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Abstract  

One of the main problems'of the partial ordering approach to the description of computations of con- 
current and distributed systems is that there is no operation of sequential composition for partial orders 
which preserves all information on causal dependencies (except for the simple case of series parallel pom- 
sets). As a result, truly concurrent bchavioural equivalences are defined by giving integral descriptions 
of computations: they are not obtMned by composing the observations of the elementary steps of the 
computations. In this paper we introduce the algebra of Concatenable Concurrent Histories. A Con- 
catenable Concurrent History describes a computation by means of a partial ordering of events together 
with information on the initial and final state of the computation. The operation of sequential conpo- 
sition is one of the primitive operations of this algebra. We introduce a category of transition systems 
for CCS (called CCS models) and we show that in this category there exists a CCS model which has the 
structure of Concatenable Concurrent Histories. This object constitutes our model of observations. As 
a consequence our observations are incremental. The observation mechanism is handled by a labelling 
construction which is an internal operation of the category of models. Furthermore, we give a bisimulation 
congruence for CCS, via Concatenable Concurrent History observations, which can be characterized in 
terms of a final universal property in a suitable'subcategory of CCS models. This category also provides 
a framework in which to interpret a ttennessy-Milner style programming logic which describes properties 
of the observable behaviour of computations. The equivalence naturally induced by the logic coincides 
with the congruence induced by the final object. This result expresses a sort of duality between semantic 
analysis based on observations and programming logics. We obtain an analogous result for a weaker 
congruence which results when internal actions are unobservable. 

1 I n t r o d u c t i o n  

Many models for concurrent systems have been proposed in the literature. Much work on the semantics 
of distributed systems has been based on the interleaving approach [tto 85,Mil 89,BK 84]. In this class 
of models, a global state is assumed, and the evolution of a system is described in terms of sequences of 
global states. As a consequence, dealing with local properties is impossible because the corresponding in- 
formation has been lost in the abstract behaviour. Instead, true concurrency or partial ordering models 
[Re 85,NPW 81,DM 87,Pr 86,BC 88] describe the behaviour of distributed systems in terms of the events 
they may perform, and the constraints on their occurrence: a partial ordering represents the causal depen- 
dencies among events, while concurrency is represented by the absence of ordering. True concurrency models 
provide a more faithful account of distributed computations. They are well suited to handle properties which 
explicitly refer to the information about distributed activities. 

Several efforts have been devoted to the relation between programming logics and observational models 
of concurrency. As shown by Abramsky [Ab 88], in the interleaving approach this relation is an extension 
of the classical Stone duality theorem for boolean algebras. Such duality clarifies the relationships between 
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equivalence classes of computations and properties (described through progravaming logics) of processes. 
Presently, it is not clear whether or not this duality holds for the partial ordering approach. 

With respect to process description languages, the true concurrency approach has not yet received 
a completely satisfactory treatment when compared with the results based on interleaving. True con- 
currency operational semantics have been developed only recently. The basic idea is to provide an in- 
terpretation of the language in terms of Petri Nets [DDM 88a,O1 87,Go 88], Labelled Event Structures 
[Win 82,DDM 88b], Causal Trees [DD 89], and so on. Since these descriptions are too concrete, certain 
behavioural equivalences are introduced by extending the techniques introduced within the interleaving 
framework [DDM 87,vGG 89,RT 88]. In this way, the problem of finding a truly concurrent semantics is re- 
duced to the problem of defining equivalence classes of programs and computations which express particular 
aspects of system behaviour with respect to certain notions of observation. 

One of the drawbacks of truly concurrent semantics is that the research on obtaining logics equipped 
with proof systems which emphasize the non sequential properties of processes is still missing conclusive 
achievements. In particular, little is known on the relations (adequacy, expressiveness results) between non 
interleaving models and logical languages (see [DF 90] for some preliminary results.) 

Moreover, in the case of obserwtional semantics (both interleaving and truly concurrent), the standard 
representatives of the equivalence classes of programs and computations, if any are actually defined, some- 
times do not yield minimal realizations, i.e. they do not form a transition system. The minimal realization 
would represent the most reduced operational semantics with respect to a notion of program transformation 
which preserves the observable behaviour of programs. Notice that this is a typical situation in automata 
theory [Gog 72], and in abstract data type specification [GGM 76,Wa 79]. Minimal realizations and the 
associated transformations are very convenient (think for instance of equivalent circuits in electronics) since 
they provide an intuitive and suggestive way of handling abstract semantics, and they are quite useful in 
practice. 

The difficulty of having a minimal realization of truly concurrent operational semantics depends on 
the fact that observable behaviours of machines are inherently incremental: they are obtained by composing 
the elementary steps of the machines and their observations. On the contrary, truly concurrent behavioural 
equivalences are defined by observing just the global outcome of computations. The main problem is that in 
the case of partial ordering models there is no obvious operation of sequential composition of partiM orders 
which preserves all the information on causal dependencies. 

This paper aims at solving these problems. Our first starting point is the definition of the semantics 
of process description languages in terms of categories of transition systems with algebraic structure both 
on states and transitions [FM 90,Fe 90]. In this approach, the observation mechanism of computations 
is handled by a labelling or typing technique: every computation is labelled (typed) with its observa- 
tions. In this framework, we consider behavioural equivalences based on the notion of bisimulation [Pa 81]. 
In [FM 90,Fe 90] it is shown that the strong observational congruence [Mil 80] (the simplest bisimulation 
equivalence) can be characterized in an algebraic way by considering specia~ simplification morphisms which 
preserve the algebraic structure of states and transitions, the observations and the transitions outgoing from 
any state. It turns out that the strong observational congruence is characterized by a universal property of 
finality: the terminal object is a transition system whose states and transitions are congruence classes of 
agents and computations, i.e. a minimal realization. 

