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ABSTRACT 

We show how graph rewriting can be described with a single pushout 
in a suitable category of graphs, and compare our result with the 
conventional approach which uses double pushouts. 

1 Introduction 

The conventional algebraic approach of graph rewriting is originally 

due to Ehrig, Pfender and Schneider [i], and is reviewed by Ehrig [2]; 

it will be named after Ehrig in this paper. It uses double pushouts in 

a category of graphs to describe graph rewritings. 

It would conceptually be much simpler if single pushouts could be 

used instead of double pushouts. Single pushouts have been used by 

Raoult [3] and Kennaway [4] to describe graphical term rewriting. A 

comparison of their approach with Ehrig's approach has been given in 

Van den Broek [5]. 

In this paper we present an algebraic approach of graph rewriting 

which is as general as Ehrig's approach, and which uses single 

pushouts. This will be done by giving a category of graphs and graph 

morphisms such that the following pushout diagram 

L > R 

G > H 
h 

diagram 1 

represents the graph rewriting G > H via the rewrite rule L ) R 

based on the occurrence L )G. 

In Ehrig's category of graphs, graph morphisms are total f, unctions 

on arcs and nodes, so each item (arc or node) of G has an image in H. 
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So in this category the diagram above can only describe rewritings 

where items are added to G but none are deleted. Therefore Ehrig's 

method uses double pushouts, where both G and H arise as pushouts, 

using a context graph which consists of the items which G and H have 

in common. 

The basic idea behind our approach is to accept that rewriting can 

only add items to a graph, but not remove any. Instead of removing 

items, items will be marked. So our graphs will consist of items of 

two kinds: those which are marked and those which are not. The marked 

items are to be considered as garbage. 

The key difference between the approach of Raoult and Kennaway and 

our approach is that our graph morphisms, contrary to those of Raoult 

and Kennaway, preserve the graph structure; they only may violate the 

markedness of items. 

In section 2 we introduce formally our category of graphs and graph 

morphisms, and the concepts of rewrite rule, occurrence and graph 

rewriting in this category. In section 3 we establish a bijection 

between the rewrite rules in this category and Ehrig's rewrite rules 

such that corresponding rewrite rules have the same informal 

interpretation. In section 4 we show that corresponding rewrite rules 

give the same rewrite results in both formalisms when the rewrite 

result in Ehrig's formalism exists. A sufficient condition for the 

existence of a graph rewriting in our category, given a rewrite rule 

and an occurrence of its left-hand side in a graph, is given in 

section 5. Here we also give an example of a graph rewriting in our 

category for which a corresponding graph rewriting in Ehrig's 

formalism does not exist. In section 6 we define parallel independence 

of graph rewritings in our category, and show that the commutativity 

property holds for parallel independent graph rewritings. In section 7 

we sketch the proofs of several propositions from the earlier 

sections, after we have introduced a suitable notation. 

2 The category of marked graphs 

The objects in our category are marked graphs, which are graphs with 

items of two kinds: marked items and unmarked items. 

Definition A marked graph G is an 8-tuple 

<NG, MG,AG,BG, sG, tG,mG.I,mG,2>. Here N c denotes a set of unmarked nodes, M s 

a set of marked nodes, A G a set of unmarked arcs, B G a set of marked 

arcs; SG : AGUBG --) NGUMG and tG : AGUB G -) NGUMS are mappings which map 
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arcs to their sources and targets respectively; mG, I and mG. 2 are 

mappings which map nodes and arcs to fixed alphabets of node colours 

and arc colours respectively. O 

Definition Given two marked graphs G and H, a morphism f : G -~ H 

is a pair of maps fl : NGUMG -~ N~t24H and f2 : AGUB G -9 AHUB ~ which 

preserve sources, targets and colours, i.e. 

fl. SG = sH.f2, fl-tG = tH.f2, 

ms. 1 = mH, l.fl, mG,2 = mH,2.f2, 

and which map marked items onto marked items, i.e. 

flMG ~ M~, f2Bs ~ B s. ¢ 

It is easily verified that the marked graphs and morphisms, with the 

usual composition (denoted by the infix symbol . ) and identity, form 

a category. 

Definition A marked graph G is called a graph if and only if 

M~ = ~ and B G = ~, i.e. if it has no marked items. 0 

With this definition of graphs Ehrig's category of graphs is a 

subcategory of the category of marked graphs. Note that the category 

of marked graphs contains in fact too many objects. Considerig marked 

items as garbage implies that only a marked graph with the property 

that it remains a marked graph when marked items are deleted is a 

useful object. Such a marked graph will be called proper: 

Definition A marked graph G is a proper marked graph if and only 

if s~ ~ N G and tGA G ~ N G. ¢ 

Definition The unmarked subgraph of a proper marked graph is the 

graph which is obtained from it by deleting all its marked items. 0 

Proposition 1 The category of marked graphs has pushouts. 

