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Abs t rac t  

The problem of designing a system which in a given environment C should satisfy a given 
specification S can be formulated as "find a system P such that C(P) satisfies the specification 
S ' .  In process algebra, such problems take the form of equations. We investigate the complexity 
of solving such equations in process algebra. We consider the problem of deciding whether there 
is a process P which satisfies an equation of one of the following forms: 

C(P) ~ Q C(P) <1 S (AIP)\L ~ B (AIP)\L ~ B 

where C is an arbitrary context of some process algebra, A, B and Q are given processes, S is a 
modal specification, ,,~ (~)  is (weak) bisimulation equivalence, <1 is refinement between modal 
specifications (a generalization of bisimulation equivalence), and [ and \L  is the parallel and 
restriction operator of CCS respectively. The main result is that all four problems axe PSPACE- 
hard in the size of the given contexts, processes and specifications. We also give constraints 
under which the first and third problem can be solved in polynomial time. 

Introduction 

One of the most difficult and important  problems in computer science is to develop methods for 
design and construction of concurrent systems. One way of automating the problem is to formulate 
the design problem as a model construction problem, "find a system P which satisfies a specification 
S," for which automatic decision procedures can be found. The specification S can for instance be 
a formula in temporal logic as in [MW84, PR89, CE82], or an abstract system as in [KS]. 

In this paper, we consider the case where the specification S does not specify the system P directly, 
but  rather P placed in a given environment.  Process algebra provides an elegant way to represent 
such environments formally as contexts. The design problem is then formulated as the problem of 
finding a system P which satisfies 

C(P) sat  S (1) 

where C is a context representing the given environment,  and sa t  is a suitably chosen satisfaction 
relation. As an exaznple, S can be an abstract system which specifies a system in which P is an 
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unknown component which executes in parallel with several other known components, represented 
by the system A. This problem can be formulated in CCS [Mit89] as finding P which satisfies 

(A IP) \L  sat  S (2) 

and a restriction on which actions P may use. Here L is the set of actions over which A and P 
communicate. The operation I puts two systems in parallel, and the operation \ L  makes the actions 
in the set L internal and unobservable, 

Methods for solving (2) have been presented by Shields [Shi89], by Parrow [Par89], by Lewis and Qin 
[LQ90] and by Merlin and Bochmann [MB83]. For the more general problem (1), Larsen and Xinxin 
[LX90b] have developed a language-independent theory of contexts in process algebra, in which they 
give a characterization of the solutions of (1) with sat being bisimulation equivalence, which induces 
a single exponential time decision algorithm. 

Common to all proposed methods [Shi89, Par89, MB83, LX90b, LQ90] is that the proposed algo- 
rithms require exponential time, even in spite of the fact that they impose restrictions on the involved 
contexts and processes. No restrictions have been presented under which the problem can be solved 
in polynomial time, and there have not been presented any lower bounds on the complexity of the 
problem. 

In this paper, we establish lower bounds on the complexity of solving equations of form (1) and 
(2), and also present some restrictions under which the equations can be solved in polynomial time. 
We consider three different satisfaction relations sat  in (1): bisimulation equivalence, ~ and weak 
bisimulation or observational equivalence, ~,  with S being a system, and modal refinement, <1, where 
S is a modal specification. The equivalences ~ and ~ are well-established and often used satisfaction 
relations for the correctness of concurrent systems [BK84, Koo85, LM87, Par87, SFD85]. Modal 
refinement <1 is a generalization of bisimulation equivalence: a modal specification can distinguish 
between mandatory and optional transitions, thus allowing more loose specifications [LT88, HL89, 
Lar90, BL90]. 

The main decision problems that we consider are the following: 

CcsEQ Given (finite-state) systems A and B and a set of actions L, does there exist 
any process P satisfying the equation (A IP) \L  ~ B. 

CCSOBS is the same as CCsEQ but for observation equivalence ~. 

EQ Given a (finite-state) context C and a (finite-state) transition system Q, does there 
exist any process P satisfying the equation C(P) ,'~ Q? 

INEQ Given a (finite-state) context C and a (finite-state) modal transition system S, 
does there exist any process P satisfying the inequation C(P) <l S? 

Also we are concerned with the identification of subclasses of the above problems that are solvable 
in polynomial time. The results concerning these problems that we obtain are: 

• The problems CCSEQ and CCSOBS are PSPACE-hard in the size of A and B. 

• The problems EQ and INEQ are PSPACE-hard in the size of C and S (C and Q for EQ ), even 
in the case where S (Q in EQ ) is deterministic. 