This schema can be applied only to behavioural equivalences which are at the same time congruences 
and bisimulations. For instance this schema does not work in the case of Milner's Weak Observational 
Congruence [Mil 80] (an equivalence which forgets about internal invisible moves) because the weak congru- 
ence is not a bisimulation 1 . Bisimulation equivalences which are also congruences can be characterized in a 
denotational setting [Ab 88]. The second starting point is the notion of Dynamic Bisimulation [MS 90], i.e. 
a bisimulation which tests the observable behaviour of processes also when they are dynamically embedded 
in the same context. The dynamic bisimulation is the coarsest interleaving weak bisimtflation (with the 
standard operational semantics of CCS) which is also a congruence. 

The third starting point is the notion of Concatenable Processes. Although Petri Non Sequential Pro- 

1The states ct.r.fl.nil and a.fl.nil are observationany congruent, where r is the invisible action, bat the states 7".~.nil and 
~.nil they reach after performing an ct transition are not. Thus weak observational congruence is not a bisimulation relation. The 
weak observational congruence for CCS may become a bisimnlation by suitably modifying the standard operational semantics 
of c c s  [vG 87]. 
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cesses [GR 83] have information on both causality and distribution, they lack an operation of sequential 
composition. The problem of having incremental descriptions of Non Sequential Processes has been suc- 
cessfully tackled by Degano, Meseguer and Montanari [DMM 89]. A Petri Net is seen as a graph with a 
monoidal operation expressing parallel composition of places and transitions. The free category generated 
by the graph is introduced and certain axioms are used to define a quotient on its morphisms. Indeed, 
morphisms can be seen as terms of an algebra with two operations, parallel and sequential composition. 
The congruence classes of these terms can be represented by Concatenable Processes, which are based on 
Non Sequential Processes but have extra information which allows sequential composition to be defined. 
However, Coneatenable Processes are still unsatisfactory since the Petri Nets they are based on are not 
labelled by actions, and since they retain information about the intermediate states. 

The basic idea of the paper is the definition of an algebraic theory of process description languages 
(models and logics) where information on causM dependencies and distribution is properly taken into ac- 
count, and which a~ows an incremental approach to the description of computations. We take CCS [Mil 80] 
as a case study. 

In our framework, a transition system (model) for the CCS language consists of art equational type 
algebra [MSS 90]. The algebraic structure on elements of type state is given by the language itself; other type 
elements characterize transitions, and computations. Instead of considering a single model of the language, 
we consider a collection of such models: each model represents a specific abstract machine (an interpreter) 
for the language. The collection of models forms a category, where the morphisms preserve the algebraic 
structure and represent relations between different abstract machines. 

CCS models are not necessarily free models of the given presentation: nonfreeness may reflect a par- 
ticular interpretation of the operations. This allows us to identify a particular model which plays the role 
of the model of the observations: the interpretation of the operations on computations implements a cal- 
culus. By giving different interpretations to the operations we can define several calculi of computations. 
The possibility of having different interpretations of the operators with a single underlying scheme is one 
advantage of using the category theoretical framework. Another advantage is that we can describe transfor- 
mations between interpreters in a smooth way. Because we are interested in a truly concurrent semantics, 
the calculus of computations will be a calculus of partial orderings. 

We introduce the algebra of Concatenable Concurrent Histories, which are essentially Concatenable 
Processes with action labelled events and without information about the intermediate states. The operation 
of sequential composition of computations is one of the basic operations of the algebra of Concatenable 
Concurrent Histories. This algebra is closely related to the model of Concurrent Histories, developed by 
Degano and Montanari [DM 87]. 

We show that in the category of CCS models there is an object for which the computations have 
the structure of the algebra of Concatenable Concurrent Histories. This model constitutes our algebra of 
observations. As a consequence the observations are incremental. 

Observing the computations of a CCS model means finding a morphism from it to the model of ob- 
servations. This construction builds a category whose objects are CCS models with computations labelled 
by Concatenable Concurrent Histories, and whose morphisms preserve the observations as well as the alge- 
braic structure. The labelling construction is defined in categorical terms: it is an instance of the general 
Comma Category operation [ML 71]. The simplicity and generality of this labelling construction is one of 
the advantages of using the category theoretic framework. 

The category of CCS abstract machines where causality is observed incrementally provides the for- 
mai apparatus to introduce and study the features of behavioural equivalences (and congruences) together 
with the logics which describe properties of computations. In this paper we consider bisimulation-based 
behavioural equivalences. As in the case of interleaving semantics, we first introduce a bisimuiation equiv- 
alence over the elements of type state of the initial object. We then prove that this equivalence is also a 
congruence, and we show that it gives rise to a minimal realization. In other words, the set of congruence 
classes with respect to such a congruence is the set of elements of type state of a CCS model, i.e. an abstract 
machine of the language, which is a terminal object in the appropriate subcategory of CCS models. 

To prove this universal property of finality, we take a subcategory, whose objects are the images of the 
initial object under some fixed type of simplification mappings and whose morphisms are the simplification 
mappings themselves. The minimal realization (when it exists) is the final object of this subcategory. In 
this paper the simplification mappings which we consider are strict transition preserving homomorphisms, 
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a variant of the transition preserving homomorphisms introduced in [DDM 88a,AD 89,FM 90]. We prove 
that  when the observations are Concatenable Concurrent Histories the final object exists, and, moreover, 
the unique mapping from the initial to the final object fully characterizes the bisimulation congruence. 

In our framework, logics which describe properties of the observable behaviour of computations can 
be automatically derived by considering Dynamic Logics [Ha 84] which are special modal logics where the 
modalities are parameterized by terms of the calculus of computations 2. In this paper, we simply introduce 
a modal logic (in the style of Itennessy-Milner Logic [HM 85]) whose modalities are parameterized by 
Concatenable Concurrent Histories. We show that  our collection of models provides the right framework 
to give an interpretation of this logic and to understand the relations with the observational semantics. In 
fact, it turns out tha t  the equivalence induced by the logic coincides with the equivalence induced by the 
final object. 

