
On the Complexity of Equation Solving
in Process Algebra

Bengt Jonsson
Swedish Institute of Computer Science *

Kim Guldstrand Larsen
Aalborg University, Denmark t

Abs t rac t

The problem of designing a system which in a given environment C should satisfy a given
specification S can be formulated as "find a system P such that C(P) satisfies the specification
S ' . In process algebra, such problems take the form of equations. We investigate the complexity
of solving such equations in process algebra. We consider the problem of deciding whether there
is a process P which satisfies an equation of one of the following forms:

C(P) ~ Q C(P) <1 S (AIP)\L ~ B (AIP)\L ~ B

where C is an arbitrary context of some process algebra, A, B and Q are given processes, S is a
modal specification, ,,~ (~) is (weak) bisimulation equivalence, <1 is refinement between modal
specifications (a generalization of bisimulation equivalence), and [and \L is the parallel and
restriction operator of CCS respectively. The main result is that all four problems axe PSPACE-
hard in the size of the given contexts, processes and specifications. We also give constraints
under which the first and third problem can be solved in polynomial time.

Introduction

One of the most difficult and important problems in computer science is to develop methods for
design and construction of concurrent systems. One way of automating the problem is to formulate
the design problem as a model construction problem, "find a system P which satisfies a specification
S," for which automatic decision procedures can be found. The specification S can for instance be
a formula in temporal logic as in [MW84, PR89, CE82], or an abstract system as in [KS].

In this paper, we consider the case where the specification S does not specify the system P directly,
but rather P placed in a given environment. Process algebra provides an elegant way to represent
such environments formally as contexts. The design problem is then formulated as the problem of
finding a system P which satisfies

C(P) sat S (1)

where C is a context representing the given environment, and sa t is a suitably chosen satisfaction
relation. As an exaznple, S can be an abstract system which specifies a system in which P is an

*Full Address: Bengt Jonsson, Swedish Institute of Computer Science, Box 1263, 164 28 Kista, Sweden. E-mail:
bengt@sics.se. Supported in part by the Swedish Board for Technical Development (STU) under contract No. 89-
01220P as part of Esprit BRA project SPEC, No. 3096

?Full Address: Kim Guldstrand Larsen, Aalborg University, Department of Mathematics and Computer Science,
Fredrik Bajersvej 7, 9220 Aalborg, Denmark. E-mail: kgl@iesd.auc.dk

382

unknown component which executes in parallel with several other known components, represented
by the system A. This problem can be formulated in CCS [Mit89] as finding P which satisfies

(A IP) \L sat S (2)

and a restriction on which actions P may use. Here L is the set of actions over which A and P
communicate. The operation I puts two systems in parallel, and the operation \ L makes the actions
in the set L internal and unobservable,

Methods for solving (2) have been presented by Shields [Shi89], by Parrow [Par89], by Lewis and Qin
[LQ90] and by Merlin and Bochmann [MB83]. For the more general problem (1), Larsen and Xinxin
[LX90b] have developed a language-independent theory of contexts in process algebra, in which they
give a characterization of the solutions of (1) with sat being bisimulation equivalence, which induces
a single exponential time decision algorithm.

Common to all proposed methods [Shi89, Par89, MB83, LX90b, LQ90] is that the proposed algo-
rithms require exponential time, even in spite of the fact that they impose restrictions on the involved
contexts and processes. No restrictions have been presented under which the problem can be solved
in polynomial time, and there have not been presented any lower bounds on the complexity of the
problem.

In this paper, we establish lower bounds on the complexity of solving equations of form (1) and
(2), and also present some restrictions under which the equations can be solved in polynomial time.
We consider three different satisfaction relations sat in (1): bisimulation equivalence, ~ and weak
bisimulation or observational equivalence, ~, with S being a system, and modal refinement, <1, where
S is a modal specification. The equivalences ~ and ~ are well-established and often used satisfaction
relations for the correctness of concurrent systems [BK84, Koo85, LM87, Par87, SFD85]. Modal
refinement <1 is a generalization of bisimulation equivalence: a modal specification can distinguish
between mandatory and optional transitions, thus allowing more loose specifications [LT88, HL89,
Lar90, BL90].

The main decision problems that we consider are the following:

CcsEQ Given (finite-state) systems A and B and a set of actions L, does there exist
any process P satisfying the equation (A IP) \L ~ B.

CCSOBS is the same as CCsEQ but for observation equivalence ~.

EQ Given a (finite-state) context C and a (finite-state) transition system Q, does there
exist any process P satisfying the equation C(P) ,'~ Q?

INEQ Given a (finite-state) context C and a (finite-state) modal transition system S,
does there exist any process P satisfying the inequation C(P) <l S?

Also we are concerned with the identification of subclasses of the above problems that are solvable
in polynomial time. The results concerning these problems that we obtain are:

• The problems CCSEQ and CCSOBS are PSPACE-hard in the size of A and B.