Proof It is easily verified that one obtains a pushout in the 

category of marked graphs by marking as few as possible items of the 

corresponding pushout in the category of graphs such that the 

morphisms map marked items onto marked items. 0 

As in the category of graphs, the pushout can be constructed by a 

kind of gluing procedure. Consider diagram 1 as a pushout diagram in 

the category of marked graphs. Let ~ be the relation on NGt/MGUNRUM R 

given by 

flx ~ glx Vx e NLt2M L 
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and - the equivalence relation which is the reflexive, symmetric and 

transitive closure of ~. The nodes of H are the equivalence classes of 

=; so a node of H can be considered to be a set of nodes of G and R 

which are glued together. A node of H is marked if and only if it 

contains a marked node of G or R. The mappings h I and k I map nodes of G 

and R respectively onto their equivalence classes. The same procedure 

holds for arcs. 

Let L,R and G be proper marked graphs and let f : L -+ R and 

g : L -9 G be morphisms. 

Definition (f,L,R) is a marked rewrite rule if and only if 

- L is a graph (there is no use for marked items in the left-hand 

side of a rewrite rule), 

- fl and f2 are injective mappings, and 

- M R ~ flNL and B e ~ f2AL (there is no use for marked items in the 

right-hand side of a rewrite rule which are not in the image of the 

left-hand side). ¢ 

Definition If (f,L,R) is a marked rewrite rule then (g,L,G) is a 

marked occurrence if and only if gINL ~ N G and g2AL ~ A s (marked items 

of G should not take part in the rewriting). ¢ 

Definition If (f,L,R) is a marked rewrite rule and (g,L,G) is a 

marked occurrence then the pushout construction (diagram I) gives a 

marked graph rewriting G )H via (f,L,R) and based on (g,L,R) if and 

only if H is a proper marked graph. ¢ 

Note that the pushout will always exist, but the marked graph 

rewriting will not exist unless H is proper. 

3 Connection between the rewrite rules in both formalisms 

In this section we will show how one can construct a marked rewrite 

rule from a rewrite rule in Ehrig's approach which has intuitively the 

same meaning, and vice versa. These constructions are the inverse of 

each other, so we obtain a meaning preserving bijection between the 

rewrite rules in both formalisms. 

A rewrite rule in Ehrig's formalism (just called rewrite rule in the 

sequel) is a 5-tuple (b,k,L,K,R) where L,K and R are graphs and 

b : K --) L and k : K -~ R are injective morphisms. The graph K is the 
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common part of the left-hand side L and the right-hand side R; b and k 

are the embeddings of K in L and R respectively. 

For each rewrite rule a marked rewrite rule can be constructed as 

follows. First construct the graph Q and the morphism f : L -9 Q by the 

following pushout: 

k 
K ~ R 

L > Q diagram 2 
f 

So Q is the graph which is obtained by gluing from L and R their 

common part together. Let P be the proper marked graph which is 

obtained from Q by marking the nodes in fI(NL\bINK) and the arcs in 

f2(AL\b2AK), and let e : Q -~ P be the morphism with the property that 

e I and e 2 are the identity mapping. Then (eof, L,P) is a marked rewrite 

rule which has the same informal interpretation as the rewrite rule 

(b,k,L,K,R). 

Now the other way around. Let (f,L,P) be a marked rewrite rule. Let 

R be the unmarked subgraph of P. Let K be the subgraph of L which 

contains the items of L which are mapped by fl or f2 onto items of R. 

Let b be the embedding of K in L and k the restriction of f to K. Then 

(b,k,L,K,R) is a rewrite rule and it has the same informal meaning as 

the marked rewrite rule (f,L,P). 

Proposition 2 

others inverse. 

The two constructions described above are each 

Proof The proof is given in section 7. 

So we have obtained a meaning preserving biJection between rewrite 

rules and marked rewrite rules. 