In the interleaving semantics of CCS, a special action, the r action, is used to indicate the occurrence 
of invisible internal operations. Only the proper treatment of r actions provides us with a semantics of 
concurrency (as opposed to explicit time). Forgetting r actions in the observations means performing 
axt abstraction operation. In the standard interleaving approach, Weak Observational Equivalence takes 
care of this abstraction. However, as mentioned before, in this way we get an equivalence which is not a 
congruence, and therefore we do not have a minimal realization. A minimal realization can be found by 
considering dynamic bisimulation [MS 90] instead, which is also a congruence. 

In our framework the same approach can be applied. Invisible actions cast be handled by modifying 
the observations so tha t  they are forgotten, but it is still possible to distinguish between an idle system and a 
system performing an invisible move. Also in this case we get both an algebraic and a logical characterization 
of a weak partial ordering semantics. 

2 The Algebra of Concatenable Concurrent Histories 

In this section we introduce the algebra of Concatenable Concurrent Histories. For the following definitions 
we fix two nonintersecting alphabets P, A. Intuitively, P represents the set of process types, while A represents 
the set of actions. 

Def in i t i on  1 (Concurrent Histories) 
Concurrent Histories are labelled partial orders ( V, <_, ~) where the labelling function l : V ~ P U A sends 
the set of maximal and minimal elements to P and the set of other elements to A. Concurrent Histories are 
considered up to label preserving partial ordering isomorphisms.[] 

The elements with labels in P are called processes~ those with labels in A are called events. 

Def in i t ion  2 (Label Indexed Ordering Functions) 
Suppose S is a set with a labelling function ~: S ~ P. A label indexed ordering function on the labelled set 
S is a function a from S to the set of natural numbers, such that for each p E P the restriction of a to the 
set of elements labelled p is a bijeetion on the set { i , 2 , . . . , u p }  where np = I{s E S :  g(s) = p}l.[] 

Def in i t i on  3 ( Concatenatable Concurrent Histories) 
A Concatenable Concurrent History is a triple (h, fl, 7) where h = (V, <_, i )  is a Concurrent History for 
which no element is both maximal and minimal, and fl, 7 are label indexed ordering functions on the labelled 
sets of minimal and maximal elements of V (called origins and destinations), respectively. Concatenable 
Concurrent Histories are defined up to isomorphisms of labelled partial orders that preserve the label indexed 
ordering functions.[] 

The introduction of the label indexed ordering functions allows us to discriminate between different 
maximal elements (and minimal elements) with the same label. Figure 1 illustrates two concatenable 
concurrent histories chl and ch2((a) and (b)); the order relation is depicted through its ttasse diagram 

2Notice that the modal schema (axiom) which corresponds to the notion of incremental description of computations is 
[~1][~]~ "-'* [~1;$2]~- This feature can be profitably exploited for defining proof systems emphasising the non sequential aspects 
of computations. This topic will be subject of further studies. 
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{a} {b} 

Figure 1: Two Concatenable Concurrent Histories 

growing downwards. Processes (resp. events) are represented as circles (boxes): all processes have the same 
label. Finally, the label indexed ordering functions are represented by positive numbers on processes. 

The algebra of Concatenable Concurrent Histories has two operations: parallel composition and se- 
quential composition. Let ehl = (hi, [31, 71) and ch2 = (h2, f12, 72) be Concatenable Concurrent Histories, 
where hi = (V1, <1, l l )  and h2 = (V2, _<2, t2). Without loss of generality, VI and V2 are disjoint. Let 
Min(hl), Max(hi), Min(h2), Max(h~) be the origins azad destinations of hi and h2, respectively. 

Defini t ion 4 ( The Algebra of Concatenable Concurrent I~istories) 
The parallel composition Chl ® ch2 is the Concatenable Concurrent History (( V, <, l) ,  r ,  7) where 

• V=V1UV2 

• <is-<lU<_2 

• t(v)  i s l l ( v )  i f V e V l  andis l2(v)  i f v e V 2  

• ~(v) is t~l(v) if  v E Min(hl) and is hi(V)+,82(v) if v e Min(h2), where hi(V) is the number of origins 
of chl with label equal to/2(v) 

• 7(v) is 71(v) if v e Max(hi) and is ml(v)  + 72(v) if v e Max(h2), where ml(v) is the number of 
destinations of chl with label equal to ~2(v) 

The sequential composition chl ; eh2 is defined if and only if e l (Max(hi))  = e2( M in( h2 ) ), intended as mul- 
tisets. In this case the result of the operation is the Concatenable Concurrent History ((V, <, l) r ,  7) 
where 

• V = V1UV2 \ (Max(hi) U Min(h2)) 

• < is the restriction to V × V of the transitive closure of 
_<1 U _<2 U{(w,v) : w eMax(hl ) ,v  e Min(h2),ll(w) = 12(v), 71(w) = fl2(v)} 

• e(v) is e~(v) i fv ev~ and is e2(,,) i.fv eV2 
• ,O(v) = ,61(v)  

• ~ , (v)  = "r~(v) 

[] 

Figure 2 shows the result of the parallel composition chl ® eh2 (a), and the result of the sequential 
composition ehl ; eh2 (b) of the two histories depicted in Figure l(a) and l(b). Notice that ® is associative 
but not commutative. In fact, because histories describe the causal relations between events performed 
during a computation, ® should not be commutative, otherwise the operation of sequential composition 
would not preserve the information on causal dependencies. As an illustration of this fact, let t~ be the 
Concatenable Concurrent History with three linearly ordered elements, the middle one of which is labelled 
#. Then in the Concatenable Concurrent History (t~ ® t~); (t~ ® t~) the event labelled a causes the event 
labelled 7, but in (t~ ® t~); (t. r ® t6) this is not the case. 
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{a} go) 

Figure 2: Parallel (a) and sequential composition (b) of the histories in Figure l(a) and l(b) 

3 Algebraic Models for CCS 

In this section we provide an algebraic semantics for CCS in terms of equational type algebras [MSS 90]. 
Equational type algebras are one sorted algebras enriched with a typing relation which assigns types to 
elements. The use of these algebras is motivated by the need to represent operational models, i.e. transitions 
systems, of process description languages. 