• The problems EQ and INEQ are PSPACE-hard in the size of C and S (C and Q for EQ), even
in the case where S (Q in EQ) is deterministic.

• Under certain conditions on the context C, we obtain a subproblem of EQ which is solvable in
polynomial time. This also yields conditions under which the problem CcsEQ is solvable in
polynomial time.

383

The lower bounds are obtained through a series of reductions from the known PSPACE-complete
graph theoretical problem called Generalized Geography, GENGEO , in [GJ79]. The series of reduc-
tions is the following:

GENGEO ----* INEQ ~ EQ ----+ CCsEQ ---* CCSOBS

All problems are PSPACE-hard even when we assume a small fixed-size set of allowed actions for
the processes, specifications and contexts. A deterministic exponential time upper bound for all
problems can be obtained from the solution method in [LX90b]. It still remains an open problem
whether these problems are in PSPACE or not.

Equations of form (2) when sat is observation equivalence have been studied by Shields [Shi89], and
by Parrow [Par89]. Both of these works impose restrictions on C and B to obtain methods and
algorithms for a solution. Our results show that the problems they consider are PSPACE-hard. The
case when sa t is trace equivalence has been treated by Merlin and Bochmann [MB83]. None of these
works obtain any complexity results.

A related design problem is that of constructing a system P which satisfies a given formula in a
temporal logic. For linear time temporal logic this problem has been considered by Manna and
Wolper [MW84] obtaining a PSPACE-complete problem, and in a different framework by Pnueli and
Rossner [PR89] obtaining a double exponential time algorithm. For branching time temporal logic
(CTL) the problem has been considered by Clarke and Emerson [CE82].

In the next section, we introduce our framework of processes, contexts and bisimulations. Section
2 introduces modal transition systems and refinement. Section 3 presents the INEQ problem and
states that it is PSPACF;-hard. The actual proof of this fact is found in the appendix, since the
GENGEO problem and its reduction to INEQ are not needed for understanding the remainder of the
paper. Section 4 contains the reduction from INEQ to EQ . Section 5 contains the reduction from
EQ to CcsEQ . Section 6 presents a polynomial time solution to a subproblem of EQ . Finally we
discuss open problems and future work. The appendix contains an outline of the proof that INEQ is
PSPACE-hard. For a version with complete proofs we refer the interested reader to [JL91].

1 B i s imula t ion and Contex t s

In this paper we follow the reactive view of concurrent systems advocated by Pnueli [Pnu85]. We
describe concurrent systems (or processes) in terms of their interaction with their environment using
the well-established model of 1shelled transition systems [Plo81].

Def in i t ion 1.1 A labelled transition system is a structure 7} = (W, A, ----~) where W is a set of
processes (states or configurations), A is a set of actions and ~ C_ W × A x W is a transition
relation.

N o t a t i o n 1.2 Let P = (W, A, ----~) be a labelled transition system. A derivation sequence d is a
finite or infinite sequence of transitions of the form:

d = P o - - ~ P 1 , P x - ~ P ~ , P ~ - ~ , P 3 , . . .

which we shall often abbreviate to:

d = ~ ~ ~ ~ . . .

We say that P0 is the initial process of the sequence d or that d is a derivation sequence for P0.
Whenever a process Q appears in some derivation sequence of P we say that Q is a derivative of P.

384

We say that P is finite-state in case the set of its derivatives is finite. For L C A, we say that Q is
L-reachabIe from P, if there exists a (finite) derivation sequence with P as initial process, Q as final
process and with all actions occurring in the sequence belonging to the set L.

For d = P0 - ~ P1 .2~ P2 _2~/)3.2~ . . . a derivation sequence we denote by Proc(d) the sequence
of processes PoP1P2Ps... and by Act(d) the sequence of actions aoala2a3

A computation for a process P is a derivation sequence with P as initial process and which is maximal
under the prefix ordering. Hence, the last process of any finite computation must be dead-locked
with respect to any action. We shall use the notation Comp(P) to denote the set of computations
of P. o

The notion of bisimulation [Par81, Mi183] provides a means of identifying processes based on their
operational behaviour. In particular, processes at different descriptive levels of abstraction may be
compared.

Definit ion 1.3 Let 7) =" (W, A,---+) be a labelled transition system. Then a bisimulation 13 is a
binary relation on W such that whenever (P, Q) E 13 and a E A then the following holds:

1. Whenever P ~ ~ : P', then Q --~ Q' for some Q' with (P' , Q') E 13,

2. Whenever Q a> Q,, then P --~ P' for some P' with (P', Q') E B

P and Q are said to be bisimilar in case (P~ Q) is contained in some bisimulation 13. We write P ~ Q
in this case.

