
Non-strict don't care 

Algebras and Specifications 

Egidio Astesiano Maura Cerioli 

Dipaxtimento di Matematica - Universi~ di Genova 

Via L.B. Alberti 4 - 16132 Genova Italy 

e-mail: {astes, cerioli }@igecuniv.bitnet 

Abstract. Non-strict don't care functions, whose foremost representative is the 
ubiquitous if_then_else, play an essential role in computer science. As for what 
concerns semantics, they can be modelled by their totalizations with the appropriate 
use o f  elements representing undefinedness, as D. Scott has shown in his 
denotational approach. The situation is not so straigh~eorward when we consider 
non-strict functions in the context of an algebraic framework. In this paper, after 
presenting the basic properties o f  the category of  non-strict algebras, we explore the 
relationship between non-strict don't care and total algebras. Then the conditional 
algebraic specifications are investigated; it is shown that non-strict conditional 
specifications are equivalent to disjunctive specifications and necessary and 
sufficient conditions for  the existence of  initial models are given. Since non-strict 
don't care specifications generalize both the total and the partial case, it is shown 
how the results about initiality can be obtained as specializations. 

I n t r o d u c t i o n  

Functions like the well known if_then_else are called non-strict since they can be defined even over tuples 

where some argument is undefined. For example i f  true then a else b = a no matter what is b. Note 

the difference with partial functions, which satisfy the strictness condition D(f(xl ..... Xn )) ~ D(xi) for 

i=l .... ,n. What is important to stress in the case of the if_then_else operation is the don't care feature; if 

the first argument is true then the third argument can be whatever and even missing (corresponding for 

example to a non-terminating computation). Non-strict don't care functions are common feature of 

programming languages; indeed a non-defined function built over non-strict predefined functions like 

if_thenelse may be non-strict; moreover in many languages, notably Ada, non-strict built-in functions 

abound. 

We can model this situation defining partial tuples and an ordering over them. For example the tuple 

(true,a,?), where the symbol ? denotes a missing argument, is less than or equal (true,a,b) for any b. 

Thus a don't care function f can be characterized by a monotonicity condition (denoting tuples by an 

underbar) 

dl  < d.2 and f(dd) defined Df(d l )  =f(d2). 

This work has been partiaLly supported by Esprit-BRA-WG COMPASS and by MURST 40% 



122 

All this is well known in denotational semantics where undefinedness is denoted by .1_, domains are cpo's 

with least element .L and functions are monotonic. 

However, if we consider algebras with non-strict (don't care) functions, it is not true that we can just 

identify them with a subclass of total algebras, if we want algebraic properties to be preserved. Indeed we 

can think of associating with a non-strict algebra A its totalization A_L; however this association does not 

define a functor from non-strict into total algebras. 

After defining in section I the category of non-strict algebras and presenting its basic properties, in section 

2 we analyze the relationship between non-strict and total algebras. It is shown that the correct relationship 

is provided by a free construction, similar to the one indicated by Poign6 in ~ ]  in the case of a partial to 

total translation. A deeper characterization of that correspondence can be given in terms of the recently 

introduced concepts of simulation of institution [AC2] and of map of institutions [M] and we refer to the 

full paper [AC3] for this. 

Having settled the model theoretical aspects, we turn our attention to algebraic specifications with 

non-strict functions, henceforth non-strict specifications. Many problems arise: first of all not even simple 

equational specifications are always consistent (ie admit models), the usual conditional specifications do 

not always admit initial models and moreover no simple equational deduction system, generalizing those 

for the partial and the total case, seems at hand. 

We try to clarify the matter as follows. 

It is shown that the monotonicity condition necessarily introduces hidden disjunctions. Hence we pass to 

consider disjunctive specifications giving necessary and sufficient conditions for the existence of initial 

models, from which, by specialization, necessary and sufficient conditions, for the non-strict conditional 

case are obtained. Since the non-strict paradigm encompasses both the partial and the total one, we can 

show that the well known results about initiality of those cases, including recent results on non-positive 

partial conditional specifications, are reobtained by rather simple specializations. 

Note that in our framework we are not dealing with error handling. It seems to us that error handling is in 

a sense an orthogonal problem. We think that it should be interesting and possible to include in an overall 

non-strict framework the treatment of error handling presented by Poign6 in [P]. 

Problems connected with non-strictness have been addressed by Broy and Wirsing in [BW2] in the 

context of generalized algebras, where total algebras are enriched by definedness predicates and special 

morphisms. However, since the aim of that paper is much broader as its title indicates, the treatment there 

of non-strictness is rather indirect and the issues of initiality and of the relationship with total algebras are 

not addressed either. Some stimulating considerations about non-strictness, but in a context with different 

aims, can also be found in [Br]. 

We have omitted the proofs, which can be found in the full version of the paper [AC3]. 



123 

I Non-Strict Algebras 

I .  I Partial products and non-strictness 

In the following we will deal with partial objects, ie with meta-terms not necessarily denoting a concrete 

element. Thus, as usual in partial frames, two kinds of equalities may be defined between them: the 

existential equality, which holds iff both sides are defined and equal, and the strong equality, which holds 

iff either both sides are undef'med or both sides are deemed and equal. We will denote the existential 

equality by =e and the strong equality by =. 

The basic idea we start from is the one of partial product. 
Usually the product A1M...><An is the set of all (total) functions g from { 1...n} into A1u. . .UAn s.t. 

g(i)~ Ai. We generalize this concept by allowing partial functions. It is worth to note that, while the usual 

product coincides with the categorical product in the category of sets with total functions as arrows, the 

partial product is not the categorical product in the category of sets with partial functions as arrows, 

because the uniqueness of the factorization through the partial product fails. 

In order to keep the notation as similar as possible to the usual one, we use the symbol ? to denote the 

"undefined" dements. 

Def. 1.1.1. Let A1 .. . . .  An be sets. The partial product of A1 .... .  An, denoted by ×p{A1 .. . . .  An}, 

consists of all partial functions from { 1 ..... n } into A1U. . .uAn s.t. if g(i) is defined, then g(i)~ Ai. In 

order to keep the notation as similar as possible to the usual one, instead of ×p{A1 .... .  An} we use the 

infix notation AlXp...XpAn, if n>2. 

Over ×p{Al ..... An} is naturally defined a partial order < by 

a < b iff a(i)~ Ai implies h(i) =e a(i) for all i=l. , .n.  