In the construction of algebraic models for process description languages, one has to face the problem 
of discriminating between transitions and computations. For instance, in CCS the synchronization can be 
seen as an operation on transitions but not between computations. Typed algebras allow us to handle 
such problems. Another problem which can be addressed elegantly by using equational type algebras is the 
handling of free variables and the construction of recursive processes. 

We describe transition systems in terms of equational type algebras in a natural way. The idea is that 
states of the transition system are elements of the algebra having a certain type. Also, transitions 3 and 
computations are elements with certain fixed types. 

Intuitively, the typing information expresses when an element (state, transition, computation) should 
be considered correct. This is the standard notion of typing in programming languages: only well typed 
programmes are relevant. We first reca~ the basic definitions of equational type algebras. See [MSS 90] for 
a detailed introduction. Let ~ be a one sort signature, a set of operator symbols together with their arity. 

Def ini t ion 5 (Equational Type Algebras) 
An equational type algebra A over the signature ~. is a pair ( A, :A), where A is a one-sort total algebra over 
~, and :A is a binary relation, called the typing relation, on the carrier of A. 
A morphism from the equational type algebra A into the equational type algebra B is a mapping h from A 
to B which respects the operations and the typing, i.e. i ra  is an r-ary operator in ~ then h(a(al , . . . ,a~))  
= cr(h(al) , . . . ,h(ar)) ,  and ira :A t then h(a) :B h(t). [] 

Let A be the alphabet for actions, (ranged over by a) and ~ the alphabet of complementary actions 
(with A = An). Let ~- • A U ~ be the invisible action, and let A = A U ~ U {r} (ranged over by #) be the 
set of actions. We first recall that a CCS expression E has the following syntax, 

E : = n i l l x l # . E ] E \ a l E [ ~ ] l E +  E l E I E I r e e x . E  

where x is a variable belonging to a set Vat  of variables, and • is a permutation of A fixing r and the 
operation of complementation. A CCS agent is a CCS expression without free variables. A guarded CCS 
agent is a CCS agent where each free occurrence of a variable x in recx.E is within a subexpression # .E(  

3The algebraic structure of transitions can be automatically derived by considering the inference rules defining the operationai 
semantics as operations [BC 89,MY 89,FM 90,Fe 90]. 
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A transit ion system for CCS (which will also be called a CCS model) is modelled as an equational type 
algebra. The elements of the algebra which are guarded CCS agents have type state. CCS expressions may 
have free and unguarded variables, thus we use (X ,Y) ,  where X , Y  C Va t ,  to indicate the type of a CCS 
expression whose free variables are X and whose unguarded variables are Y. Notice tha t  any element with 
type state also has type (¢, ¢), and tha t  if an element has type (X,  Y) then X C Y. In the following, generic 
elements (sometimes called terms) will be denoted by e, elements of type s ta te  by u, v, w, and variables by 
X. 

The elements which are transitions (resp. computations) have type trans (eomp). On elements of 
these types, two special operators 00, (91 are defined. Strictly speaking, these operators are defined on all 
elements, but  O0(t), 01(t) are only typed if t has type trans (comp). These operators  give the  source and 
target  s tates of transit ions and computations.  As a mat te r  of notat ion,  we will use t : u ~ v as shorthand 
for "t has type trans,  Oo(t) = u, c91(t) = v ' .  Similarly we will use c : u =~ v to indicate tha t  e has type 
eomp, C9o(c) = u, and Ol(c) = v. 

D e f i n i t i o n  6 ( CCS Model) 
A CCS model  is an equational type algebra which is a model of the following presentation. The first set of 
axioms handles standard CCS operators, and gives conditions for an element to have type state. 

e: ( X , Y )  
N I L :  ( ¢ , ¢ )  x :  ({z},{x})  # . e :  ( X , ¢ )  

e:  ( X , Y )  e:  ( X , Y )  el:  (Xi, Yi), i  = 1,2 
e[@] : ( X , Y )  e\ce : ( X , Y )  el + e2 : .(U/X/Ui Y/) 

ei : (X i , ]~ ) , i=  1,2 e :  ( X , Y ) , x  C Y 
el I e2: (uix~, u ~ )  rec x.e : (X  n {x--~,Y) u ". state 

The next axiom defines the unwinding of recursion 4. 

rec x .e:  state 
r e e ~ . e  = e [ r e c ~ . e / x ]  

The final set of  axioms deals with the typing of transitions and computations, and gives the results of 
the source and target operators explicitly. 