A straightforward generalization allows us to compare processes from different transition systems
(essentially by applying the above definition to disjoint sums of transition systems). Bisimulation
treats all actions in A equally. One sometimes wants to distinguish between observable and unobserv-
able actions, and define an analogous equivalence in which only the observable actions of transitions
are significant. This is achieved by assuming that the action set A contains an unobservable action
r. A labelled transition system P = (W, A,----*) now induces an observational transition system
Po = (W, (A\{r}) O {e}, ==~), where P ==~ Q if and only if there is a (possibly empty) sequence
P - -~ P1 - ~ "'" - -~ Q and P = ~ Q if and only if P = ~ P1 - -~ P2 ==~ Q for a E A\{r}. We
say that B is a weak bisimulation in case 13 is a bisimulation with respect to 7~o. We write P ~ Q
whenever (P, Q) is contained in some weak bisimulation. The equivalence ~ is often referred to as
observational equivalence.

Process algebra [Mil80, Mi189~ Hoa78, BK85, Bou85] provides a framework for describing both the
modular structure and the operational behaviour of reactive systems (or processes). In particular,
a process algebra enables processes to be constructed (syntactically) through a number of operators
(normally including some operator for parallel composition). Semantically, these operators are de-
scribed through a number of inference-rules from which the operational behaviour of a composite
process may be inferred from that of its components. In Figure 1 is shown the welt-known inference
rifles for the parallel composition operator [and the restriction operator \ L (L C A) of CCS.

p ~ + p , Q _ ~ Q , p _ Z + p , Q ~--LQ' p - - ~ p '

P I Q - ~ P']Q P I Q - - % PJQ' P J Q - L ~ P, IQ, p \ L _ L , p , \ L a'-a~ L

Figure 1: Inference rules for] and \L of CCS

385

In process algebra, derived operators (or contexts) axe normally represented syntactically as terms
with free variables possibly occurring. In order to facilitate a general investigation of the problem
of equation solving, we introduced in [LX90a, LX90b] an operational theory of contexts in terms of
action transducers. That is, a (unary) context is semantically viewed as an object which consumes
actions provided by its internal process and in return produces actions for an external observer. We
shall allow transductions in which the context produces actions on its own without involving the
inner process, and also, we shall assume that the context may change during transductions.

Definit ion 1.4 A context system C is a structure C = (K, A, --*), where K is a set of contexts, A
is a set of actions, ~C K x (A0 × A) × K is a transduction relation, Ao = A [3 {0} with 0 being a
distinguished no-action symbol (i.e. 0 ~ A).

b C' For (C, (a, b), C') E---* we shall adopt the notation C --4 and interpret this as: "by consuming
a

the action a the context C can produce the action b and change into C'". For a = 0 the production
of b does not involve consumption of any action.

Example 1.5 Consider the CCS context P [[] (we use [] as a free variable as this notation suggests
the existence of a hole in which to place an argument process). The first inference rule of Figure 1
indicates that P I[] may produce an action without consulting its argument process Q whenever P

t t g

has transitions. Stated in terms of transductions, this can be expressed as P [[] -~ P I[] whenever
tt I

P ---* P . The second inference rule of Figure 1 allows the inner process to interact directly with the
environment without involving the context. As a transduction we have P 1[] "~ P I[] for any action

tt

a. Finally, the third inference rule of Figure 1 indicates that the context may produce a r-action as
a result of an internal communication between the inner process (contributing ~) and the process P

(contributing a). As a transduction this becomes P 1[] -~ P ' I [] whenever P - ~ P' .

Now consider a restriction context []\L. Then the inference rule given for restriction in Figure 1
t t

may be represented as the transductions [] \L -~ [] \L whenever a,~ ¢ L. D

Now, given a (unary) context C and a process P we may syntactically form the combined process
C(P) by substituting P for the free variable (normally denoted []) in C. The semantics of C(P) is

b C' such that if P - -~ P ' and C has an a-consuming transduction C --* then C(P) b ~ C'(P') should
a

b i
hold. Also, whenever C ~ C, i.e. C has a transduction which does not involve any consumption,

0

we require the transition C(P) ~ C'(P). Extending the transition relation for processes such that
p 0 Q if and only if P = Q 1, the above expectations are both met by the following (single)
inference rule for combined processes:

C b . C' p ..2_. p '
tt

c(P) ~ c,(P,)
(3)

For a combined process of the form D(C(P)), a combined context D o C may be defined from D and
C (see [LX90a]) such that D(C(P)) = (D o C)(P).

1Note, that this extension does not change which processes are bisimular.

386

2 Modal Transition Systems and Refinement

Modal Transition Systems provides a (graphical) specification formalism for processes and is studied
at length in [LT88, HL89, Lar90, BL90, LX90b]. By graphical specification formalism we mean
a formalism which uses transition systems, in contrast to logical formalisms. The specifications
expressible using Modal Transition Systems (Modal Specifications) typically impose restrictions on
the transitions of possible implementations by telling which transitions are necessary and which are
admissible. This is reflected by the structure of a Modal Transition System which contains two
transition relations: ---~o for describing the required transitions and - - * o for describing the allowed
transitions.