A partial function g from ×p{Al ..... An} into a set A is called stria iff g(~)aA implies a(i)~Ai for 

all i=l ..... n and is called monotonic if a < ]2 and g(i~)~ A implies g(~) =e g(]2). 

In the following we often denote an dement a~×p{A1 .. . . .  An} by (al . . . . .  an), where ai = a(i) if 

a(i)e Ai and ai = ? otherwise. [] 

Note that in the particular case n=l,  usually A and the unary product of A are isomorphic; on the 

contrary A and ×p{A} are not in general isomorphic: for example, if A has finite cardinality k, then 

×p{A} has cardinality k+l. 

Let us recall the definition of signature, just in order to fix the notation and then define the non-strict 

algebras, where function symbols of arity (Sl...Sn,S) are interpreted by partial monotonic functions from 

slA×p...×pSn A into s A. 

Def. 1.1.2. A signature consists of a set S of sorts and of a family F = {Fw,s}we S*,s~ s of sets of 

function symbols. If fe Fw,s, then (w,s) is called the arity of f. 

We will denote a generic signature by Y., and use f~ F or f: w --> s instead of fe Fw,s if no ambiguity 

arises. 

Let ~ = (S,F) be a signature; a non-strict Z-algebra consists of a family { s A} se S of sets, the carriers, 
and of a family { fA}feFw,s,we S*,seS of partial functions, the interpretations of operation symbols, s.t. if 



124 

f~ FA,s,  then either fA is undefined or fA~ s A, otherwise f~ Fst . . .sn,s  with n_>l and 

fA: slAxp...XpSn A ~ s A is a monotonic function. 

Often we will denote the non-strict algebra A by the couple ({ s A }, { fA}), omitting the quantifications 

about s and f which are associated with the signature. 

An algebra A is called strict if  fA is strict for any f~ F; moreover a strict algebra is called total if  

a(i)E si A for all i=l  ..... n implies fA(~)~ s A for all f~Fst...sn,s- 

The class of all non-strict Y.,-algebras will be denoted by NSAIg(Z). I-1 

Then, by definition, strict algebras are exactly the partial algebras and total algebras are the usual ones. 

Note that in non-su'ict algebras no extra-elements are in the carders to define non-suict functions. For 

example we can define the boolean algebras with non-strict functions A and v as follows. 

Example 1 

sort bool; functions --,: bool --4 bool; ^ ,  v :  bool ,bool  ---) bool.  

The algebra B consists of: 

bool B = {t,f} 

--~ is the strict function defined by --~(t) = f and --~(f) = t; 

^B is defined by 

if  b(1) = t then ^B(ID = b(2),  

i f  e i ther  b(1)  = f or  b(2)  = f then ^B(]2.) = f, 

i f  b(2)  = t then ^B(Iz) = b(1) ,  

otherwise ^B(]2) is undefined; 

v B is def'med by 

if  b(1)  = f then 

if  e i ther  b(1) = 

if  b(2)  = f then 

vB(h)  = b(2) ,  

t or b(2) = t then v B ( ~  -- t, 

vB(ID = b(1) ,  

otherwise vB(]2) is undefined. [] 

Depending on the partiality of the functions, there are several possibilities to define homomorphisms, each 

one of them is useful for a different purpose (see eg. [BW1, B, R]), in a way that the algebraic structure is 

preserved. Our choice follows the tradition of partial algebras (see eg. [B, BW1, T, AC1]), where they are 

used in order to get a no-junk&no-confusion initial object (see [MG]). 

Def. 1.1.3. Let Y. = (S,F) be a signature, A and B be non-strict algebras over E. 

Then a homomorphism h: A ~ B is a family {hs: s A ~ sB}s~S of total functions s.t. 

fA(jDE S A implie s hs(fA (.a)) = fB (h-a), where h.a_ is defined by h-a(i) = hsi(~(i)) for i=l  ..... n, 

forall  fEFsl...Sn,S andal l  aEslAXp...XpSn A. 

The category NSAIg(E) is defined by: 

• the objects of NSAIg(Y.) are NSAlg(Z); 

* the arrows in NSAIg(Y~) are all the homomorphisms; 

• composition is done component by component; 

• the identity on A is {idsA}seS. [] 



125 

Note that each homomorphism between strict algebras is a total homomorphism of partial algebras and 

each homomorphism between total algebras is a usual total homomorphism; thus the category both of total 

algebras and of partial algebras with total homomorphisms are full sub-categories of NSAlg(~.). 

Therefore each result in the non-strict frame applies to the usual ones too. 

1 . 2  T e r m  a lgebras  

Let us introduce the term algebras and state some basic results which will be used in the following 

sections. 

Term algebras are defined like in the total frame, so that the concept of substitution as total homomorphism 

on T~:(X) is well defined. 

Def. 1.2.1. Let ~ = ( S , F )  be a signature and X =  {Xs}seS be a family of S-sorted variables; 

the term sets T~;(X) s on ~ and X are inductively defined by: 

• Xs G Tz(X)s for all s~ S; 

• FA,s ~ T~(X)s for all s~ S; 

• f~Fsl...sn, s and ti~Tr~(X)si for i=l . . .n  imply f(tl ..... tn)eTr.(X)s. 

If X is the empty set, then TE(X) is denoted by T~; and its elements are called closed or ground terms. 

For all f~ Fsl...sn,s the function fTz(X): T~;(X)slX...xTl:(X)sn ~ Tr~(X)s is the strict total function 

defined by t'rz(x)(tl ..... tn) = f(tl ..... tn) for all ti~TI;(X)si. 

The term algebra Tz(X) consists of ({Tz(X)s}seS,{fTr(X)I f e  Fw,s}w,seS*xS). 

Let Y be an S-sorted family of variables. A substitution U: Tz(X) ~ Try(Y) is a total homomorphism 

from T~;(X) into Tz(Y), ie a family of total functions {Us: T~:(X)s ~ Tz(Y)s}seS s.t. 

Us(f(tl ..... tn)) = f(Usl(tl) .. . . .  Us~(tn)) V f~ Fsl...sn,s, tie T~(X)s i i=l . . .n.  [] 

It is welt known that some conditions about the signatures are needed in order to have the unique 

decomposition of terms in the functional notation defined above, when overloading is allowed. We simply 

assume that in case of ambiguity another notation for terms has been chosen, which makes unique the 

decomposition. 