4 Comparison of rewrite results in both formalisms 

In this section we will show that corresponding rewrite rules give 

the same rewrite results in both formalisms when the rewrite result in 

Ehrig's formalism exists. First we introduce a graph rewriting in 

Ehrig's formalism. Consider diagram 3. 
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b k 
L < K > R 

gl PO 1 1 PO ~r 

G < D > H 
c d 

diagram 3 

The upper line denotes a rewrite rule (b,k,L,K,R). The leftmost 

vertical line denotes an occurrence (g,L,G). There exists a graph 

rewriting G ) H via (b,k,L,K,R) based on (g,L,G) if and only if a 

graph D and morphisms c and 1 exist such that the left square is a 

pushout. Then H is determined by the right pushout square. 

Diagram 3 can be extended to diagram 4: 

e q 
P < Q < 

I o 
b k 

T PO L < - -  K > R 

ml gl PO 11 PO [r 

M < G < - -  D > H 
u c d 

diagram 4 

The right upper rectangle is a pushout and P is obtained from Q as 

described in the previous section. M is any proper marked graph whose 

unmarked subgraph is G, and u is the embedding of G in M. The diagram 

is then completed by the pushout of the leftmost rectangle. Now 

(eof, L,P) is a marked rewrite rule corresponding to the rewrite rule 

(b,k,L,K,R) as in the previous section, and (u°g,L,M) is a marked 

occurrence compatible with the occurrence (g,L,G). There exists a 

marked graph rewriting M ) T via this marked rewrite rule and based 

on this marked occurrence if and only if T is proper. 

Proposition 3 In the situation described above T is a proper 

marked graph and its unmarked subgraph is isomorphic to H. 

Proof The proof is given in section 7. ¢ 

So, when an Ehrig rewriting G ) H via some rewrite rule exists, 

there also exists a marked rewriting M ) T via the corresponding 

marked rewrite rule for each M whose unmarked subgraph is G, such that 
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the unmarked subgraph of T is H. Proposition 3 also shows that, when a 

series of marked rewritings is performed on a graph, it is not 

necessary to delete the marked items after each step. 

5 The marked gluing condition 

Given the rewrite rule and the occurrence of diagram 3, the 

rewriting of this diagram exists if and only if Ehrig's gluing 

condition holds, which reads 

Da ~ bINE & Idl ~ blNK & Id2 ~ b2A K, 

where 

Da = {XeNLl3a6 (AG\g2AL) glx=sGa or glx=tGa} 

Id I = {XENLI3YEN L x~y & glx=gly} 

Id 2 = {X~ALJBYEA L x~y & g2x=g2y} 

Deleting from G an image of a node of Da (dangling) will certainly 

leave a dangling arc in G. Therefore Da should belong to the image of 

b. Deleting from G an image of an item of IdIUId 2 (identification) runs 

the same risk; the left pushout of diagram 3 will however certainly 

not exist unless IdiuId 2 also belongs to the image of b. 

This gluing condition is easily expressed for marked rewrite rules 

and marked occurrences, using the correspondence of rewrite rules and 

marked rewrite rules of the previous section. Let (f,L,R) be a marked 

rewrite rule and (g,L,G) a marked occurrence. Then Ehrig's gluing 

condition can be written as 

fl Da C N R & fl Idl ~ NR & f2 Id2 ~ AR 

From the result of section 3 it follows that this condition is a 

sufficient condition for the existence of a marked graph rewriting 

G )H via (f,L,R) and based on (g,L,G). We have however a stronger 

result. 

Definition The marked gluing condition for a marked rewrite rule 

(f,L,R) and a marked occurrence (g,L,G) is fl Da ~ N R & fl Idl ~ NR 0 

Proposition 4 The marked gluing condition for the marked rewrite 

rule (f,L,R) and the marked occurrence (g,L,G) is a sufficient 

condition for the existence of a marked graph rewriting G ) H via 

(f,L,R) and based on (g,L,G). 
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Proof The proof is given in section 7. ¢ 

A simple example where the gluing condition does not hold but the 

marked gluing condition holds is shown in diagram 5. 

,~'$, < ~'$ < 

• n 

L Po 
• m • 

t 

> 

> ?? diagram 5 

This diagram has the same structure as diagram 4, but the marked 

graphs are shown explicitely; marked items are shown with an asterisk. 

The (marked) rewrite rule means that double arcs in a graph may be 

removed, and it is tried to use this rule to remove a single arc. 

An example which shows that the marked gluing condition is not a 

necessary condition for the existence of a marked graph rewriting is 

the following. 