• Under certain conditions on the context C, we obtain a subproblem of EQ which is solvable in 
polynomial time. This also yields conditions under which the problem CcsEQ is solvable in 
polynomial time. 
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The lower bounds are obtained through a series of reductions from the known PSPACE-complete 
graph theoretical problem called Generalized Geography, GENGEO , in [GJ79]. The series of reduc- 
tions is the following: 

GENGEO ----* INEQ ~ EQ ----+ CCsEQ ---* CCSOBS 

All problems are PSPACE-hard even when we assume a small fixed-size set of allowed actions for 
the processes, specifications and contexts. A deterministic exponential time upper bound for all 
problems can be obtained from the solution method in [LX90b]. It still remains an open problem 
whether these problems are in PSPACE or not. 

Equations of form (2) when sat  is observation equivalence have been studied by Shields [Shi89], and 
by Parrow [Par89]. Both of these works impose restrictions on C and B to obtain methods and 
algorithms for a solution. Our results show that  the problems they consider are PSPACE-hard. The 
case when sa t  is trace equivalence has been treated by Merlin and Bochmann [MB83]. None of these 
works obtain any complexity results. 

A related design problem is that of constructing a system P which satisfies a given formula in a 
temporal logic. For linear time temporal logic this problem has been considered by Manna and 
Wolper [MW84] obtaining a PSPACE-complete problem, and in a different framework by Pnueli and 
Rossner [PR89] obtaining a double exponential time algorithm. For branching time temporal logic 
(CTL) the problem has been considered by Clarke and Emerson [CE82]. 

In the next section, we introduce our framework of processes, contexts and bisimulations. Section 
2 introduces modal transition systems and refinement. Section 3 presents the INEQ problem and 
states that it is PSPACF;-hard. The actual proof of this fact is found in the appendix, since the 
GENGEO problem and its reduction to INEQ are not needed for understanding the remainder of the 
paper. Section 4 contains the reduction from INEQ to EQ . Section 5 contains the reduction from 
EQ to CcsEQ . Section 6 presents a polynomial time solution to a subproblem of EQ . Finally we 
discuss open problems and future work. The appendix contains an outline of the proof that  INEQ is 
PSPACE-hard. For a version with complete proofs we refer the interested reader to [JL91]. 

1 B i s imula t ion  and Contex t s  

In this paper we follow the reactive view of concurrent systems advocated by Pnueli [Pnu85]. We 
describe concurrent systems (or processes) in terms of their interaction with their environment using 
the well-established model of 1shelled transition systems [Plo81]. 

Def in i t ion  1.1 A labelled transition system is a structure 7} = (W, A, ----~) where W is a set of  
processes (states or configurations), A is a set of  actions and ~ C_ W × A x W is a transition 
relation. 

N o t a t i o n  1.2 Let P = (W, A, ----~) be a labelled transition system. A derivation sequence d is a 
finite or infinite sequence of transitions of the form: 

d = P o - - ~ P 1 , P x - ~ P ~ , P ~ - ~ , P 3 , . . .  

which we shall often abbreviate to: 

d = ~ ~ ~ ~ . . .  

We say that  P0 is the initial process of the sequence d or that d is a derivation sequence for P0. 
Whenever a process Q appears in some derivation sequence of P we say that Q is a derivative of P.  
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We say that P is finite-state in case the set of its derivatives is finite. For L C A, we say that Q is 
L-reachabIe from P, if there exists a (finite) derivation sequence with P as initial process, Q as final 
process and with all actions occurring in the sequence belonging to the set L. 

For d = P0 - ~  P1 .2~  P2 _2~/)3.2~ . . .  a derivation sequence we denote by Proc(d) the sequence 
of processes PoP1P2Ps... and by Act(d) the sequence of actions aoala2a3 .... 

A computation for a process P is a derivation sequence with P as initial process and which is maximal 
under the prefix ordering. Hence, the last process of any finite computation must be dead-locked 
with respect to any action. We shall use the notation Comp(P) to denote the set of computations 
of P. o 

The notion of bisimulation [Par81, Mi183] provides a means of identifying processes based on their 
operational behaviour. In particular, processes at different descriptive levels of abstraction may be 
compared. 