The evaluation is def'med like in the partial strict frame, but also partial valuations for variables have to be 

allowed. Valuations being partial functions, it is possible to define in a canonical way an order on them, 

which has a minimal element: the empty valuation. 

Def. 1.2.2. Let ~ = ( S , F )  be a signature, X =  {Xs}scS be a family of S-sorted variables. For 

all algebras AeNSAlg(E)  and all valuations V = {Vs: Xs -~ sA}seS for X in A, where Vs is a 

partial function, the evaluation evalA,V: T~:(X) ~ A is inductively defined by: 

• evalA,V(x) = V(x) for all xE X; 

. evalA,V(f) = fA for all fa F^,s; 

• evalA.V(f(tl . . . . .  tn)) = fA(~ ,  where a(i) = evalA,V(ti) with i=l . . .n ,  for all f~ Fsl...s~,s and 

ti~ Tz(X)si for i=l  ..... n. 



126 

For all valuations V, V': X ---> A 

V < V' iff V(x)e s A implies V(x) =e V'(x) for all xe X. 

The valuation V? for X in A is the empty map, ie V?(x) is undefined for all xeXs and all se S. [] 

In the following we will denote evalA,V(t) by tAN; moreover if X is the empty set (so that there exists a 

unique valuation V for X in A), we will denote evalA, v simply by eval A and evalA,V(t) by t A. 

Finally we denote a, defined by a(i) = tiA, v for i=l ..... n, by (tlA, v ..... tnA,V). El 

It is worth to note that the order on the valuations is preserved by the evaluation, ie V <- V' implies 

evalA,V < evalA,V '. 

Prop.  1.2.3. Let Z = (S,F) be a signature, A a non-strict algebra over E, X an S-sorted family 

of variables, V and V' valuations for X in A s.t. V < V'. For all terms te TE(X)s if tA,Ve s A then 

t A'V =e t A'V'. [] 

In the total frame, the term-algebras are the free objects in the class of all total algebras, because of the 

uniqueness of the evaluation w.r.t, a valuation. Here, as in the partial case, term-algebras are not free, 

because the evaluations are not homomorphisms, not being total. However a derived property holds also 

in this case, although a bit relaxed. Indeed in the total frame the freedom of the tema algebra implies that if 

the upper triangle of the diagram 1 commutes, then the triangle below commutes too. Analogously in our 

frame if V' < h.V, then eval A',V' < h.eval A,V, so that we have the diagram 2. 

A h m,~ A '  A h I ~ >  A '  
T I v - -  

.v 

Tx(X) Tx(X) 

Diagram I Diagram 2 

This result also holds in the partial frame and is crucial in order to get that the initial object in a class, if 

any, satisfies the no-junk and no-confusion properties (see [MG]). Indeed if we consider the diagram 2 

where A is the initial object and h the unique homomorphism from the initial object into A', then we 

have that each term defined in A has to be defined in A' (no-junk) and that two terms existentially equal 

in A have to be existentially equal in A' (no-confusion). 

Prop.  1.2.4. Let r. = (S,F) be a signature and X = {Xs}seS be a family of S-sorted variables. 

For all non-strict algebras A,A'~NSAlg(~.), all valuations V for X in A and V' for X in A' and all 

homomorphisms h: A ~ A' s.t. V' < h-V we have that 

1 tA,V~ s A implies h(t A,v) =e tA"V' for all t~ Tz(X); 

2 t A,V =e fA,V implies tA', v'  =e fA',V' for all t,t'~ T~:(X). [] 



127 

1 . 3  Induct ive  and  initial  a lgebras  

We first introduce the concept of inductive algebra, ie algebra satisfying the no-junk condition, and relate it 

with the idea of term-generated. Then we show that in every class of algebras closed w.r.t, inductive 

subalgebras the initial object, if any, is characterized by the no-junk and no-confusion properties. 

Def. 1.3.1. Let A be a non-strict algebra; its inductive part <A> is a family { s <A> } se S of its carrier 

sub-sets inductively def'med by: 

fAe S A f6 FA,s 

fA e s<A> 

a~ sl<A>× × Sn <A>, fA(~)E s A fEFsl'"sn's _ p.-- p 

fA(lOe S <A> 

The inductive subalgebra B of A consists of: 

* s B=s <A> for all seS; 

* fB(.b.) = fA(.12) for all fe Fsl...sn,s and all be xp {Sl <A> ..... sn<A>}. 

In the following we will denote by <A> the inductive subalgcbra of an algebra A. 

The merge of <A> into A is the homomorphism m = {ms}s~S defined by ms(a) =e a for all 

aE S <A>. 

A non-strict algebra A is inductive iff A = <A>. 

Let C be a class of non-strict algebras on a signature Z; the subclass Ind(C) of C consists of 

{A I Ae  C, A is inductive}. [] 

Note that the definition of s <A> guarantees both the well definedness of f<A> and the merge being a 

homomorphism. 

The usual equivalence between inductive and term-generated algebras has to be a little relaxed, because 

functions over terms are total, while in inductive algebras may also be non-strict. Thus some syntactic 

elements are needed to play the role of the "undefined" dements which cooperate to build the carriers. 

Prop.  1.3.2. Let Z = (S,F) be a signature, X be any family {Xs}seS of  variables s.t. IXst > I 

for all s~ S and A a non-strict algebra. 

Then A is inductive iff evalA,VT: Tx(X) --~ A is surjective. [] 

P rop .  1.3.3. Let A and B be non-strict algebras, h: A ---> B be a homomorphism; if A is 

inductive then h is unique. [] 

Def. 1.3.4. Let Z be a signature and C be a class of non-strict algebras over Z. An algebra IE C 

is initial in C iff for each Ae C there exists exactly one homomorphism from I into A. [] 

Prop.  1.3.5. Let Z = (S,F) be a signature, X any family {Xs}seS of variables s.t. IXsl > 1 for 

all se S and C be a class of non-strict algebras over Z s.t. Ae C implies <A>e C. 

A non-strict algebra Ie C is initial in C iff it satisfies the following two conditions 

1 I is inductive; 

2 tI'V~ =e t'I'V~ implies tA, v~ =e t'A'V~ for all Ae C and all t,t'~ Tx(X). 

Moreover I is initial in C iffit  is initial in Ind(C). [] 



128 

Prop. 1.3.5 suggests a syntactical characterization of the initial model, very close to the ones, for 

example, of the total and partial cases. In order to exploit the similarity between this case and the usual 

ones we start with a definition ad  hoc of congruence and of quotient. 