[#,v >:/~.v --* v t[¢] t : u ~ v t : u ~ v 
: u[~] --* v[~] t \ a  : u \ a  --* v \ ~  

t : U ---+ V t : u - - +  v t : ~ - - +  v 
t < + w : u + w - - , v  w + >  t : w + u - - * v  t J w : u l w - - + v l w  

[] 

t : ~ - - + v  tl  :U l ' - '>Vl~ t2 :u2 - '+V2  t :U---+V 
w l t :  w l u  ~ w l  v h lt2 :u l  lu2--*vx Iv2 t : u ~  v 

idle(u) : u =~ u 
C 1 : U = ~ V ? C 2 : V : : ~ W  

e l ;  C 2 : U =:~ W 

To illustrate the handling of free variables and recursive terms,  consider the following elements. 

x : ({z},  {x}) and t t . z :  ({z}, ¢) 

Applying the  inference rules for recursive terms we have that  recx.l~.x : (¢, ¢). On the  other  hand,  recx.tt.x+ 
x is defined but  not  typed: it is unguarded. It should be noticed tha t  the unwinding of recursion can only 
be applied to guarded variables. For instance, let us consider the deduction 

recx.#.x : state 

recx.#.x = #.recx.#.x 

the guardedness requirement ensures tha t  recursive terms have a unique solution [Mil 89]. 
4Variable replacement could be expressed explicitly in equational type algebras. 
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Defini t ion 7 The category CatCCS consists of the CCS models and the morphisms of equational type 
algebras between them which preserve variables. [] 

Proposition 8 CatCCS has an initial object L[] 

The object I is obtained by free construction with respect to the axioms. It is immediate to prove 
that the elements of I with type state are guarded CCS agents (modulo the equation on recursion). 

4 Observing Causality Incrementally 

As it stands, the objects of the category CatCCS do not include any mechanism to observe computations, 
in that the elements of type comp represent computations but there is no further abstraction corresponding 
to what can be detected by an external observer. For instance, in the initial object there is the element 
[~, N I L  >] [8, N I L  > which is not a legitimate computation if we assume the standard synchronization rule 
of CCS. 

In this paper we follow the approach introduced in [Fe 90,FM 90]: the observation mechanism is 
handled by an operation of labelling (typing) which is internal to the category. We select a specific object 
of Ca tCCS to be the model of observations. Defining an observation mechanism corresponds to selecting a 
morphism from a CCS model to the model of the observations. 

Defini t ion 9 (Observing Computations) 
Let L be any CCS model. Then Ca tCCS : L is the category whose objects are pairs ( C, £ : C --* L) where 
C is a CCS model, and £ is a CatCCS morphism. The morphisms of Ca tCCS : L are maps ¢: (CI,gl : 
C1 ~ L) --* (C2,g2 : C2 -" L) such that ¢ is a CatCCS morphism from C1 to C2 and £2(¢(c)) = £1(c) for 
all elements c in CI. n 

The CCS model L plays the role of the algebra of observations. The definition above expresses that 
the morphisms of CatCCS  : L are morphisms of CatCCS which preserve the observations. Let eL denote 
the unique CatCCS  morphism from I to L. 

Proposition 10 (I, gl,) is the initial object of CatCCS : L. n 

As the algebra of observations we will choose a CCS model where the operations are suitably inter- 
preted. More specifica~y, the model of the observations will include a subset ,  of elements of type comp. A 
computation is labelled with an element not in • if and only if it is a legitimate computation with respect 
to the chosen notion of observability. This approach to legitimacy of computations means that we can 
change the notion of observability just by changing the interpretations of the operators in the algebra of 
observations. For instance we could interpret ] as the CSP parallel operator, or \ as hiding. Thus, the 
synchronization algebra is not forced by the presentation. 

We can now define an observation mechanism for CCS which takes distributed and causal information 
into account. This is done by choosing, as the model of observations, a CCS model H for which the 
computations which are not in • have the structure of the algebra of Concatenable Concurrent Histories. 
We first need to introduce some notation. 

With CCH we indicate the algebra of Concatenable Concurrent Histories with the alphabet P of 
processes being a singleton, and the alphabet A of events being the set A of actions. We say that an element 
of CCH is bipartite if all its elements are either minimal or maximal. We write idle1 for the bipartite history 
with just two elements and idles for the parallel composition of n copies of this. We write An for the 
bipartite history with n + 1 elements, n of which are maximal, and V= for the bipartite history with n + 1 
elements, n of which are minimal. We write t u for the Concatenable Concurrent History with three linearly 
ordered elements, where the middle one is labelled #. 

The set of elements of H of type comp is the disjoint union of CCH with *, There is one element 
• n,m : n --* m of * for each pair of positive integers integers n, m. Elemements of • are absorbent for the 
operations of parallel and sequential composition of the Algebra of Concatenable Concurrent Histories, in 
the sense that, given a Concatenable Concurrent History h, h if) *ram, *n,r, @ h, h; *n,ra and *n,,~; h all yield 
• n,,,~,, for suitable n t, m I. 
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In order  to  define the  CCS model H of causal observations we will give some in terpre ta t ions  of operators  
in H. The  CCS model H is the  free CCS model with these operat ions s. We denote  the  in terpre ta t ion of a 
by [a]. 

If  e has type (X,  Y) then we define the  interpreta t ion of e, [e], to be [X, Y, N(e)] ,  where N(e) is defined 
as follows. 

• .~ ' (JWL) = .~ '(~) = N ( # . e )  = .~'(e + e ')  = 1, 

• H ( e [ ~ ] )  = H ( ~ \ ~ )  = .~(r~e~.e)  = .~(e) ,  

• • ( e  l e') = ~;(e) + ~;(e'). 

We use [n] as shor thand  for [¢ ,¢ ,n ] ,  i.e. for denoting the  elements of type  state in H.  Intuitively 
the in terpre ta t ion  of the  elements of type state detects the  number  of sequential components  which can 
be considered as a u t o n o m o u s  processes. Notice t ha t  applying the  nondeterminis t ic  choice opera tor  gives a 
global state, i.e. a s ta te  wi th  jus t  one autonomous component .  This  assumpt ion corresponds to having a 
centralized mechanism to  deal with  non determinist ic choices (see [DDM 90,DDM 89] for a deeper discussion 
on this  topic).  

The  in terpre ta t ion  of operators  yielding elements of type trans is subject  to  the  following. Transit ion 
t s tands for an element such t ha t  It] : [n] --* [m] is not in *; we assume also t ha t  the  in terpre ta t ion  [u] of 
s ta te  u is [k]. Elements  in • are, as usual, absorbent  with respect to all the  operat ions on transit ions.  