Definit ion 1.3 Let 7 ) =" (W, A,---+) be a labelled transition system. Then a bisimulation 13 is a 
binary relation on W such that whenever ( P, Q) E 13 and a E A then the following holds: 

1. Whenever P ~ ~ : P', then Q --~ Q' for some Q' with (P' ,  Q') E 13, 

2. Whenever Q a> Q,, then P --~ P' for some P' with (P', Q') E B 

P and Q are said to be bisimilar in case (P~ Q) is contained in some bisimulation 13. We write P ~ Q 
in this case. 

A straightforward generalization allows us to compare processes from different transition systems 
(essentially by applying the above definition to disjoint sums of transition systems). Bisimulation 
treats all actions in A equally. One sometimes wants to distinguish between observable and unobserv- 
able actions, and define an analogous equivalence in which only the observable actions of transitions 
are significant. This is achieved by assuming that the action set A contains an unobservable action 
r. A labelled transition system P = (W, A,----*) now induces an observational transition system 
Po = (W, (A\{r}) O {e}, ==~), where P ==~ Q if and only if there is a (possibly empty) sequence 
P - -~  P1 - ~  "'" - -~  Q and P = ~  Q if and only if P = ~  P1 - -~  P2 ==~ Q for a E A\{r}.  We 
say that B is a weak bisimulation in case 13 is a bisimulation with respect to 7~o. We write P ~ Q 
whenever (P, Q) is contained in some weak bisimulation. The equivalence ~ is often referred to as 
observational equivalence. 

Process algebra [Mil80, Mi189~ Hoa78, BK85, Bou85] provides a framework for describing both the 
modular structure and the operational behaviour of reactive systems (or processes). In particular, 
a process algebra enables processes to be constructed (syntactically) through a number of operators 
(normally including some operator for parallel composition). Semantically, these operators are de- 
scribed through a number of inference-rules from which the operational behaviour of a composite 
process may be inferred from that of its components. In Figure 1 is shown the welt-known inference 
rifles for the parallel composition operator [ and the restriction operator \ L  (L C A) of CCS. 

p ~ + p ,  Q _ ~ Q ,  p _ Z + p ,  Q ~--LQ' p - - ~ p '  

P I Q - ~  P']Q P I Q - - %  PJQ'  P J Q - L ~  P, IQ, p \ L _ L ,  p , \ L  a'-a~ L 

Figure 1: Inference rules for ] and \L  of CCS 
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In process algebra, derived operators (or contexts) axe normally represented syntactically as terms 
with free variables possibly occurring. In order to facilitate a general investigation of the problem 
of equation solving, we introduced in [LX90a, LX90b] an operational theory of contexts in terms of 
action transducers. That is, a (unary) context is semantically viewed as an object which consumes 
actions provided by its internal process and in return produces actions for an external observer. We 
shall allow transductions in which the context produces actions on its own without involving the 
inner process, and also, we shall assume that the context may change during transductions. 

Definit ion 1.4 A context system C is a structure C = (K, A, --*), where K is a set of contexts, A 
is a set of actions, ~C K x (A0 × A) × K is a transduction relation, Ao = A [3 {0} with 0 being a 
distinguished no-action symbol (i.e. 0 ~ A). 

b C' For (C, (a, b), C') E---* we shall adopt the notation C --4 and interpret this as: "by consuming 
a 

the action a the context C can produce the action b and change into C'". For a = 0 the production 
of b does not involve consumption of any action. 

Example  1.5 Consider the CCS context P [ [ ] (we use [ ] as a free variable as this notation suggests 
the existence of a hole in which to place an argument process). The first inference rule of Figure 1 
indicates that P I[ ] may produce an action without consulting its argument process Q whenever P 

t t  g 

has transitions. Stated in terms of transductions, this can be expressed as P [[] -~ P I[] whenever 
tt I 

P ---* P .  The second inference rule of Figure 1 allows the inner process to interact directly with the 
environment without involving the context. As a transduction we have P 1[ ] "~ P I[ ] for any action 

tt 

a. Finally, the third inference rule of Figure 1 indicates that the context may produce a r-action as 
a result of an internal communication between the inner process (contributing ~) and the process P 

(contributing a). As a transduction this becomes P 1[] -~ P ' I [ ]  whenever P - ~  P' .  