Since the use of these notions is limited to the study of the existence of the initial model, we restrict the 

definition just to the case of  the term algebra; there are different ways of generalizing these notions to a 

generic algebra, but none of them corresponds to the quotient in the categorical sense; thus we prefer to 

avoid this kind of  useless generality. 

From now on let X denote a family X -- {Xs}s~S of variables s.t. IXsl > 1. []  

Def. 1.3.6. Let Z = (S,F) be a signature; a congruence =- is a family = = {---s}seS s.t. 

0 - s  ~ T~:(X)sxTx(X)s for all s~ S; if (a ,b)~-s ,  then we write a - s  b; 

' t ' -  t" 1 --s is symmetric and transitive, ie t - s  t' implies t - s  t' and t - s  t ,  =s imply t ---s t" 

for all t,t',t"~ Tz(X). 

Let us denote by Dom(----s) the set {t I t =s t} and define t ~Ds t' iff  either t - s  t' or t,t'~ Dom(=s) 

2 t i=Dsit ' i  f o r i = l . . . n  and feFsl...sn,s imply f(tl . . . . .  tn)--Dsf( t ' l  . . . . .  t'n); 

3 f(tl . . . . .  ti-l,X,ti+l . . . . .  tn )~Dom(-)  and x~Xsi imply 

f(tl  .. . . .  ti-l,X,ti+l . . . . .  tn) =s f(tl . . . . .  ti-l,t,ti+l . . . . .  tn) for all te Tz(X)s; 

4 f(tl . . . . .  tn)~ Dom(=-), ti~ Dom(-si) imply 

f(tl . . . . .  ti-l,X,ti+l . . . . .  tn) =s f(tl . . . . .  ti-t,t,ti+l . . . . .  tn) for all t~Tz(X)s and all x~Xsi; 

5 x~ D o m ( ~ )  for all xe Xs. 

The quotient T~:(X)~ is the non-strict algebra deemed by: 

• sT~(X)/---- is Ty.(X)/~ foral l  s~ S; in the following we denote the class of t in sTz(X)/--- by [t]; 

° fTz(X)/---(I) = [f(tl . . . . .  tn)], where if _t(i)E sTz(X) ~ then ti~t(i) else ti~Xsi for all f~Fsl...sn,s. 

For any non-strict algebra A let - A  be the congruence defined by t =-A t' iff  tA, V~ =e t'A'V?- []  

Note that fTz(X)/-=- is well defined. Indeed let ti, t'i belong to I(i) for all i s.t. t(i)~ sTz(X)/% otherwise 

ti, t'i belong to Xsi and hence ti,t'i~Dom(---si) because of 5; then ti =D t'i for i= l . . . n  and hence, 

because of 2, f(tl  . . . . .  tn) -D  f(t ' l  . . . . .  t'n) SO that [f(tl . . . . .  tn)] = [f(tl . . . . .  tn)]. 

As in more familiar flames, also in this case the evaluation of a term is the equivalence class of the terms 

where variables have been replaced by their valuation. 

Def. 1.3.7. Let Z = (S,F) be a signature and D be a non-empty set of  non-strict algebras over E. 

The product I'IAeD A is the non-strict algebra over Z defined by: 

for all s e S  let s I'IAeDA be l~AeD SA= {g :D ---~ U A e D s A I g ( A ) e s A V  A e D } ;  

for all feFsb..sn,s let ft'lAeoA be the function def'med by: 

for all l~e xp {Sl IIA~D A .. . . .  SnFIAeD A} fIIAeo A(p..) is deirmed iff fA(a) is defined for all A e D ,  

where a is defined by a_(i) = l~(i)(A) for i= l . . . n ,  and in this case fHA~D A(p_) is defined by 

fI/A~o A(p.)(A ) = fA(g(A)) for all A e D .  

The projection of 1-IAeD A into A, denoted by XA, is the homomorphism defined by: 

~A(g) = g(A) for all ge sIIA~o A and all se S. 

In the following if D is the set {At .. . . .  An}, then we denote I ]AeD A also by A1 x . . . x  An. 



129 

Let C be a non-empty class of non-strict algebras over ]g and D be the set of non-strict algebras defined 

by D = {Tx(X)/-A J A~D}.  Then I(C) denotes the inductive sub-algebra of the product 

I IB~n  B. [] 
Theorem 1.3.8. Let E = (S,F) be a signature and C be a class of non-strict algebras over E 

closed under isomorphisms and s.t. Aa C implies <A>a C. 

Then there exists an initial object in C iff there exists an initial object in Ind(C) iff I(C) belongs to C 

iff I(C) is initial in C. [] 

2 Non-Strict  Specif ications 

Usually in both the total and the partial frame, logical formulas (equations and positive Horn clauses) are 

considered s.t. their model classes are closed w.r.t, non-empty products and sub-objects, so that the 

model classes satisfy afortiori the closure w.r.t. I(C) which is necessary and sufficient for the existence 

of an initial model, by theorem 1.3.8, for classes closed under subobjects and isomorphisms. In the 

non-strict frame, the same way cannot be followed, because there are finite sets of equations whose model 

classes are neither closed w.r.t. I(C), nor w.r.t, non-empty products. Let us informally show this claim 

by a simple example. 

Example T2. 

Sort s Operations a, b: ---> s Axiom f(a) =e b. 

f: s ---> s 

The following two algebras are obviously models of T2: 

A s a = { o } a A = b A = .; fa is the total strict function defined by fa(.) = o; 

B s B = {o} a B is undefined; bB=*; fB(b)=o foraU b~xp{sB}. 

Let C be the model class of T2. By definition of product, both a AxB and aI(C) are undefined, because 

a B is undefined, and analogously both fAXB(g) and fI(C)(g), where g is the totally undefined function, 

are undefined too, because fA is strict. Therefore both f(a) AxB and f(a)l(c) are undefined and hence 

both AxB and I(C) are not models of T2. [] 

In the example above the problem arises because of the monotonicity of the interpretation of the function 

symbols; indeed from f(a) =e b we have that in each model A either a =e a or f(x) =e b holds. Thus 

equations implicitly introduce disjunctions. Moreover, using conditional axioms, it is possible to code each 

disjunction and hence in the non-strict frame it is equivalent to deal with equations and to deal with 

disjunctions. Let us support this claim by an informal proof. 