• • > • e* 

diagram 6 

The upper line is a marked rewrite rule which says that from each two 

nodes one node may be removed. This rule is applied to a graph 

consisting of one single node. The rewriting succeeds, even though the 

marked gluing condition does not hold. 
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6 Parallel independence and the o~nmutativity property 

In this section we will introduce the concept of parallel 

independence of marked graph rewritings and show that the 

commutativity property (called Church-Rosser property by Ehrig) holds 

for parallel independent marked graph rewritings. 

f' 
L' > R' 

g h '  
L ....... > G ..... > H' 

R > H > P 
k p 

diagram 7 

Consider diagram 7. Here (f,L,R) and (f',L',R') are marked rewrite 

rules, (g,L,G) and (g',L',G) are marked occurrences and the upper and 

the left pushout squares give the marked graph rewritings G ) H' and 

G ) H respectively. The diagram is completed by the lower right 

pushout square. 

Definition The marked graph rewritings G ~ H' and G .... > H of 

diagram 7 are parallel independent if no items of G which are in the 

image of L under g are mapped onto marked items of H' by h' and no 

items of G' which are in the image of L' under g' are mapped onto 

marked items of H by h. More formally this condition reads 

gINL ~ g'l. f'1 -I MR" = O 

g2AL A g'2.f'2 -I B R, = O 

g'INL. 6~ gl.fl -I M R = O 

g'2AL. ~ g2.f2 -I B R = O 

In case there exist corresponding graph rewritings in Ehrig's 

formalism, i.e. if the gluing condition is satisfied for both marked 

graph rewritings, this definition of parallel independence coincides 

with the definition by Ehrig. The following proposition states that 

parallel independent marked rewritings are commutative: 

Proposition 5 Let G ) H and G ) H' be parallel independent 

marked graph rewritings via marked rewrite rules r and r' 
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respectively. Then there exist a marked graph P and marked graph 

rewritings H )P and H' )P via r" and r respectively. 

Proof Note that parallel independence of G )H and G ) H' is 

necessary and sufficient for (hog',L',H) and (h'°g,L,H') to be marked 

occurrences. A standard result from category theory gives that the two 

rectangles LRPH' and L'R'PH are also pushouts. The proposition has 

been proven if we show that H )P and H' ........... )P are two marked graph 

rewritings, i.e. that P is a proper marked graph. This will be shown 

in section 7. 0 

7 Proofs 

In this section we will present a number of proofs of propositions 

given in the previous sections. We have postponed these proofs to this 

section since for these proofs we will introduce a special notation 

for graphs. The reason for this is the following. A typical situation 

is that we have a diagram consisting of pushouts, e.g. diagram 4 or 

diagram 7, and that a proof of a proposition consists of a 

straightforward verification, using the properties of pushouts 

extensively. This leads in general to a case-analysls with many cases, 

and to proofs which are boring to read. 

In this section a graph will be denoted as a partition of its items. 

Sets of items will be denoted by small numbers. The items of a set 

will either be all marked or all unmarked; sets of marked items will 

be shown underlined. Consider for example diagram 2. Let the items of 

K all belong to the same set: K = (i). Since k is injective the items 

of R can be partioned into 2 disjoint sets: R = (1,2). Note that K is 

denoted as a subgraph of R. Since b is also injective we may take 

L = (1,3). The graph Q, obtained via the gluing procedure, can now be 

denoted by (1,2,3). Note that the graph structure is not present in 

this notation. This is no restriction however, since the graph 

structure is preserved by the morphisms. 

Proof of Proposition 2. Let, as above, K = (i), R = (1,2), L = (1,3) 

and Q = (1,2,3). The marked graph P was obtained from Q by marking the 

items in set 3, so P = (1,2,1). The marked rewrite rule which 

corresponds to the rewrite rule (b,k,L,K,R) then is (f,L,P). 

From the definition of marked rewrite rule it follows that for each 

marked rewrite rule (f,L,P) we can take L = (1,3) and P = (1,2,1). The 

construction of the graphs K and R from L and P is as follows: R is 
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the unmarked subgraph of P, so R = (1,2) (recall that P is a proper 

marked graph by definition), and K consists of those items of L which 

are mapped by f onto items of R, hence K = (i). 

It is now obvious that we established a i-i correspondence between 

rewrite rules and marked rewrite rules. ¢ 

Proof of Proposition 3 Consider diagram 4. Let, as above, K = (1), 

R = (1,2), L = (1,3), Q = (1,2,3) and P = (1,2,~). Suppose the items 

of K are mapped by 1 onto the items in set i' of D. Then we may write 

D = (i',4). Since k is injective, d is injective too, so we may write 

H = (1',2,4). Analogously G = (I',3,4). M is obtained from G by adding 

marked items to G, so M = (1',3,4,~). Finally the gluing procedure for 

marked graphs gives T = (1',2,~,4,~). So T is a proper marked graph 

whose unmarked subgraph is H. ¢ 

Proof of Proposition 4 Consider diagram I, and assume that (f,L,R) 

is a marked rewrite rule and (g,L,G) is a marked occurrence. We may 

write L = (1,2) and R = (1,2,3). Let 1' and 2' be the images under g 

of i and 2 respectively. Since 1' and 2' need not be disjoint we write 

G = (1'\2',2'\1',1'~2',4,~). The gluing construction then gives 

H = (1'\2',2'\1',1'N2',3,4,~). 