• [ [ ~ , u > ]  = t . ; ^ k  

• I t \ a ]  = [t]  if there  are no elements of It] labelled c~ or ~; otherwise I t \ a ]  = *ram 

• It[e]] is the  history obta ined from [t] by relabelling each element labelled # with ¢ (# ) .  

• It < + u ]  = [~+  > t] = ^ . ;  [tl 

• [ t i l l  = [tl ® idlek 

• [utt] = id/ek ® [t] 

• if [ h i  = 0/1; (idlekl ® ta);  71) and [t2] = ((02; t~® idlekz); 72) for some bipar t i te  histories 02, 7t ,  02, 72, 
then  | t l  I t2] = (01 ® 02); (idlekl ® (V2; t,; ^2) ® idlekz); (71 ® 72) Otherwise It1 [ t2] = *m+n2,ma+m2" 

Finally, let c1: [n] :* [m], e2: [m] m [p], with l ed;  [e2] ¢ *. 

• [idle(u)] = idle~: 

• ICl;C2] = [cl];[e2].  

We can comment  briefly on the  in terpre ta t ion of the operators.  The  in terpre ta t ion  of the  operator  
[p, u > expresses tha t  after the  action # a fork operat ion is performed, making explicit the  distr ibuted 
s t ructure  of s ta te  u. Moreover, the  non determinist ic operat ion requires first an action of choice between 
the  two al ternatives,  and  then the  execution of the  chosen al ternative.  Finally, in the  in terpre ta t ion  of 
the  synchronizat ion opera tor  we have adopted a normal  form of computa t ions  like the  one int roduced in 
[GM 90] (see the  example below). Wi th  these in terpreta t ions  of the  operators ,  It is indeed a CCS model. 

The  definition of H implies tha t  a E H has type  b if and only if there is some a t E I such tha t  £ has 
type  b and [ £ ]  = a (if b is a type in I then the  interpreta t ion of b in H is also called b, because the  elements 
used as types in a CCS model are constants  of the algebra).  

P r o p o s i t i o n  11 H is a CCS model, rl 

E x a m p l e  12 (The Synchronization Law) Consider the COS agent E = (c~.nil 113.nil) I ((-5.nil I &nil) + 7).  
The synchronization of the transitions labelled a and "5 is represented in H by 

SThe clauses expressing the interpretation of the operators cart be understood as equations of equational type algebras. Thus 
the CCS model H is the initial algebra of the extended presentation given by adding these equations to the original presentation. 
E.g. types in H are the same that in I. 
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(~;  (idle1 ® ta); ~ )  I (A2; (t~-; idle1)) = ( ~  ®A~); (idle 1 O (V~; t~; A2) ® idlel); ( ~  ®idle2) 

where ~ has two origins Pl, and p2, two destinations ql, and q2, and no events, with Pl ~_ q2, P2 <_ ql, 
fl(Pi) = 7(qi), i = 1,2. See Figure 3 for a pictorial representation (the labelled indexed ordering functions 
are the obvious ones, so we do not represent the numbering on processes).o 

.p 

Figure 3: A graphical representation of the observation for the synchronization of transitions in the CCS 
agent (a.nil  I fl.nil) ] (('~.nil I ~.nil) ÷ 7) 

5 B i s i m u l a t i o n  S e m a n t i c s  

In this section we introduce a truly concurrent observational semantics for the CCS language by means of 
the notion of bisimulation. Fix an object (C, t  : C ~ H) in the category C a t C C S  : H.  

Defini t ion 13 (Bisimulation) 
A bisimulation on the elements of C with type state is an equivalence relation R such that if u R u' then 
(i) t (u)  = t(u')  and (tO for every computatio, c : u ~ v, c # idle(u), ~(e) ¢ , ,  there is a computation 
d :  u r ~ v', c ~ ~t idle(u'), i(e) = g(c') and v R v'. n 

The first condition in the definition of a bisimulation ensures that equivalent agents have the same 
distributed structure, i.e. they are labelled with the same state in H. Notice that for fixed u R u ~, if there 
is a computation c which satisfies the hypotheses of condition (it), then condition (it) implies condition (i) 
because ~(u') = l(Oo(c')) = Oo(~(c')) = Oo(l(c)) = ~(Oo(c)) = ~(u). In the case when C is the initial CCS 
model, there is a unique morphism lH from C to H. 

P ropos i t ion  14 (Concurrent History Equivalence) 
There is a unique maximal bisimulation ~H on the set of elements of I with type state, which is the union 
of all bisimulations. 
Relation ~"H is an equivalence relation and it is called Concurrent History Equivalence. El 

When restricted to sequential agents (agents without the I) the equivalence "~H coincides with the 
strong observational congruence. Milner axiomatization [Mil 89] is consistent and complete for finite se- 
quential agents. 
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E x ample  15 (Result of Observing Distribution and Causality) 
We have that a . N I L  + a .NIL  "~H a .NIL,  but the two agents (a.NIL I fl.NIL) + (c~.NIL I fl.NIL) and 
(a.NIL I D.NIL) are not identified because of the global control mechanism for the non deterministic choice. 
The states a . N I L  I N I L  and N I L  I a . N t L  are not identified, and therefore ! is not commutative with 
respect to ~H. However, it is easy to convince oneself that this must be the case. In fact, assume the two 
states above are the intermediate states of computations starting from fl.a.nil t 7 .nil and fl.nil I 7 .t~.nil. 
The identification of the intermediate states (after the parallel execution of the actions t~ and 7) would imply 
the impossibility of detecting the correct cause of the action c~. 
The operator I is associative with respect to "~H, and the operator + is both commutative and associative 
with respect to "H. [3 