Let el v . . . v  en v -.-1111 v . . . v  --ntlm , where el ..... I~n,TI1 ..... tlm are all existefitial equalities; then 

el v . . . v  en v --,rll v . . . v  -nrlm may be coded by the set: 

a i  D(fi(x)) ^ I"11 ̂ . . . ^  Tim D ei, for i=l . . .n  

a D(fn(fn-l(...(x)...) 

where f l  . . . . .  fn are auxiliary unary functions and D(t) stands for t=e  t. 

Indeed each algebra A satisfying a satisfies also at least one D(fi(x)) and hence if A satisfies also (gi 

either there exists an rij s.t. A does not satisfy 71j or A satisfies ei, so that A satisfies 

E l w . . . v  ~n v ~Tll v . . . v  -nTlm. Vice versa if A satisfies el v . . . v  en v ~r l l  v . . . v  --,rim, then A 

may generalize to a model of a l  ..... an,a, suitably defining the interpretation of fl ..... fn. 

Therefore in the following we focus our attention on disjunctive types. 



130 

2.1  Formulas, Validity and Types 

In the following we use formulas within an infinitary logic (for reference see eg [K]), with infinitary 

conjunctions and disjunctions and families of denumerable sets of variables. 

Def. 2.1.1. Let E = (S,F) be a signature and X be a family of S-sorted variables. 

• Theset Eq(Y,,X) of equalities on t1 and X consistsof t=et '  foraU t,t'~Tz(X)s, sES;theset  

At(Z,X) of atomic formulas on Z and X is Eq(Z,X)u){~el  eeEq(Z,X)}. 

• The set Form(Y.,X) of all well-formed formulas is inductively defined by: 

Eq(Z,X) ~ Form(~.,X). 

• u { ~ , 4 ' }  ~ Form(Y.,X) implies A ~ ,  v ~ ,  ~ 4 ,  ~ D 4 ' e  Form(Z,X). 

• The set CForm(Y~,X)of conditional formulas on Y. and X is the set 

{A A D e I AU{e} C Eq(Y.,X)}. If A is the empty set, then A A D e is an equivalent notation 

for e and hence Eq(Y.,X) c CForm(I;,X). 

• The set DForm(E,X)of disjunctive formulas on ~; and X is the set 

{v A I A ~ At(E,X)}. If A consists of one atomic formulas e, then v A is an equivalent 

notation for e and hence At(Z,X) c DForm(E,X). (3 

In the following a genetic equality will be denoted by e or rl, a generic atomic formula by 7 or 8 and a 

generic formula by cp or a~ or ~/. Moreover we will denote the empty conjunction A O by True and 

the empty disjunction v O by False. 

Def. 2.1.2. Let Y~ = (S,F) be a signature, X be a family of S-sorted variables and A be a 

non-sttict E-algebra. 

If ~ is a formula and V is a valuation for Var(¢p) in A, then we say that q~ holds for V in A 

( equivalently: is satisfied for V by A ) and write A ~ v  ~P accordingly to the following definitions. 

• A ~V t =e t' iff tA,V,t'A,Ve s A and tA, V = t'A,V; 

• A ~ v A ~  i f f A ~ v q ~  for all ~0e~; 

• A ~V v ~ iff there exists ~ 0 ~  s.t. A ~V cP. 

• A ~ V - , 4  iff A I ~ V 4 .  

• A ~ V 4 D 4 '  iffeither A ~ V 4 '  or A I ~ V 4 .  

We write A ~ ~ for a formula ~p and say that ~p holds in (equivalently: is satisfied by, is valid in) A 

iff A ~V q~ for all valuations V for Var(q~) in A. Let us shortly denote by D(t) the equality t =e t, 

where both sides are the same term, because t =e t simply state the definedness of t. [] 

The definition of validity justifies the notations introduced for the empty conjunction and disjunction; 

indeed A ~V A O for all non-strict algebras A and all valuations V, because obviously A ~V cP 

for all cpa 0 ,  so that A O plays the role of the constant True, and A ~V v 0 for all non-strict 

algebras A and all valuations V, because obviously there does not exist ~pe O s.t. A ~ v  cP, so that 

v O plays the role of the constant False. 

Remark. In both the total and the partial frame, since valuations are total functions, the relation - on 

T~;(X), defined by t = t' iff A ~ t =¢ t', may be not an equivalence relation if empty carriers are 



131 

allowed, because it may be not transitive. Indeed consider the following example, which is a simplified 

version of a well known example presented in [MG]. 

Example 3 

Let ]g be the signature defined by: 

sorts: Sl, s2 operations: a,b: ---) Sl f: s2 ---) sl  

Then TZ ~ a = f(x) and T~g ~ f(x) = b, because T~s2 = O and hence there does not exist a 

(total) valuation for {x] in Tz, but Tz ~ a = b so that - is not transitive. [] 

This fact has consequences in the case of inference systems, which have to deal very carefully with the 

elimination of the variables. 

On the contrary, in the non-strict frame these problems do not arise, because valuations are partial 

functions, so that there exists at least the totally undefined valuation for all families of variables and all 

non-strict algebras. For instance, in the above example Tz ~V7 a = f(x) and hence - is transitive. 

Moreover the following prop. 2.1.3 shows that - coincides with the relation --.9, defined by t--? t' iff 

A ~v7 t ---e t', and hence is an equivalence relation for all non-strict E-algebra A. Manca and Salibra in 

[MS] introduced first the partial valuations to solve the empty-carriers problem and maintain the original 

Birkhoff equational calculus, by changing the concept of validity; however in our frame the introduction of 

partial valuations has a completely different motivation; indeed it is not a choice and a technical device as in 

[M], but it arises naturally from the setting, since functions are non-strict and variables have to represent 

all the possible arguments. 

Prop .  2.1.3. Let Z = (S,F) be a signature, X be a family of S-sorted variables, A be a set of 

equalities over Z and X. For any non-strict Z-algebra A A ~ v A iff A ~V~ v A iff there 

exists 6 c A  s.t. A ~ 8  and in particular A ~ t = e t '  iff A ~ V T t = e t '  for all terms t and 

t ' . •  

Note that if A is a set of atoms, ie of equalities and negated equalities, then A ~V7 v A does not 

imply A ~ v A. For example if A is {-, D(x)}, then it is satisfied only for the totally undefined 

valuation, while each non-empty algebra does not satisfy v A. 