Now consider a restriction context [ ]\L. Then the inference rule given for restriction in Figure 1 
t t  

may be represented as the transductions [ ] \L -~ [ ] \L  whenever a,~ ¢ L. D 

Now, given a (unary) context C and a process P we may syntactically form the combined process 
C(P) by substituting P for the free variable (normally denoted [ ]) in C. The semantics of C(P) is 

b C' such that if P - -~  P '  and C has an a-consuming transduction C --* then C(P) b ~  C'(P') should 
a 

b i 
hold. Also, whenever C ~ C,  i.e. C has a transduction which does not involve any consumption, 

0 

we require the transition C(P) ~ C'(P). Extending the transition relation for processes such that 
p 0 Q if and only if P = Q 1, the above expectations are both met by the following (single) 
inference rule for combined processes: 

C b .  C' p ..2_. p '  
tt 

c(P) ~ c,(P,) 
(3) 

For a combined process of the form D(C(P)), a combined context D o C may be defined from D and 
C (see [LX90a]) such that D(C(P)) = (D o C)(P). 

1Note, that this extension does not change which processes are bisimular. 
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2 Modal Transition Systems and Refinement 

Modal Transition Systems provides a (graphical) specification formalism for processes and is studied 
at length in [LT88, HL89, Lar90, BL90, LX90b]. By graphical specification formalism we mean 
a formalism which uses transition systems, in contrast to logical formalisms. The specifications 
expressible using Modal Transition Systems (Modal Specifications) typically impose restrictions on 
the transitions of possible implementations by telling which transitions are necessary and which are 
admissible. This is reflected by the structure of a Modal Transition System which contains two 
transition relations: ---~o for describing the required transitions and - - * o  for describing the allowed 
transitions. 

Def in i t ion  2.1 A modal transition system is a structure 8 = (Q, A, ---*o, - -~o) ,  where Q is a set of 
(modal) specifications, A is a set of actions and ---~o, -----,oC Q x A x Q are two transition relations 
satisfying the condition ----~oC_--,o. 

The condition -----+oC_----*o says that anything required is also allowed, ensuring that  any modal 
specification is consistent. A modal specification S is deterministic if T --%o T1 and T -2*0 T2 
implies T1 = T2 whenever T is a derivative of S. For a standard labelled transition system 7 ~ = 
(W, A,---~), we may consider the derived modal transition system 8 = (W, A,----~o,---~o), with 
---~o=---~o-----*; i.e. we view processes as modal specifications where all requirements are necessary 
o n e s .  

Now, the more a specification requires and the less it allows the stronger we expect the specification 
to be. Using the derivation relations ----*o and - - - ~  this may be formalized by the following notion 
of refinement. 

Defin i t ion  2.2 Let 8 = (Q, A , - - ~ o , - - - % )  be a modM transition system. A refinement T~ is a 
binary retation on Q such that whenever (S ,T)  E T~ and a E A then the following holds: 

I. Whenever S %o S', then T ---~o T'  for some T'  with (S',  T') E 7~, 

2. Whenever T - -~o T', then S ---~o S' for some S' with (S', T') E T~. 

S is said to be a refinement of  T in case (S, T) is contained in some refinement R. We write S <1 T 
in this case. 

As for bisimulation the notion of refinement may be generalized so that specifications from different 
modal transition systems can be compared. If P <1 S, where P is a process (viewed as a specification 
through the derived modal transition system) and S is a specification, we will say that P is an 
implementation of S. For P and Q processes it is easy to see that P <l Q becomes equivalent to 
P ~ Q .  

3 Inequation Solving 

The problem of Inequation Solving INEQ is defined as follows: 

Ins t ance :  A finite collection of pairs 

E = {(C. S~) [i e I} 

where I is a finite index set~ and for all i E I ,  Cl is a finite-state context and St is 
a finite-state modal specification. 
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Ques t ion :  Does there exist a process P such that the inequation C~(P) <1 Si is satisfied 
for all i E I?  

Let INEQ 1 be the subproblem of INEQ where only singleton collections are allowed. Despite the 
restriction, it  turns out that any instance {(Ct, St)li E I} of INEQ may be transformed (in polynomial 

time) into an equivalent instance (C, S) of INEQ 1 : simply let C --~ Ci and S -2~o St for all i E I 
0 

(assuming that the actions at are all different), then it is easy to see that the solutionsets coincide: 

{P J Vi e I. C~(P) <1 St) = {P [ C(P) <3 S} 

Let INEQa be the subproblem of INEQ , where the modal specifications of an instance are all required 
to be deterministic. 

T h e o r e m  3.1 The decision problems INEQ and INEQd axe both PSPACE-haxd. 

Proof i  As announced in the Introduction, we have transferred the proof of this theorem to the 
Appendix. The proof is a reduction from the known PSPACE-complete graph theoretical problem 
called Generalized Geography, GENGEO , in [GJ79]. Q 

From the remark in the beginning of this section it follows that also the decision problem INEQ 1 is 
PSPACE-hard. 