E x a m p l e  16 (Expressive Power) 
The two CCS agents E1 = a.([3.nil + 7.nil) + c~.nil I fl.nil, E2 = a.(fl.nil + 7.nil) + el.nil I fl.nil + aft .nil  
are indistinguishable by Pomset Bisimulation Equivalence [BC 88]. However, they are distinguished by "~H. 
This is because the agent E2 can perform a computation with observation ta ending in a state from which 
a computation with observation t~ is impossible. The agent E1 cannot do this because there is no possible 
computation with observation to from the state a.nil I fl.nil, although there is a computation with observation 
ta ® idlel.D 

6 M i n i m a l  Realizat ion 

Concurrent History Equivalence relates elements of type state which axe indistinguishable in the observa- 
tional scenario provided by the algebra of Concatenable Concurrent Histories. In this section we show that 
this equivalence is characterized by an object of the category CatCCS : H. In other words, there exists an 
interpreter of CCS whose states axe congruence classes with respect to this equivalence: such an interpreter 
is a minimal realization. To this aim we consider the subcategory of CatCCS : H of admissible behaviours, 
BehHCCS, whose objects are CCS models typed on H, and whose morphisms are strict transition preserving 
morphisms (stp morphisms for short). 

Defini t ion 17 (Strict Transition Preserving Homomorphism) 
A CatCCS:H morphism g : (Cl,gl  ; C1 ~ H )  --+ (C2,g2 ; C 2 "+ H )  is a stp morphism if and only if 

(i) g is surjective. Furthermore, if a2 E Ca has type b then there is some al E C1 with type b such that 
g(al) = a2; 

(ii) if c2 : g(ul) ~ v2 is a computation C~ and g2(t2) • *, then there is a computation cl :Ul ~ Vl of C1 
with g(cl) = c2; 

(iii) if c is a computation of C1 then g(c) = idle(g(u)) only if c = idle(u). 

[] 

Defini t ion 18 (The Category of Admissible Behaviours BehHCCS) 
The objects of BehHCCS are pairs (C,g : C --+ H) which are images of stp morphisms in CatCCS:H fram 
( I ,Q  : I ~ g ) .  The morphisms of BehHCCS are stp morphisms. D 

Notice that a~ morphisms of BehHCCS also respect types, e.g. trans ~ state since this is true for 
the CCS model H,  and H is final in CatCCS : H. From now on the pairs like (C , t  : C --* H)  will denote 
elements of BehHCCS. ~¥e will prove that BehHCCS has a final object. 

T h e o r e m  19 (Minimal Realization Theorem) 
The category BehHCSS has a final object, which is a minimal realization of CCS (with observation in tt). 
P r o o f  (outline) 
The proofs consists of four steps. 

(1) A stp morphism g : (C, l )  ----+ (Cr,e ') naturally induces a congruence Ra over the elements of (C,/)  
which behaves like a bisimulation. Two elements are in the same congruence class provided that they 
have the same image under the morphism g, namely 
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arab ~ g(a) = g(b). 

Condition (i) of the definition of stp morphisms ensures that the relation induced by the morphism is 
a congruence that preserves the typing. Conditions (it) and (iii) ensure that this congruence behaves 
like a bisimulation. 

(2) The quotient (Q, tQ) of (C,£) with respect to the congruence R 9 is a CCS model labelled on 11. The 
quotient is defined as follows: let a be any operation, and let [a] denote the congruence class of a with 
respect to Rg, i.e. an element of Q. We have: 

-o ' ( [a l ]  . . . .  , [ar]) i8 defined to be [(7(a 1 . . . .  ,at) ]. 

- The element [a] has type b if and only if there is some a' • [a] with type b. 

The structure of stp morphisms ensures that the operations and the typing are we;ll defined. Therefore 
Q is a CCS model. 
Finally, tQ is the map satisfying lQ([a]) = l(a) for all a. It is immediate to see that this mapping is 
well defined, and it is a Ca tCCS morphism from Q to H. This means that (Q,iQ) is an object of 
Ca tCCS : 1t. 

(3) The quotient mapping q sending each element to its congruence class under R a is a stp morphism. In 
fact it is surjective and respects the typing. The other conditions of the definition of stp morphisms 
follow immediately from the fact that g is a stp morphism. 

(4) The union of all the congruences induced on the initial object (I, lH) is a congruence which behaves 
like a bisimnlation. The quotient of the initial object with respect to such congruence is a CCS model 
labelled in t l ,  and the quotient mapping is a stp morphism. Thus, the quotient is the final object of 
the category BehH CCS. 

Let ~H be the congruence induced by the final object. We show now that the restriction of ~H on 
the elements of type state coincides with the Concurrent History Equivalence. 

Theo rem 20 (Characterization Theorem) 
The congruence induced on the elements of type state by the unique ~tp morphism from ( I, £H) to the final 
object of BehHCCS coincides with "~H. 
Proof  (Outline) 
Recall that guarded CCS agents coincide with the elements of I with type state. The second and third 
conditions of the definition of stp morphism ensure that the restriction of ~H to the elements of type state 
is a bisimulation. 
Conversely, the Concurrent History BisimuIation ~H is an equivalence relation which contains pairs of 
elements of type state. However, it is possible to extend it in an unique way the to obtain a congruence 
included in ~H.Q 

7 Logical Characterization 

So far, we have defined an algebraic observational semantics for CCS. In this section, we introduce a (logical) 
language to express properties of computations, such that the discriminating power of the language is exactly 
that of the equivalence "H,  thus reflecting a sort of duality between the two representations. 

The language of properties takes the form of a Modal Logic HML(H) in the style of Hennessy-Milner 
Logic [HM 85] whose modalJties are < h >, where h is an element of H, h : comp and h ~ *, i.e. a 
Concatenable Concurrent History. 