Def. 2.1.4. A type or specification consists of a signature I; and of a set of well-formed formulas 

over Z, called axioms of T. If all the axioms of a type are disjunctions, then the type is called 

disjunctive; if all the axioms of a type are conditional formulas, then the type is called conditional and if all 

the axioms of a type are equalities, then the type is called equational. 

Let T = (Z,Ax) be a type; the class Mod(T) of models of T is the set 

{A I Ae  NSAIg(Z) ,  A ~ o~ VczeAx}.  

A model of T is initial for T i f f  it is initial in Mod(T). [] 

Remark .  Note that disjunctive types are sufficient to define any class of models definable using 

well-formed formulas. Indeed each well-formed formula over the usual logical connectives may be 

expressed in conjunctive normal form. Since a conjunction of formulas is logically equivalent to the set of 

the formulas in the conjunction, each well-formed formula is logically equivalent to a set of disjunctive 

formulas. 



132 

Logic in a non-strict flame is quite different from the usual one; for instance Mod(T) may be empty also 

for equational types. For example if D(x) is an axiom of the specification, then no algebra can satisfy this 

axiom w.r.t, the valuation completely undefined, so that the specification has no models. 

Def. 2.1.5, A type T is consistent iff M o d ( ~  is not empty. [] 

2 .2  Relating total and non-strict  algebras 

Let us now relate the non-strict frame with the more usual total one, first at a naive level and then 

formalizing the results by the concept of institution [GB1, GB2], simulation of institutions [AC2] and 

map of institutions [M]. 

Since the partial product of slA,...,Sn A is isomorphic, from a set-theoretical point of view, to the (usual) 

product of  S lAU{-l-sl } ... . .  SnAU {-l-s. }, where the symbol u denotes the disjoint union, any non-strict 

algebra A is in some sense equivalent to the total algebra A±, defined by: 

s A± = sAu{_l_s} for all se S; 

if  fA(~) is defined, where a ( i )  = ai if  aie si A otherwise a( i)  is undefined, then 

fAX(al . . . . .  an) = fA(a), else fA±(al . . . . .  an) = I s  for all f: s iX . . .  ×Sn --~ s, all ai~ si A± for 

i=l . . .n .  

However this equivalence is not categorical, ie there does not exist a functor from non-strict to total 

algebras sending A into A±. Indeed the introduction of one element to represent all the undefined terms 

may cause the lack of the existence of homomorphisms. Consider the following example. 

Example 

Let ~ be the one-sorted signature consisting of just three constant symbols { a,b,c } and A, B be the 

non-strict algebras over Z, defined by: 

A: s A =  {1}; a A = l ; b o t h  b A and c A areundefmed; 

B: s B = { 1 } ;  a B = l ; b B = l ;  c B is undefined; 

then there is a non-strict homomorphism h: A ~ B, defined by h(1) = 1. 

Consider now the lrivial totalizations of A and B. 

A±: s A =  {1,J_}; a A ± = l ;  bA±=.L;cA±=_L;  

B.L: sB={1,-L};  a B ± = l ; b B ± = l ;  c B ± = t ;  

then there does not exist any total homomorphism from A± into B±, because b A± = c A±, while 

bB± ~ cB±. [] 

Since the undefined elements are don't care elements, it is quite unreasonable that the equality between 

b A± and c A±, which are "undefined", be essential for the non-existence of homomorphisms from A± 

into B±. Thus in order to have a more natural representation of non-strict algebras, we need a definition of 

(total) homomorphism, which does not involve the "undefined" part. To do this it is useful, not to say 

necessary, having a tool to individuate the "undef'med" elements, for example a family of unary predicates, 

one for each sort, dividing the carriers in "defined" and "undefined". Following a similar idea both [BW2] 

and [P] define homomorphisms which are partial functions, having as domain the "defined" part; this 



133 

approach can be generalized in order to include non-strictness. To fix the notation let us introduce the total 

algebras with predicates, or first-order structures. 

Def. 2.2.1. A signature with predicates consists of a set S of sorts, an S*×S-indexed family F of 

operation symbols, and an S+-indexed family P of predicate symbols. 

Let X = (S,F,P) be a signature with predicates; a total algebra with predicates or first-order structure 

consists of a triple ({sA}s¢S,{fA}feF,{pA}p~p), where s A is an arbitrary set for all s ~ S, fA is a 

total function from st~x...xs A into s A for all f ~  Fsi...sn.s and finally pA~s l~x . . .XSn A foral l  

p E Psl...sn- 

Let A, B be total algebras with predicates over Z; a total homomorphism is a family h = {hs}seS of 

total functions hs: s A ~ s B s.t. 

• hs(fA(al .. . . .  an)) = fB(hsl(al) ..... hs~(an)) for all f E Fsl...s~,s; 

• (al ..... an) ~ pA implies (hsl(al) ..... hs~(an)) ~ pB for all p E Psl...s~. 

Total algebras with predicates over a signature Z and total homomorphisms form a category, from now 

on denoted by TAIg(Z), where composition and identity are composition and identity as maps. [] 

Let X = (S,F) be a non-strict signature and Z' denote the following signature with predicates 

(S,Fu{-l-s: --~ S}seS,{Ds: s, =e: s S}sES); let us investigate the relations between NSAig(Z)  and 

TAIg(Z ' ) .  

Of course not any total algebra over X' represents a non-strict algebra, because either the monotonicity 

condition may not hold or .I., which has been introduced to represent the "undefined" elements, may be 

defined, or else =e may fail to represent the existential equality. 

Def. 2.2.2. Let Z = (S,F) be a non-strict signature and Z' denote the following signature with 

predicates ( S , F u { / s :  ~ S}seS,{Ds: s, =e: s S}seS); a total algebra A over Z' is called don't care 
i f f  

I £s~Ds A foraU seS; 

2 for all feFsl ..... sa,s 

fA(a 1 ..... an)eDs A and ai~Dsi A imply fA(a 1 ..... an) = fA(al ..... ai-l,a,ai+l .. . . .  an) ~/aesiA; 

3 (a,a ')e=e A iff a ,a 'eDs A and a =  a'. 

Let DCAIg(Z ' )  denote the full subcategory of  TAIg(Z ' )  whose objects are all the don ' t  care 

algebras. [] 

P rop .  2.2.3. Let X = (S,F) be a non-strict signature and Z' denote the following signature with 

predicates (S,Fu{J-s: --# S}seS,{Ds: s, =e: s S}seS). A total algebra with predicates A over Z' is 

don't  care iff it satisfies the following set AXDC(Z) of axioms. 