Def in i t ion 2.1 A modal transition system is a structure 8 = (Q, A, ---*o, - -~o) , where Q is a set of
(modal) specifications, A is a set of actions and ---~o, -----,oC Q x A x Q are two transition relations
satisfying the condition ----~oC_--,o.

The condition -----+oC_----*o says that anything required is also allowed, ensuring that any modal
specification is consistent. A modal specification S is deterministic if T --%o T1 and T -2*0 T2
implies T1 = T2 whenever T is a derivative of S. For a standard labelled transition system 7 ~ =
(W, A,---~), we may consider the derived modal transition system 8 = (W, A,----~o,---~o), with
---~o=---~o-----*; i.e. we view processes as modal specifications where all requirements are necessary
o n e s .

Now, the more a specification requires and the less it allows the stronger we expect the specification
to be. Using the derivation relations ----*o and - - - ~ this may be formalized by the following notion
of refinement.

Defin i t ion 2.2 Let 8 = (Q, A , - - ~ o , - - - %) be a modM transition system. A refinement T~ is a
binary retation on Q such that whenever (S ,T) E T~ and a E A then the following holds:

I. Whenever S %o S', then T ---~o T' for some T' with (S', T') E 7~,

2. Whenever T - -~o T', then S ---~o S' for some S' with (S', T') E T~.

S is said to be a refinement of T in case (S, T) is contained in some refinement R. We write S <1 T
in this case.

As for bisimulation the notion of refinement may be generalized so that specifications from different
modal transition systems can be compared. If P <1 S, where P is a process (viewed as a specification
through the derived modal transition system) and S is a specification, we will say that P is an
implementation of S. For P and Q processes it is easy to see that P <l Q becomes equivalent to
P ~ Q .

3 Inequation Solving

The problem of Inequation Solving INEQ is defined as follows:

Ins t ance : A finite collection of pairs

E = {(C. S~) [i e I}

where I is a finite index set~ and for all i E I , Cl is a finite-state context and St is
a finite-state modal specification.

387

Ques t ion : Does there exist a process P such that the inequation C~(P) <1 Si is satisfied
for all i E I?

Let INEQ 1 be the subproblem of INEQ where only singleton collections are allowed. Despite the
restriction, it turns out that any instance {(Ct, St)li E I} of INEQ may be transformed (in polynomial

time) into an equivalent instance (C, S) of INEQ 1 : simply let C --~ Ci and S -2~o St for all i E I
0

(assuming that the actions at are all different), then it is easy to see that the solutionsets coincide:

{P J Vi e I. C~(P) <1 St) = {P [C(P) <3 S}

Let INEQa be the subproblem of INEQ , where the modal specifications of an instance are all required
to be deterministic.

T h e o r e m 3.1 The decision problems INEQ and INEQd axe both PSPACE-haxd.

Proof i As announced in the Introduction, we have transferred the proof of this theorem to the
Appendix. The proof is a reduction from the known PSPACE-complete graph theoretical problem
called Generalized Geography, GENGEO , in [GJ79]. Q

From the remark in the beginning of this section it follows that also the decision problem INEQ 1 is
PSPACE-hard.

4 Equation Solving

The problem of equation solving EQ is the subproblem of INEQ obtained by restricting the instances
to be collections {(Ci, Qi) [i E I} where Qi is a process for all i e I (recall that any process can
be viewed as a modal specification). The problem of INEQ then reduces to whether there exists a
process P satisfying the equation Ct(P) "~ Qi for all i E I .

The following lemma provides the basis for establishing PSPACE--haxdness of EQ :

L e m m a 4.1 Let S be a deterministic, finite-state modal specification. Tfien there exSsts a context
Cs and a process Qs such that for all processes P the following equivalence holds:

P<1 S ¢* Us(P) ~ Qs

Moreover, the size of both Cs and Qs is linear in the size of S, and Qs is deterministic.

Proof i For each specification S we define contexts Cs, Ds and a process Qs. We state just he
inference rules defining the behaviours of Cs, Ds, and Qs in terms of that of S:

S - - ~ S' S --Ao S' S 7z-%o S' S ~-5~o S - ~ S' S %o S'
a a

Cs --~ Cs, Cs ~ Ds, Cs -~ Ds --* Ds, Qs - ~ Qs,
a 0 a 0

where x is a new action symbol. The idea is that Cs is a context which behaves like the inner process
P (by the leftmost rule). However, in case S does not require a transition, then Cs must be able
to perform that transition even when its inner process cannot. This is attained by the transition to
some Ds, (the second rule), whereafter Ds, behaves exactly like S'. Finally, Cs prohibits disallowed
moves by P by translating them to some distinguished action x. n

388

T h e o r e m 4.2 The decision problem EQ is PSPACE-hard.