4 Equation Solving 

The problem of equation solving EQ is the subproblem of INEQ obtained by restricting the instances 
to be collections {(Ci, Qi) [ i E I}  where Qi is a process for all i e I (recall that any process can 
be viewed as a modal specification). The problem of INEQ then reduces to whether there exists a 
process P satisfying the equation Ct(P) "~ Qi for all i E I .  

The following lemma provides the basis for establishing PSPACE--haxdness of EQ : 

L e m m a  4.1 Let S be a deterministic, finite-state modal specification. Tfien there exSsts a context 
Cs and a process Qs such that for all processes P the following equivalence holds: 

P<1 S ¢* Us(P) ~ Qs 

Moreover, the size of both Cs and Qs is linear in the size of S, and Qs is deterministic. 

Proof i  For each specification S we define contexts Cs, Ds and a process Qs. We state just he 
inference rules defining the behaviours of Cs, Ds, and Qs in terms of that of S: 

S - - ~  S' S --Ao S' S 7z-%o S' S ~-5~o S - ~  S' S %o S' 
a a 

Cs --~ Cs, Cs ~ Ds, Cs -~ Ds --* Ds, Qs - ~  Qs, 
a 0 a 0 

where x is a new action symbol. The idea is that Cs is a context which behaves like the inner process 
P (by the leftmost rule). However, in case S does not require a transition, then Cs must be able 
to perform that transition even when its inner process cannot. This is attained by the transition to 
some Ds, (the second rule), whereafter Ds, behaves exactly like S'.  Finally, Cs prohibits disallowed 
moves by P by translating them to some distinguished action x. n 
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T h e o r e m  4.2 The decision problem EQ is PSPACE-hard. 

Proof :  let E = {(Ci, S~)[i e I} be an instance of INEQd • Then ~* = {(Cs~ o C ,  Qs~) ]i e I} is an 
instance of EQ and it follows from Lemma 4.1 that the solutionsets to ~ and E* coincide, and that 
the size of ~* is polynomial in the size of ~. [] 

Now, let EQlbe the subproblem of EQ where only singleton collections are allowed. Then PSPACE- 
hardness follows from the PSPACE-hardness of INEQ 1 . Also the subproblem EQa of EQ where only 
deterministic processes is allowed is PSPACE-hard as the process Qs constructed in Lemma 4.1 is 
deterministic provided S is. 

5 Equation Solving in Process Algebra 

In this section, we first consider the problem CCSEQ , which is the subproblem of EQlobtained by 
restricting the context C to be of the form (A I P ) \ L  for given A and L. We thereafter consider 
CcsOBs which is obtained from CcsEQ by replacing bisimulation equivalence N by observation 
equivalence ~-.. 

The problem CCSEQ is the following: 

Given (finite-state) processes A and B and a set of actions L, does there exist a process 
P satisfying the equation ( A [ P ) \ L  ,~ B. 

Just as for the problem INEQ 1 , it does not matter  whether we consider one equation or a collection 
of equations, represented by pairs {(A~,B~) i i e I} as long as the set L is the same in all equations. 
We can simply let A ~ Ai and B ~ Bi for all i E I for different ai 's which are not in L and do 
not occur elsewhere in any Bi. 

We shall prove that CcsEQ is PSPACE-haxd by a reduction from the problem EQ 1, presented in 
the previous section. The following lemma provides the basis for this result. 

L e m m a  5.1 Let C be a context and Q be a process. Let L be the union of the sorts of C and Q. 
Then there are processes Ac and BQ, such that for any process P: 

C(P) ~ Q ¢* ( A c I P \ L C ) \ L  ~ BQ 

Proof :  The sorts of Av and BQ will be the union of L, L' and {w}, where L' = {a' [ a E L} is 
a tagged copy of I ,  and w is a distinguished action. We just state the inference rules defining the 
transitions of Ae and BQ in terms of the transductions of C and the transitions of Q: 

C b--~C ' Q b_L,Q, 
u ~ v Ac -2-* N I L  BQ -Y-* N I L  

Ac --~ " - -*  Ac, BQ - ~  • ~-~ BQ, 

where N I L  is a process that can not perform any actions. Thus, any transduction of C corresponds 
to two consecutive transitions of Ac. Similarly, any transition of Q corresponds to a sequence of 
two transitions of BQ. In the rules above • abbreviates the intermediate states, having precisely one 
transition. The use of w is to insure that intermediate states are matched with intermediate states. 
D 

Theorem 5.2 The decision problem CcsEQ is PSPACE-hard. 