Definition 21 ( H M L ( H )  Logic) 
The syntax of the modal logic HML(H) is 

¢ : : = T R U E I  In] I -~¢ I /~¢j I < h > ¢  
jEJ 
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where J is a (possibly infinite) nonempty set of indices, and h is an element of H, h : comp and h ~ *. 
We define the satisfaction relation ~ for HML(H) on the set of elements of type state as follows: 

u ~ TRUE 
u ~ In] /y  and only if ~(u) : In] 
u ~ "~¢ if and only if u ~£ ¢ 
u ~ AjeJ CJ if and only if u ~ Cj for each j E J 
u ~ <  h > ¢ if and only ff there is a computation c:  u ~ ~, c # idle(u), s~eh that ~(c) = h and ~ ~ ¢.~ 

We comment briefly on the definition of the logic. The family of atomic formulae [n] is introduced 
because we need to describe the distributed structure of states, namely a state u satisfies the atomic formula 
In] if and only if it has n autonomous components. In the interleaving case this kind of atomic formula does 
not provide any discriminating power since a global state is assumed, i.e. the formula [1] is always satisfied. 

The satisfaction relation naturally induces an equivalence relation --=H on the elements of I of type 
state. We say tha t  vl =H v2 if and only if (vl ~ ¢)  ¢=¢- (v2 ~ ¢)  for all formulae ¢ of HML(H). 

T h e o r e m  22 (Logical Characterization) 
The equivalence =--It coincides with ,.~11 
P r o o f  
Immediate. The proof of the theorem follows the same pattern of the proofs given by Hennessy and Milner 
in [HM 85].[3 

8 F o r g e t t i n g  a b o u t  I n t e r n a l  M o v e s  

The calculus of computations we have given treats all actions as observable. A further abstraction making 
some actions invisible to the external observer is possible. The standard example of abstraction from invisible 
actions is provided by Milner's r action and the Weak Observational Equivalence [Mil 8O,Mil 89]. The idea 
is tha t  v-actions represent internal activities which do not affect the observable behaviour of processes. 
States (processes) are equivalent provided that  they can perform the same visible computations, and then 
reach equivalent states. As a consequence of the abstraction from invisible moves, it might happen that  a 
transition, and a computation performing several internal moves, exhibit the same observable behaviour. 

In our framework, the abstraction on silent moves can be obtained by considering a model where the 
observations of legitimate computations are either idle or have some observable action. In the case of a truly 
concurrent observational semantics the model of the legitimate, non-idle observations has the form of the 
algebra of Concatenable Concurrent Histories with no action labelled with v. We denote by Hw this model 
of observations. The CCS model Hw can be obtained from the CCS model H by imposing the equation s 

t~ = idlel. 

This equation clearly expresses tha t  r moves are invisible in the model of the observations Hw. 
As a further step in our construction, we build a category whose objects are CCS models labelled 

(typed) over this weaker calculus of computations, and whose morphisms respect the observations. 
A (weak) bisimulation semantics is immediately obtained. This observational semantics abstracts from 

v actions but it is still possible to distinguish between an idle transition and a computation performing an 
invisible move. We indicate with '~Hw the maximal bisimulation on the elements of type state of the initial 
object I .  

We then consider the categort BehHwCCS of admissible behaviours. Notice that  because stp mor- 
phisms are strict on identities, the simplification mapping is able to distinguish between an idle move and 
a computation performing an invisible move. 

Also in this case, we prove the characterization theorems. 

T h e o r e m  23 (Minimal Realization for Weak Observations) 
BehHw CCS has a final object, which is a minimal realization of CCS (with observation in Hw ) r3 

eRecall that with t t, we indicate a Concatenable Concurrent History with three linearly ordered elements, where the middle 
one is labelled with it. 
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T h e o r e m  24 (Characterization) 
The congruence ~Hw which is induced on the elements of type state by the unique stp morphism from initial 
to the final object coincides with "~Hw .D 

As in the case of the CCS model H, we introduce the modal logic HML(Hw) where modalities are 
parameterized with elements of type comp o fHw wwhich are not in *. We indicate with =--Hw the equivalence 
induced by the logic. The logical characterization theorem still holds. 

T h e o r e m  25 (Logical Characterization) 
The equivalence relation ==-Hw generated by HML(Hw) coincides with ,,~Hw.[3 

When restricted to sequential agents, this weak congruence coincides with the greatest dynamic bisim- 
ulation [MS 90]. In particular, for finite sequential agents the axiomatization consisting of the axioms for the 
strong observational congruence and of the second and third of Milner's v laws ~ is consistent and complete. 

E x a m p l e  26 As an example of the congruence induced by the final object of the category BehHw CCS, we 
have that the agents E + v.E and r .E  are identified ( E is any agent). Notice that this is Milner~s second 
r-law. Another law which holds is that (r.E1) I E2 and El I (r.E2) (with both Et and E2 initial states 
observed as [1]) are identified. The intuitive idea is that the observer is able to detect that the internal move 
has taken place, but it is not able to detect the location of such a move. The distribution of initial states is 
still observed, so that for instance r.(c~.nil I ~.nil) and (a.nil I fl.nil) are not identified. Finally, the CCS 
agents r.r.c~.nil and r.a.nit are not identified, because the r move of the first agent should be simulated by 
the second agent staying idle, which is not permitted.D 

9 Conc lus ions  

We have introduced a theory for CCS (algebraic models and logics), where causal dependencies and distri~ 
bution are properly taken into account. We have shown that observational models can be equipped with 
truly concurrent observations which are incremental, and that behavioural congruences can be characterized 
both by considering special simplification mappings, (from which we have constructed a minimal rea~zation 
of the theory) and by considering the equivalence induced by a modal logic (from which we have a language 
of properties). This solves the problem set out in the introduction of finding an operational semantics which 
takes into account causal dependencies between events, is incremental, has a minimal realization and an 
associated logic. 

We plan to extend the results of this paper, giving sufficient conditions for a category of observational 
models of a process description language to yield observational equivalence which can characterized by a 
minimal realization. 
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