Proof : let E = {(Ci, S~)[i e I} be an instance of INEQd • Then ~* = {(Cs~ o C , Qs~)]i e I} is an
instance of EQ and it follows from Lemma 4.1 that the solutionsets to ~ and E* coincide, and that
the size of ~* is polynomial in the size of ~. []

Now, let EQlbe the subproblem of EQ where only singleton collections are allowed. Then PSPACE-
hardness follows from the PSPACE-hardness of INEQ 1 . Also the subproblem EQa of EQ where only
deterministic processes is allowed is PSPACE-hard as the process Qs constructed in Lemma 4.1 is
deterministic provided S is.

5 Equation Solving in Process Algebra

In this section, we first consider the problem CCSEQ , which is the subproblem of EQlobtained by
restricting the context C to be of the form (A I P) \ L for given A and L. We thereafter consider
CcsOBs which is obtained from CcsEQ by replacing bisimulation equivalence N by observation
equivalence ~-..

The problem CCSEQ is the following:

Given (finite-state) processes A and B and a set of actions L, does there exist a process
P satisfying the equation (A [P) \ L ,~ B.

Just as for the problem INEQ 1 , it does not matter whether we consider one equation or a collection
of equations, represented by pairs {(A~,B~) i i e I} as long as the set L is the same in all equations.
We can simply let A ~ Ai and B ~ Bi for all i E I for different ai 's which are not in L and do
not occur elsewhere in any Bi.

We shall prove that CcsEQ is PSPACE-haxd by a reduction from the problem EQ 1, presented in
the previous section. The following lemma provides the basis for this result.

L e m m a 5.1 Let C be a context and Q be a process. Let L be the union of the sorts of C and Q.
Then there are processes Ac and BQ, such that for any process P:

C(P) ~ Q ¢* (A c I P \ L C) \ L ~ BQ

Proof : The sorts of Av and BQ will be the union of L, L' and {w}, where L' = {a' [a E L} is
a tagged copy of I , and w is a distinguished action. We just state the inference rules defining the
transitions of Ae and BQ in terms of the transductions of C and the transitions of Q:

C b--~C ' Q b_L,Q,
u ~ v Ac -2-* N I L BQ -Y-* N I L

Ac --~ " - -* Ac, BQ - ~ • ~-~ BQ,

where N I L is a process that can not perform any actions. Thus, any transduction of C corresponds
to two consecutive transitions of Ac. Similarly, any transition of Q corresponds to a sequence of
two transitions of BQ. In the rules above • abbreviates the intermediate states, having precisely one
transition. The use of w is to insure that intermediate states are matched with intermediate states.
D

Theorem 5.2 The decision problem CcsEQ is PSPACE-hard.

389

Proof : According to lemma 5.1 any EQlproblem can be reduced to an equation solving problem of
the form:

3P.(AIP\L~)\L ,,~ B

which is equivalent to the existence of a process P satisfying (A IP) \L ,.~ B and sort(P) C_ L. Now,
the restriction that the sort of P is included in L may be expressed by the following extra equation
(UIP) \L ,,~ V, where:

V = ~ (-~.w.V + a.w.V + r.w.V)
aEL

V = r.w.V

w being a distinguished action not in L. Using the technique described above, the two equations
(A IP) \L ,'~ B and (UIP) \L ~ Y can be combined into one equation, whence an instance of
CCSEQ . D

An alternative reduction shows that CcsEQ is PSPACE-hard even for instances where the right-
hand process is restricted to a deterministic process.

Next we consider the problem CcsOBs , which is similar to CCsEQ except that the satisfaction
relation is that of observation equivalence weak bisimularity. That is the problem is:

Given (t~nite--state) processes A and B and a set of actions L, does there exist a process
P satisfying the equation (A I P) \L ~ B.

We shall prove that CCsOBs is PSPACE-hard by a reduction from the problem CCSEQ .

Define the rigidification Pr of a process P as the process which has behaviour as follows: P, - ~ Q if
and only if P = ~ P ' and Q = P" where a ~ r . Note that P, is rigid in the sense that no derivative
of P~ has T-transitions.

L e m m a 5.3 Let Ac, BQ and L be as in the proof of Lemma 5.1. Then for any process P with
sort(P) C L the following holds:

(Av I P) \L ~, BQ =~ (Av I Pr)\L ,,, BQ

T h e o r e m 5.4 The decision problem CCSOBs is PSPACE-hard.

Proof i Let Ao, BQ and L be as in the proof of Lemma 5.1. As ~ is a weaker equivalence than ~ it
follows that

3P. (Ao [P)\L ,,~ BQ ::~ 3P. (Ac I P) \L ~ BQ

The opposite implication follows from Lemma 5.3. Thus the two sides in the implication are equiv-
alent, whence the theorem follows from Theorem 5.2. D

6 Polynomial Equation Solving

As argued in the Introduction both equation and inequation solving occur during (top-down) devel-
opment of concurrent systems. As such it is important to find conditions under which these problems
may be dealt with efficiently. In this section we identify conditions on contexts which will induce a
subproblem of Eqlwhich is solvable in polynomial time.