389 

Proof :  According to lemma 5.1 any EQlproblem can be reduced to an equation solving problem of 
the form: 

3P.(AIP\L~)\L ,,~ B 

which is equivalent to the existence of a process P satisfying (A IP) \L  ,.~ B and sort(P) C_ L. Now, 
the restriction that  the sort of P is included in L may be expressed by the following extra equation 
(UIP) \L  ,,~ V, where: 

V = ~ (-~.w.V + a.w.V + r.w.V) 
aEL 

V = r.w.V 

w being a distinguished action not in L. Using the technique described above, the two equations 
(A IP) \L  ,'~ B and (UIP) \L  ~ Y can be combined into one equation, whence an instance of 
CCSEQ . D 

An alternative reduction shows that CcsEQ is PSPACE-hard even for instances where the right- 
hand process is restricted to a deterministic process. 

Next we consider the problem CcsOBs , which is similar to CCsEQ except that the satisfaction 
relation is that of observation equivalence weak bisimularity. That is the problem is: 

Given (t~nite--state) processes A and B and a set of actions L, does there exist a process 
P satisfying the equation (A I P) \L  ~ B. 

We shall prove that CCsOBs is PSPACE-hard by a reduction from the problem CCSEQ . 

Define the rigidification Pr of a process P as the process which has behaviour as follows: P, - ~  Q if 
and only if P = ~  P '  and Q = P" where a ~ r .  Note that P, is rigid in the sense that no derivative 
of P~ has T-transitions. 

L e m m a  5.3 Let Ac, BQ and L be as in the proof of Lemma 5.1. Then for any process P with 
sort(P) C L the following holds: 

(Av I P) \L  ~, BQ =~ (Av I Pr)\L ,,, BQ 

T h e o r e m  5.4 The decision problem CCSOBs is PSPACE-hard. 

Proof i  Let Ao, BQ and L be as in the proof of Lemma 5.1. As ~ is a weaker equivalence than ~ it 
follows that 

3P. (Ao [P)\L ,,~ BQ ::~ 3P. (Ac I P) \L  ~ BQ 

The opposite implication follows from Lemma 5.3. Thus the two sides in the implication are equiv- 
alent, whence the theorem follows from Theorem 5.2. D 

6 Polynomial Equation Solving 

As argued in the Introduction both equation and inequation solving occur during (top-down) devel- 
opment of concurrent systems. As such it is important to find conditions under which these problems 
may be dealt with efficiently. In this section we identify conditions on contexts which will induce a 
subproblem of Eqlwhich is solvable in polynomial time. 
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bl b2 
Def in i t ion  6.1 A context C is deterministic if D --* D1 and D -~ D2 implies bl = b2 and D1 = D2 

et 

for any derivative D of C. 

Def in i t ion  6.2 Let P = (S, A, ---+) be a labelled transition system and let C = (K, A, ---~) be a 
context system. A consistency retation lC is a subset of K x S such that whenever (C, Q) E tC then 
the following holds: 

b i b t 
Whenever Q ~ Q,  then C --* C for some a, C' such that ( C', Q') E K.. 

tt  

We say that C and P are consistent if ( C, P) is contained in some consistency relation. 

Note that the notion of consistency is very similar to that of simulation (being "half" of bisimulation 
[Mi189]) for which there is a well-known polynomial time decision procedure [KS]. For deterministic 
contexts the notion of consistency captures exactly that of solvability: 

T h e o r e m  6.3 Let C be a deterministic context and Q a process. Then there exists a process P 
such that C(P) .~ Q if  and only i f  C and Q are consistent. 

Proof :  
=~ Let K; = {(C, Q) I3P.C(P) ~ Q}. We show that /C is a consistency relation. So let (C, Q) E K; 

and let Q b_~ Q,. Now assume C(P) ~ Q, then C(P) b_~ R with R ~ Q'. According to the rule 
b 

of inference for combined processes, C --~ C r and P - ~  P '  for some a, C" and P '  with R = C'(P'). 
a 

Obviously, (C', Q') E ]c. 