• --4)s(A_s) for all se S; 

• t = e  t' ¢ ~  D ( t )  ^ D ( t ' )  ^ t = t', 

ie ~D( t )  v ~ D ( t ' )  v --at = t '  v t =e t', ~ t = e  t ' v D(t),  ~ t = e  t '  v D ( t ' ) ,  

~ t  = e t ' v  t = t ' ;  

• Ds(f(xl . . . . .  Xn)) ^ -nDsi(Xi) ~ f(xl . . . . .  Xn) =e f(xl . . . . .  Xi-l,y,xi+l . . . . .  Xn), 

ie --aDs(f(x 1 . . . . .  Xn)) v Dsi(Xi) v f(x 1 . . . . .  Xn) =e f(xl . . . . .  Xi-l,y,xi+l . . . . .  Xn). E] 



134 

Remark.  There does not exist a total conditional specification whose model class is Obj(DCAlg(IT)). 

Indeed the trivial total algebra Tr over Z', having singleton sets as carriers, the unique obvious 

interpretation of function symbols and the totally true predicates, ie Ds Tr = s Tr and =e Tr = sTr×s Tr, is a 

model of each conditional type while it is not a don't care algebra. Therefore in general it is impossible to 

translate a conditional (equational) non-strict specification into a conditional total one, because it is 

impossible at least for the specification without axioms (~,O). Thus the relation we are investigating is 

between the categories of total and non-strict algebras and cannot be lifted to a relation between 

conditional specifications. However using disjunctive formulas it is possible to express the don't care 

conditions and hence non-strict conditional specifications are translated into disjunctive total specifications. 

The deep sense of this translation and its formalization involve the concepts of simulations and of map of 

institutions so that they are discussed at the end of this section. D 

It is easy to define a forgetful functor F from DCAlg(Z') into NSAlg(5".). 

Prop.  2.2.4. Let E = (S,F) be a non-strict signature and Z' denote the following signature with 

predicates (S,Fu{.Ls:---> S}s~S,{Ds: s, =e: s S}saS). Then F,  defined below, is a functor from 

DCAlg(Z')  into NSAIg(E).  

For any object A in DCAig(E'), F(A) is the non-strict algebra defined by: 

• sF(A) = Ds A for all s~ S; 

• forany a~slF(A)xp...×psnF(A) if a(i)EDsl A then let ai be a(i), else let ai be £si; 

for all fe Fsl ..... s,,s then define fF(A)(a) = fA(al ..... an) if fA(al ..... an)E Ds A undefined otherwise. 

For any total homomorphism h = {hs}se S: A --> B, F (h ) :  F ( A )  --> F(B)  is the family 

{ hslDs A } s~ S. [] 
Thus in general many different total algebras with predicates represent the same non-strict algebra, because 

they differ on the undefined part. Now we show that there exists a privileged representation, given by the 

left adjoint of the forgetful functor, from now on denoted by Tot, corresponding, as usual, to a free 

construction. Tot(A) is a privileged representation of A in the sense that each non-strict homomorphism 

h: A ---> B may be generalized to a total homomorphism Tot(h): Tot(A) --> Tot(B). Thus the lack of 

existence of homomorphisms seen in the case of the trivial totalization does not apply to this clever 

totalization. However Tot(A), being a free construction, has as many "undefined" elements as possible 

and hence its carriers are full of junk. To build such Tot we need some preliminary technical results. 

Prop.  2.2.5. Let Z = (S,F) be a non-strict signature and Z' denote the following signature with 

predicates (S,Fu{_I.s: --> S}seS,{Ds: s, =e: s S}sES); let A be a non-strict algebra over Z, XA be the 

S-sorted family defined by Xs = s A u {1} for all se S and VA: XA --~ A be the valuation def'med 

by VA(a)= a if ae s A, VA(±) undefined. 

Let -A  denote the total congruence over Tz(XA) generated by: 

{(t,t') I te TZ(XA),  A ~VA t =e t'}- 

Then the algebra Tot(A) = ( T z ( X A ) / - A ,  {±sT°t(A)}seS, {Ds T°t(A), =eT°t(A)}seS), where 

Is  T°t(A) = [l]--A, Ds T°t(A) = {[t]-~A ~1 tA'VAe sA} and ([t]~.A,[t']_=A)e =eT°t(A) iff A ~VA t =e t', 

belongs to DCAIg(~'.'). [] 

Prop.  2.2.6. Using the notation of prop. 2.2.5, F(Tot(A)) is isomorphic to A. 

Let us consider a non-strict homomorphism h: A ---> B. In order to define its image along Tot, we use h 



135 

as a valuation from 

Tot(h)([t]---A) = [h(0]~--B is well defined. [] 

XA into XB and then show that t =A t' implies 

C )  (S) I 

h(t)---B h(t'), so that 

Prop.  2.2.7. Let h: A --~ B be a non-strict homomorphism; using the notation of prop. 2.2.5, 

Tot(h): Tot(A) --~ Tot(B), defined by Tot(h)([t]=_A) = [h(t)]_= B, is a homomorphism of total algebras 

with predicates. [] 

And finally we can put together prop. 2.2.5 and prop. 2.2.7 to define the functor Tot. 

Theorem 2.2.8. Let ~ = (S,F) be a non-strict signature and ~' denote the following signature with 

predicates (S,Ft_){.Ls: ~ S}s~S,{Ds: s, =e: s S}s~S). Using the notation of prop. 2.2.5 and 

prop. 2.2.7, Tot is a functor.E] 

Let us now summarize our previous investigation about the relations between total and non-strict algebras. 

Each non-strict algebra may be represented by a total algebra, where a special element 3_ has been added 

to the carriers to denote the "undefined" elements, but this trivial totalization cannot be lifted to a 

categorical correspondence, since it cannot be expressed by a functor. 

For a right categorical translation of non-strict into total algebras we need some more algebraic tools, in 

particular definedness predicates, and get that each non-strict algebra may be represented by many different 

first-order structures (total algebras with predicates) we can think of as its implementations, satisfying the 

same formulas. However the class of all first-order structures (total algebras with predicates) representing 

some non-strict algebras cannot be described by conditional axioms, so that there is not a correspondence 

between (equational) conditional non-strict specifications and conditional total specifications. 