390

bl b2
Def in i t ion 6.1 A context C is deterministic if D --* D1 and D -~ D2 implies bl = b2 and D1 = D2

et

for any derivative D of C.

Def in i t ion 6.2 Let P = (S, A, ---+) be a labelled transition system and let C = (K, A, ---~) be a
context system. A consistency retation lC is a subset of K x S such that whenever (C, Q) E tC then
the following holds:

b i b t
Whenever Q ~ Q, then C --* C for some a, C' such that (C', Q') E K..

tt

We say that C and P are consistent if (C, P) is contained in some consistency relation.

Note that the notion of consistency is very similar to that of simulation (being "half" of bisimulation
[Mi189]) for which there is a well-known polynomial time decision procedure [KS]. For deterministic
contexts the notion of consistency captures exactly that of solvability:

T h e o r e m 6.3 Let C be a deterministic context and Q a process. Then there exists a process P
such that C(P) .~ Q if and only i f C and Q are consistent.

Proof :
=~ Let K; = {(C, Q) I3P.C(P) ~ Q}. We show that /C is a consistency relation. So let (C, Q) E K;

and let Q b_~ Q,. Now assume C(P) ~ Q, then C(P) b_~ R with R ~ Q'. According to the rule
b

of inference for combined processes, C --~ C r and P - ~ P ' for some a, C" and P ' with R = C'(P').
a

Obviously, (C', Q') E]c.

¢= Let/C be a consistency relation. Define a transition system with states Po,O for (C, Q) E]C and
transtions:

Pc.~ - ~ Po,.~, ¢,,x 3b.Q b_L Q, A C & C,
c~

Then C(Po,Q) "-~ Q for all (C, Q) E]C. To see this we show that the relation below is a bisimulation:

13 = {(C(Pc,Q), Q) [(C, Q) E It}

Let (C(Pc,Q),Q) E B and assume Q - ~ Q' As (C,Q) E ~2, C b_~ C' with (C' ,Q') E /C for
a

some a, C'. But then PC,Q _L. PC',Q,. Hence, using the inference rule for combined processes,
5 t

C(Pc,Q) b~ C'(Pc,,Q,) and clearly (C'(Pc,,Q,), Q') E B. Let C(Po,Q) ~ R. That is C --~ C and
a

Po, Q _2.. Pc',Q" for some a, C ' and PC,,Q,. Now according to the definition of Pc,o's transtions

b' V Q,, b'. b' C --* C" and Q ~ for some But as C is assumed to be deterministic it follows that b =
a

• b Q . and C' = C". Thus R = C'(Pc,.Q,,) and obwously Q ~ is a matching transition. []

Since consistency relations can be found in polynomial time, we get the following theorem.

T h e o r e m 6.4 Let 6' be a deterministic context and Q a process• Then the problem whether there
exists a process P such that C(P) ~ Q can be decided in polynomial time.

Examples of deterministic contexts are:

• the CCS context (A [[]) \L, where A is deterministic and rigid (i.e. the derivatives of A have
no internal transitions) and the sort of A is included in L,

* the CSP [BHR84] context All[], where A is a deterministic process.

391

Open Problems and Future Work

This paper leaves as open problems whether or not the decision problems INEQ and EQ are members
of PSPACE. The problems can all be solved in single exponential time, using the procedure proposed
by Larsen and Xinxin [LX90b]. This procedure involves checking for consistency in a (disjunctive)
modal transition system with an exponential size in that of the underlying context and process.

On the positive side, a more careful examination shows that the procedure for EQ presented in
[LX90b] has time complexity exponential in the size of the contexts but polynomial in the size of the
processes. Thus, equation systems with small or bounded size contexts may be dealt with efficiently.

As for future work we should like to continue the work of Section 6 in identifying more liberal
conditions on contexts which will make (in)equation solving efficient.

Acknowledgement

The authors are greateful to Pierre Wolper for fruitful discussions, and to the referees for helpful
comments.

References

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560-599, 1984.

[BK84] J Bergstra and J Klop. Verification of an alternating bit protocol by means of process
algebra. Technical report, Centrum voor Wiskunde en Informatica, 1984.

[BK85] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction. The-
oretical Computer Science, 37:77-121, 1985.

[BL90] G6rard Boudol and Kim G. Larsen. Graphical versus logical specifications. Lecture Notes
in Computer Science, 431, 1990. In Proceedings of CAAP90.

[Bou85] G. Boudol. Calcul de processus et verification. Technical Report 424, INRIA, 1985.

[CE82] E. Clarke and E.A. Emerson. Using branching time temporal logic to synthesize synchro-
nization skeletons. Science of Computer Programming, 2:241-266, 1982.

[G J79] Garey and Johnson. Computers and Intractability: A guide to the Theory of NP-
Completeness. Freeman, 1979.