¢= Let/C be a consistency relation. Define a transition system with states Po,O for (C, Q) E ]C and 
transtions: 

Pc.~ - ~  Po,.~, ¢,,x 3b.Q b_L Q, A C & C, 
c~ 

Then C(Po,Q) "-~ Q for all (C, Q) E ]C. To see this we show that  the relation below is a bisimulation: 

13 = {(C(Pc,Q), Q) [ (C, Q) E It} 

Let (C(Pc,Q),Q) E B and assume Q - ~  Q' As (C,Q) E ~2, C b_~ C'  with (C' ,Q')  E /C for 
a 

some a, C'. But then PC,Q _L. PC',Q,. Hence, using the inference rule for combined processes, 
5 t 

C(Pc,Q) b~ C'(Pc,,Q,) and clearly (C'(Pc,,Q,), Q') E B. Let C(Po,Q) ~ R. That is C --~ C and 
a 

Po, Q _2.. Pc',Q" for some a, C '  and PC,,Q,. Now according to the definition of Pc,o's transtions 

b' V Q,, b'. b' C --* C" and Q ~ for some But as C is assumed to be deterministic it follows that b = 
a 

• b Q .  and C'  = C". Thus R = C'(Pc,.Q,,) and obwously Q ~ is a matching transition. [] 

Since consistency relations can be found in polynomial time, we get the following theorem. 

T h e o r e m  6.4 Let 6' be a deterministic context and Q a process• Then the problem whether there 
exists a process P such that C(P) ~ Q can be decided in polynomial time. 

Examples of deterministic contexts are: 

• the CCS context (A [ [ ]) \L, where A is deterministic and rigid (i.e. the derivatives of A have 
no internal transitions) and the sort of A is included in L, 

* the CSP [BHR84] context All[ ], where A is a deterministic process. 



391 

Open Problems and Future Work 

This paper leaves as open problems whether or not the decision problems INEQ and EQ are members 
of PSPACE. The problems can all be solved in single exponential time, using the procedure proposed 
by Larsen and Xinxin [LX90b]. This procedure involves checking for consistency in a (disjunctive) 
modal transition system with an exponential size in that of the underlying context and process. 

On the positive side, a more careful examination shows that the procedure for EQ presented in 
[LX90b] has time complexity exponential in the size of the contexts but polynomial in the size of the 
processes. Thus, equation systems with small or bounded size contexts may be dealt with efficiently. 

As for future work we should like to continue the work of Section 6 in identifying more liberal 
conditions on contexts which will make (in)equation solving efficient. 
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A P r o o f  that  INEQ is P S P A C E - h a r d  

A . 1  T h e  G e n e r a l i z e d  G e o g r a p h y  P r o b l e m  

Definit ion A.1 A rooted, directed graph is a structure G = (V,E, vo), where V is a (finite) set of 
vertices, E C_ V × V is a set of edges and Vo C V is the root (the initial vertex). 

Let G = (V, E, v0) be a rooted, directed graph. For e = (u, v) E E we write hde for v and tle 
for u. A path of G is any finite sequence p = e0ele2.., e=, where tleo = Vo and hdel = tle~+l 
for all i E [0, hi. We write Path(G) for the set of paths of G. For e E E we define the set 
Follow(e) = { f  E E I hde = tlf}. Also, Init = {e E E ] tie = vo}. In fact, a sequence of edges 
e0ele2.., e~ is a path of G just in case e0 E Init and ei+1 E Follow(el) for all i E [0, n[. 

Given a rooted, directed graph G = (V, E, v0) the (two-player) Generalized Geography game on G 
is played according to the following rules [GJ79]: 

The two players alternate choosing a new edge from E. The first edge chosen (by player 
1) must have its tail at v0 and each subsequently chosen edge must have its tail at the 
vertex that was the head of the previous edge, and must not have been previously chosen 
in the game. The first player unable to choose such a new edge loses. 

Now, the Generalized Geography problem GENGEO may be described as below. Also, we recall from 
[G J79] that GENGEO is PSPACE-complete. 

Ins tance :  A rooted, directed graph G. 

Quest ion:  Does player 1 have a forced win in the Generalized Geography game played 
on G? 

We want to reformulate (or formalize) the GENGEO problem into a question of existence of a process 
(of some labelled transition system) expressing in an explicit way a winning strategy for player 1 on 
a given graph G. Thus, let G = (V, E, v0) be a rooted, directed graph and let P be a process of some 
labelled transition system with E as action set. Then: 

P respects G if Act(d) is a path of G for any finite derivation sequence d of P. 

P obeys the GENGEO game if the actions (i.e. edges of G) occurring in any derivation 
sequence of P are all different. 

