instantiate nor

identify variables local to the body of G (i.e., that do not appear in its head). For example, the clauses

C--- 1Nx) :- q(y).

C' ~ q(a).

do not satisfy this requirement, since the mgu of q(y) and q(a) instantiates y, which is local to the body of C. In

this situation the construction of Proposition 63 fails, as shown in the diagram below: the pushout complement

(2) does not exists because the dangling condition is not satisfied.

J(C)

1 . 'I X

?

j (c)

D

204

However, the unfolding of these two clauses is clearly possible, and produces the new fact

q(y).

Therefore there is an apparent incongruence between the logic programming technique of unfolding and its

formalization through the construction of Proposition 6.3, since the first is always possible while the second is

not. This problem can be solved by not requiring the existence of the pushout complement (2), but just the existence

of a commutative square (2) such that the bottom arrow is in the class M. In this case the construction can always

be performed. In the example above, the jungle that can be used instead of the pushout complement in (2) is

contains just one variable node, mapped onto node x.

7 Conclusions

This paper can be considered as a preliminary work towards the investigation of the relationship between logic

programming and graph grammars. We described how a logic program can be faithfully represented as a set of

jungle rewriting rules, while a query can be represented by a jungle. Actually, programs and queries have many

representations as jungles, all of them correct. The choice of a particular one concerns only the efficiency of its

manipulation. A resolution step is modelled by two algebraic constructions: first a pushout, which models the

unification step (instantiating the goal), then a double pushout which models the actual rewriting. The

refutation of a goal is thus described as a sequence of such steps starting from the jungle representing the goal,

and ending in a jungle with no predicates (representing the empty goal).

The algebraic framework that we use can be fruitfully exploited to define composition operations on clauses, and

elegantly prove their correctness. Moreover, the rich collection of results about parallelism and concurrency in

the graph-grammar theory could be exploited in the logic programming framework, in order to formally analyze

and prove properties of parallel execution framaworks~

Acknowledgements

Many of the ideas presented in this paper originated by fruitful discussions with Hartmut Ehrig, Michael L6we,

and Ugo Montanari.

8 R e f e r e n c e s
[AM89] Asperti, A., Martini, S., Projections instead of variables, A category theoretic interpretation of logic

programs, Proc. 6 th Int. Conf. on Logic Programming, Lisboa, Portugal, 1989.

[CER79] Claus, V., Ehrig, H., Rozenberg, G., (Eds.) Proceedings of the lStInternational Workshop on Graph-
Grammars and Their Application to Computer Science and Biology, LNCS 73,1979.

[CMREL91] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., L6we, M., Logic Programming and Graph
Grammars, to appear in [EKR91].

[Eh83] Ehrig, H., Aspects of concurrency in graph grammars, in [ENR83], pp. 58-81.

[Eh87] Ehrig, H., Tutorial introduction to the algebraic approach of graph-grammars, in [ENRR87], pp. 3-
14.

[EHKP91] H. Ehrig, A. Habel, H.-J. Kreowski, F. Parisi-Presicce, Parallelism and Concurrency in High-Level
Replacement Systems, Technical Report, Technische Universit~it Berlin, September 1990.

[EKR91] Ehrig, H., Kreowski, H.-J., Rozenberg, G., (Eds.) Proceedings of the 4 th International Workshop on
Graph-Grammars and Their Application to Computer Science, LNCS, 1991, to appear.

295

[ENR83]

[ENRR87]

[C-o881

[Ha89]

[HE87]

[HKP881

[Ke911

[Kr87]

[Le88]

[L187]

[ML71]

[PEM87]

[RB85]

[RM881

[RMgO]

Ehrig, H., Nagl, M., Rozenberg, G., (Eds.) Proceedings of the 2 nd International Workshop on Graph-
Grammars and Their Application to Computer Science, LNCS 153,1983.

Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A., (Eds.) Proceedings of the 3 rd International
Workshop on Graph-Grammars and Their Application to Computer Science, LNCS 291, 1987.

Goguen, J.A., What is Unification? A Categorical View of Substitution, Equation and Solution, SRI
Research Report SRI-CSL-88-2R2, SRI International, Menlo Park, California, 1988.

Habel, A., Hyperedge Replacement: Grammars and Languages, Ph.D. Thesis, University of Bremen,
1989.

Habel, A., Kreowski, H.-J., May we introduce to you: hyperedge replacement, in [ENRR87], pp. 15-
26.

Habel, A., Kreowski, H-J., Plump, D., Jungle evaluation, in Proc. Fifth Workshop od Specification
of Abstract Data Types, LNCS 332, 1988, pp. 92-112.

J.R. Kennaway, Graph rewriting in some categories of partial morphisms, in [EKR91].

Kreowski, H.-J., Is parallelism already concurrency? Part 1: Derivations in graph grammars, in
[ENRR87], pp. 343-360.

G. Levi, Models, Unfolding Rules and Fixpoint Semantics, in Proc. 5 th Int. Conf. Symp. on Logic
Programming, Seattle, MIT Press, pp. 1649-1665, 1988.

Lloyd, J.W., Foundations of Logic Programming, Springer Verlag, 1984, (Second Edition 1987).

Mac Lane, S., Categories for the Working Mathematician, Springer Verlag, New York, 1971.

Parisi-Presicce, F., Ehrig, H., Montanari, U., Graph Rewriting with Unification and Composition,
in [ENRR87], p. 496-514.

Rydeheard, D.E., Burstall, R.M., The Unification of Terms: A Category-Theoretic Algorithm,
Internal Report UMCS-85-8-1, Dept. Comp. ScL, University of Manchester, August 1985.

Rossi, F., Montanari, U., Hypergraph Grammars ad Networks of Constraints versus Logic
Programming and Metaprogramming, in Proc. META88, MIT Press, Bristol, June 1988.

Rossi, F., Montanari, U., Constraint Relaxation as Higher Order Logic Programming, to appear in
Proc. META90, Leuven, April 1990. Also Proc. GULP '88, in italian.