[HL89] Hans H/ittel and Kim G. Larsen. The use of static constructs in a modal process logic.
Lecture Notes in Computer Science, 363, 1989.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8),
1978.

[JL91] B. Jonsson and K.G. Larsen. On the complexity of equation solving in process algebra.
Technical report, Swedish Institute of Computer Science, 1991.

[Koo85] C. Koomen. Algebraic specification and verification of protocols. Science of Computer
Programming, 5(1):1-36, 1985.

[KS]

[Lar90]

[LM87]

[LQ90]

[LT88]

[LX90a]

[LX90b]

[MS83]

[MilS0]

[Mi183]

[Mil89]

[MW84]

[Par81]

[Par87]

[Par89]

[Plo81]

[Pnu85]

[PR89]

392

Kannellakis and Smolka. CCS expressions, finite state processes, and three problems of
equivalence. To appear in Information and Computation.

K.G. Larsen. Modal specifications. Lecture Notes in Computer Science, 407, 1990.

Kim G. Larsen and Robin Milner. Verifying a protocol using relativized bisimulation. In
Proc. ICALP '87, volume 267 of Lecture Notes of Computer Science. Springer Verlag, 1987.

P. Lewis and H. Qin. Factorization of finite state machines under observational equivalence.
Lecture Notes in Computer Science, 458, 1990.

Kim G. Larsen and Bent Thomsen. A modal process logic. In Proceedings on Logic in
Computer Science, 1988.

K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.
Lecture Notes in Computer Science, 1990. To appear in Proceedings of ICALP90.

K.G. Larsen and L. Xinxin. Equation solving using modal transition systems. In Proceedings
on Logic in Computer Science, 1990.

Philip Merlin and Gregor von Bochmann. On the construction of submodule specifica-
tions and communication protocols. ACM Transactions on Programming Languages and
Systems, 5(1):1-25, 1983.

R. Milner. Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer Verlag, 1980.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25, 1983.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Zohar Manna and Pierre Wolper. Synthesis of communicating processes from temporal
logic specifications. A CM Transactions on Programming Languages and Systems, 6(1):68-
93, 1984.

D. Park. Concurrency and automata on infinite sequences. Lecture Notes in Computer
Science, 104, 1981. in Proc. of 5th GI Conf.

Joachim Parrow. Verifying a csma/cd-protocol with ccs. Technical Report ECS-LFCS-87-
18, Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, 1987. To appear in Protocol Specitlcation, Testing, and Verifica-
tion VIII (1988).

J. Parrow. Submodule construction as equation solving in CCS. Theoretical Computer
Science, 68:175-202, 1989.

G. Plotkin. A structural approach to operational semantics. FN 19, DAIMI, Aarhus
University, Denmark, 1981.

A. Pnueli. Linear and branching structures in the semantics and logics of reactive systems.
Lecture Notes in Computer Science, 194, 1985. in Proc. of ICALP'87.

A. Pnueli and R. Rossner. On the synthesis of a reactive module. In Proc. 16:th ACM
Syrup. on Principles of Programming Languages, pages 179-190, 1989.

393

[SFD85]

[ShiSg]

S.A. Smolka, A.J. Frank, and S.K. Debray. Testing protocol robustness the CCS way. In
Protocol Specification, Testing, and Verification IV (198~), pages 93-108, 1985. North-
Holland.

M.W. Shields. A note on the simple interface equation. The Computer Journal, 32(5),
1989.

A P r o o f that INEQ is P S P A C E - h a r d

A . 1 T h e G e n e r a l i z e d G e o g r a p h y P r o b l e m

Definit ion A.1 A rooted, directed graph is a structure G = (V,E, vo), where V is a (finite) set of
vertices, E C_ V × V is a set of edges and Vo C V is the root (the initial vertex).

Let G = (V, E, v0) be a rooted, directed graph. For e = (u, v) E E we write hde for v and tle
for u. A path of G is any finite sequence p = e0ele2.., e=, where tleo = Vo and hdel = tle~+l
for all i E [0, hi. We write Path(G) for the set of paths of G. For e E E we define the set
Follow(e) = { f E E I hde = tlf}. Also, Init = {e E E] tie = vo}. In fact, a sequence of edges
e0ele2.., e~ is a path of G just in case e0 E Init and ei+1 E Follow(el) for all i E [0, n[.

Given a rooted, directed graph G = (V, E, v0) the (two-player) Generalized Geography game on G
is played according to the following rules [GJ79]:

The two players alternate choosing a new edge from E. The first edge chosen (by player
1) must have its tail at v0 and each subsequently chosen edge must have its tail at the
vertex that was the head of the previous edge, and must not have been previously chosen
in the game. The first player unable to choose such a new edge loses.

Now, the Generalized Geography problem GENGEO may be described as below. Also, we recall from
[G J79] that GENGEO is PSPACE-complete.

Ins tance : A rooted, directed graph G.

Quest ion: Does player 1 have a forced win in the Generalized Geography game played
on G?