The idea is that the computations of P should correspond to complete GENGEO games on G (with 
player 1 as winner if the length of the computation is odd). Now, we want P to capture several 
GENGEO games; in particular we want P to provide player 1 with a strategy for any legal move of 
the opponent: 
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P provides a strategy wlth respect to G if whenever 

P ~-~Pl-~p2-~. . . -~pj  

is an odd length derivation sequence of P, then for any e 6 Follow(ei)\{e0, . . . .  e1}: 

p~ --% p~ j+l 

for some P~+I- 

Here Follow(e¢)\{e0,..., e~} is the set of legal moves of the opponent (only new edges can be chosen), 
and P~+I describes player l 's  strategy after the move e. Finally, P should only contain computations 
with player 1 as winner. I.e.: 

P provides a winning strategy with respect to G i fP  respects G, obeys the GENGEO game 
and provides a strategy wrt. G such that all computations of P has odd length. 

We now reformulate (or formalize) the GENGEO problem as follows: 

Ins tance:  A rooted, directed graph G. 

Quest ion:  Does there exist a process P providing a winning strategy with respect to G? 

A.2 Inequation Solving 

We recall that the problem of Inequation Solving INF__~ is defined as follows: 

Ins tance:  A finite collection of pairs 

= {(C,, S,) l i 6 I}  

where I is a finite index set~ and for all i E I,  Ci is a finite-state context and Si is 
a finite-state modal specification. 

Quest ion:  Does there exist a process P such that the inequation C~(P) <I S~ is satisfied 
for all i 6 I?  

In the remainder of this section we shall show how to transform (in polynomial time) any instance 
G = (V,E, vo) of GENGEO into an equivalent instance ga of INEQ . That is: there will be a 
winning strategy for player 1 on G just in case the inequation system Ea has a solution. In fact, 
the transformation offered will be such that the solutionset to Ea is exactly the winning strategies 
with respect to G. As GENGEO is a PSPACE-complete decision problem it will follow that INEQ is 
PSPACE--hard! Whether or not INEQ is in PSPACE is as yet an open problem on which we shall 
comment in the conclusion. 

In the remainder of this section let G = (V, E, v0) be a given rooted, directed graph. We construct, 
in the following lemmas, inequation systems which will be equivalent to the four conditions on a 
winning strategy for G. For full proofs we refer to [JL91]. 
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L e m m a  A . 2  For e E E let C~ and S~ have the following behaviours 2 . 

C' C" ~ S~ S' 

where x and y are different actions. Also let CI and SI be defined by: 

Y 

Then P is a solution to the inequation system: 

e~ = {(cy, sY) l~ e E} u {(c,, s,)} 

i f  and only i f  P respects G. 

L e m m a  A.3  For e E g let 0~  and S~ have the following behavious: 

x 
> x z E ~_ v_ y 

¢ e 

E 

where x , y , z ,  v axe all c////'erent actions. Then P is a solution to the inequation system: 

eo = {(c~, s~) I ~ e E} 

i f  and only i f  P obeys the GENGEO game. 

L e m m a  A . 4  For e E E and f E Follow(e)\{e} let C~,I and S~,f have the following behaviours: 

f~ T z x 

c'~,: s'o,: 

s.:; ,f Z N.,, 

2If, for B1, Bz C_ E, ~ labels an edge between contexts C and D, this means by convention that C ~-* D for any 
a 

a E B1 and b E B2. Singleton sets over t[ are identified with their element. For a set .4, A ~ denotes the complementary 
set. 



396 

with x , y , z  being different actions. Then P is a solution to the inequation system: 

8's = {(C,,S, S,,f) ] e E E,  f E Follow(e)\{e)} 

i f  and only i f  P provides a strategy wi~h respect to G. 

L e m m a  A.5 Let Co and So have the following behaviours: 

co & 

E -~ Y x 

where x and y are different actions. Then P is a solution to the (singleton) inequationsystem: 

eo = {(co, so)} 

i f  and only i f  all finite computations of P has odd length. 

We can now state and prove Theorem 3.1. 

T h e o r e m  A.6  The decision problems INEQ and INEQd are both PSPACE-hard. 

Proof :  It follows easily from Lemma A.2 - A.5 that P is a solution to the inequation system 
£ = CR U Ca U £s U £o if and only if P provides a winning strategy with respect to G. Thus PSPACE- 
hardness of INEQ follows directly from PSPACE-c_x)mpleteness of GENGEo and the fact that the 
inequation system constructed by Lemma A.2 - A.5 has polynomial size relative to the original 
graph. PSPACE-hardness of INEQ~ follows by noting that the modal specifications of inequations 
constructed in Lemmas A.2 - A.5 are all deterministic. [] 