Now suppose that n is a marked node in set x of H and a is an 

unmarked arc in set y of H which is adjacent to n. For <x,y> there are 

the following 9 possibilities: <2'\1',1'\2'>, <2'\1',3>, <2'\1',4>, 

<I'N2',I'\2'>, <I'N2',3>, <i'n2',4>, <5,1'\2'>, <5,3> and <5,4>. Our 

task is to show that the marked gluing condition excludes all 9 

possibilities. 

We can exclude 5 of these possibilities without using the marked 

gluing condition: <5,3> is excluded since a would belong to R while n 

does not; <2'\i',i'\2'> and <2"\i',3> are excluded since R is a proper 

marked graph; <5,1'\2'> and <5,4> are excluded since G is a proper 

marked graph. 

Since Da consists of those nodes from 1 and 2 whose image under g 

have an adjacent arc in 4 and N R consists of the nodes in I and 3, the 

condition fl Da ~ N~ is equivalent with the exclusion of <2'\1',4> and 

<I'~2',4>. 

We are left with the 2 possibilities <i'~2',1'\2'> and <1'~2',3>. 

Since Id I consists of the nodes of 1 and 2 which have the same image 

under g as some other node of i and 2, the condition fl Idl ~ NR 

implies that 1'N2' contains no nodes. This excludes the last two 

possibilities, so our proposition has been proven. 
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Note that from the proof above we also obtain a necessary and 

sufficient condition for the existence of a marked rewriting: the 

conjunction of fl Da ~ N R and a necessary and sufficient condition for 

the exclusion of the possibilities <I'N2',I'\2'> and <I'~2',3>. This 

last condition can be formulated as: nodes of i which are identified 

by g with a node in 2 should have no adjacent arcs in 3, nor adjacent 

arcs in 1 which are not identified by g with an arc in 2. ¢ 

Completion of the proof of proposition 5 Consider diagram 7. 

Our task is to show that P is a proper marked graph if the marked 

rewritings G )H and G )H' are parallel independent. Let L = (1,2) 

and R = (i,~,3). Let I' and 2' be the images under g of 1 and 2 

respectively. Then we may write G = (I'\2',2',4,~). Analogously we may 

write L" = (6,7), R' = (6,!,8) and G = (6'\7',7",9,~). A notation for 

G which is useful for both of its rewritings is 

G = ((i'\2')A(6'\7'), (I'\2')N7', (I'\2')~9,2'N(6'\7'),2'N7',2'N9, 

4A(6'\7'),4A7',4N9,~). At this point we can use the parallel 

independence of the marked rewritings G ) H and G ) H', since it 

implies that (I'\2")A7' = 2'~(6'\7') = 2'~7" = O, by simplifying the 

notation of G to G = ((I'\2')N(6'\7'), (I'\2')~9,2'N9,4N(6'\7'),4~7', 

4n9,~). We may now use the gluing procedure to obtain H, H' and P, 

giving H = ((i'\2')~(6'\7'), (I'\2')~9,2'~9,4N(6'\7'),4A7',4~9,3,~), 

H' = ((i' \2')N(6'\7'), (I' \2' ) A9, 2' N9, 4N (6' \7' ), 4N7', 4~9, 8,~) and 

P = ((i'\2')~(6'\7'), (I'\2')~9,2'~9,4N(6'\7'),4~7',4~9,3,8,~). Now 

suppose that n is a marked node in set x of P and a is an unmarked arc 

in set y of P which is adjacent to n. For <x,y> there are 18 

possibilities. It is easy to check that the fact that H and H' are 

proper marked graphs excludes 16 of these possibilities, leaving only 

the possibilities <2'n9,8> and <4~7',3>. If a belongs to 8 then a is 

an arc of R'; then n should be a node of R'. This excludes the 

possibility <2'A9,8>; analogously the possibility <4N7',3> is 

excluded. So we conclude that n and a cannot exist; thus P is a proper 

marked graph. ¢ 
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