We want to reformulate (or formalize) the GENGEO problem into a question of existence of a process
(of some labelled transition system) expressing in an explicit way a winning strategy for player 1 on
a given graph G. Thus, let G = (V, E, v0) be a rooted, directed graph and let P be a process of some
labelled transition system with E as action set. Then:

P respects G if Act(d) is a path of G for any finite derivation sequence d of P.

P obeys the GENGEO game if the actions (i.e. edges of G) occurring in any derivation
sequence of P are all different.

The idea is that the computations of P should correspond to complete GENGEO games on G (with
player 1 as winner if the length of the computation is odd). Now, we want P to capture several
GENGEO games; in particular we want P to provide player 1 with a strategy for any legal move of
the opponent:

394

P provides a strategy wlth respect to G if whenever

P ~-~Pl-~p2-~. . . -~pj

is an odd length derivation sequence of P, then for any e 6 Follow(ei)\{e0, e1}:

p~ --% p~ j+l

for some P~+I-

Here Follow(e¢)\{e0,..., e~} is the set of legal moves of the opponent (only new edges can be chosen),
and P~+I describes player l 's strategy after the move e. Finally, P should only contain computations
with player 1 as winner. I.e.:

P provides a winning strategy with respect to G i fP respects G, obeys the GENGEO game
and provides a strategy wrt. G such that all computations of P has odd length.

We now reformulate (or formalize) the GENGEO problem as follows:

Ins tance: A rooted, directed graph G.

Quest ion: Does there exist a process P providing a winning strategy with respect to G?

A.2 Inequation Solving

We recall that the problem of Inequation Solving INF__~ is defined as follows:

Ins tance: A finite collection of pairs

= {(C,, S,) l i 6 I}

where I is a finite index set~ and for all i E I, Ci is a finite-state context and Si is
a finite-state modal specification.

Quest ion: Does there exist a process P such that the inequation C~(P) <I S~ is satisfied
for all i 6 I?

In the remainder of this section we shall show how to transform (in polynomial time) any instance
G = (V,E, vo) of GENGEO into an equivalent instance ga of INEQ . That is: there will be a
winning strategy for player 1 on G just in case the inequation system Ea has a solution. In fact,
the transformation offered will be such that the solutionset to Ea is exactly the winning strategies
with respect to G. As GENGEO is a PSPACE-complete decision problem it will follow that INEQ is
PSPACE--hard! Whether or not INEQ is in PSPACE is as yet an open problem on which we shall
comment in the conclusion.

In the remainder of this section let G = (V, E, v0) be a given rooted, directed graph. We construct,
in the following lemmas, inequation systems which will be equivalent to the four conditions on a
winning strategy for G. For full proofs we refer to [JL91].

395

L e m m a A . 2 For e E E let C~ and S~ have the following behaviours 2 .

C' C" ~ S~ S'

where x and y are different actions. Also let CI and SI be defined by:

Y

Then P is a solution to the inequation system:

e~ = {(cy, sY) l~ e E} u {(c,, s,)}

i f and only i f P respects G.

L e m m a A.3 For e E g let 0~ and S~ have the following behavious:

x
> x z E ~_ v_ y

¢ e

E

where x , y , z , v axe all c////'erent actions. Then P is a solution to the inequation system:

eo = {(c~, s~) I ~ e E}

i f and only i f P obeys the GENGEO game.

L e m m a A . 4 For e E E and f E Follow(e)\{e} let C~,I and S~,f have the following behaviours:

f~ T z x

c'~,: s'o,:

s.:; ,f Z N.,,

2If, for B1, Bz C_ E, ~ labels an edge between contexts C and D, this means by convention that C ~-* D for any
a

a E B1 and b E B2. Singleton sets over t[are identified with their element. For a set .4, A ~ denotes the complementary
set.

396

with x , y , z being different actions. Then P is a solution to the inequation system:

8's = {(C,,S, S,,f)] e E E, f E Follow(e)\{e)}

i f and only i f P provides a strategy wi~h respect to G.

L e m m a A.5 Let Co and So have the following behaviours:

co &

E -~ Y x

where x and y are different actions. Then P is a solution to the (singleton) inequationsystem:

eo = {(co, so)}

i f and only i f all finite computations of P has odd length.

We can now state and prove Theorem 3.1.

T h e o r e m A.6 The decision problems INEQ and INEQd are both PSPACE-hard.

Proof : It follows easily from Lemma A.2 - A.5 that P is a solution to the inequation system
£ = CR U Ca U £s U £o if and only if P provides a winning strategy with respect to G. Thus PSPACE-
hardness of INEQ follows directly from PSPACE-c_x)mpleteness of GENGEo and the fact that the
inequation system constructed by Lemma A.2 - A.5 has polynomial size relative to the original
graph. PSPACE-hardness of INEQ~ follows by noting that the modal specifications of inequations
constructed in Lemmas A.2 - A.5 are all deterministic. []