There exists a disjunctive specification having as model class the class of all don't care total algebras with 

predicates; thus each disjunctive non-strict specifications is represented by a disjunctive total 

specifications. 

Algebras ] Categories i Specifications 
Trivial totalization is sufficient ,[ First-order structures (Algebras [ First-order structures (Algebras 

[ with predicates); sentences [ with predicates) and disjunctive 

] remain the same [ formulas 

2.3 Disjunctive types and initiality 
Although the class of models of a disjunctive type is not a variety, because it is not closed under products 

nor quotients, it is at least closed under inductive subobjects and isomorphisms and these closures are 

sufficient to instantiate prop. 1.3.5 and theorem 1.3.8. 



136 

Prop .  2.3.1. The class of models of a disjunctive type is closed w.r.t, inductive subobjects and 

isomorphisms. [] 

Recall the definition of I(C), for C class of non-strict Z-algebras, given in def. 1.3.7. 

Theo rem 2.3.2. Let Z = (S,F) be a signature and T = (Z,Ax) be a disjunctive type. 

A non-strict algebra Ie Mod(T) is initial in Mod(T) iff it is isomorphic to I(Mod(T)) iff it satisfies the 

following two conditions 

1 I is inductive; 

2 I ~ t =e t' implies A ~ t =e f for all Ae Mod(T) and all t,t'~ TI;(X), where X is an 

S-sorted family of variables s.t. IXs I > 1 for all SE S. 

Moreover I is initialin C iff it is initial in Ind(Mod(T)).ffl 

T h e o r e m  2.3,3.  Let E = (S,F) be a signature and T = (Z,Ax) be a disjunctive type. The 

following conditions are equivalent: 

1 there exists an initial model in Mod(T); 

2 there exists an initial model in Ind(Mod(T)); 

3 I(Mod(T)) e Mod(T); 

4 I(Mod(T)) is initial in Mod(T). [] 

In general the initial model may not exist even for equational consistent types. Consider the following 

example. 

Example T4. 

Sort s Operations f, f ' :  s --> s Axiom D(f(f(x))). 

Then T4 is a consistent equational type, because the non-strict algebra A, defined by s A = {o} and 

fA(.~ =fA(.a_)=, for all a_exp {sA},is a model of T4. 

Now we show that there are two models A and B of T4 s.t. respectively fA(?)~ s A and fB(?)~ s B 

and hence for any algebra I satisfying the condition 2 of prop. 1.3.5 fl(fI(?))~ s I so that it is not a model 

of T4; thus T4 has no initial model, because of prop. 1.3.5. 

A s A = {o} fA(,) and fA(?) undefined fA(? )  = f,A(.) = ,  

B s B = {.} fB(?) = fB(.) = .  fB(.) and fB(?) undefined. [] 

And finally we can give our first main result: necessary and sufficient conditions for the existence of the 

initial model. 

T h e o r e m  2.3.4. Let T = (Z,Ax) be a consistent disjunctive type. The following conditions are 

equivalent:. 

1 I(Mod(T)) e Mod(T). 

2 There exists I initial in Ind(Mod(T)). 

3 There exists I initial in MOd(T). 

4 [A ~ v A for all A~ Mod(T)] implies [3 8e A s.t. A ~ 8 for all AE Mod(T)] for all sets A 

of equalities. 

5 a for all fe Fsl...s,,s [A ~ D(f(tl ..... tn)) for all AE MOd(T) and 3 Be Mod(T) s.t. 

B 1~ D(ti)] imply [C ~ f(tl  . . . . .  tn) =e f(tl . . . . .  ti-l,X,ti+l .. . . .  tn) for all Ce Mod(T)]; 



137 

for all v Ae Ax and all substitutions U: T~,(Var(v A)) --> Tz(X) 

[A ~ t =e t' for all Ae Mod(T) and all ~ t  =e t 'e U(A)] implies [3 8E U(A)nEEq(Y~,X) 

s.t. A ~ 8 for all AeMod(T)] .  

6 The relation - over Tz(X), defined by t = t '  iff A ~  t = e t '  fo ra l l  AeMod(T) ,  is a 

congruence and TI;(X)/= is the initial model.l-q 

2 .4  Non-str le t  condit ional  types 

The conditional types are a particular case of disjunctive types; indeed the conditional formula A A D e 

is logically equivalent to v {481 ~EA} t j  {e}; in other words conditional formulas are disjunctions 

where exactly one non-negated equality appear, ie are positive Horn clauses. In this case the necessary and 

sufficient conditions for the existence of an initial object are partially simplified. 

Theorem 2.4.1. Let T = (E,Ax) be a consistent conditional type. The following conditions are 

equivalent: 

1 The inductive sub-algebra of the product I'IAEMod(T) A belongs to Mod(T). 

2 There exists I initial in IndfMod(T)). 

3 There exists I initial in Mod(T). 

4 [A ~ v A for all AeMod(T)] implies [3 8cA s.t. A ~ 6 for all AEMod(T)] for all sets A 

of equalities. 

5 [A ~ D ( f ( t l  . . . . .  tn)) for all AE Mod(T) and 3 BE Mod(T) s.t. B 1~ D(ti)]  imply 

[C ~ f(t 1 ... . .  tn) =e f(tl .. . . .  ti-l,X,ti+l ... . .  tn) for all CE Mod(T)] for all fe Fsl...sn, s- 

6 The relation = over Tz(X), defined by t = t '  iff A ~  t = e t '  for all AEMod(T),  is a 

congruence and TI;(X)/-- is the initial model.I] 

2 .5  Total  and part ia l  conditional types 

In this section we show how, reducing total conditional and partial positive conditional to non-strict 

conditional types, the well-known results about the existence of an initial object in those cases may be 

obtained as corollaries of theorem 2.4.1. Moreover we show that partial non-positive conditional 

specifications, ie partial specifications whose axioms are in conditional form, but involve both strong and 

existential equalities, reduce to non-strict disjunctive types and that the necessary and sufficient conditions 

for the existence of an initial model, given in [AC1, C] can be deduced from the theorem 2.3.4. 

Properly speaking, the connection between total conditional types and conditional non-strict types and the 

connection between partial conditional types and conditional non-strict types are simulations (see [AC2]). 

To keep the presentation as concrete as possible, we simply sketch the translation of the theories in the two 

cases and do not define formally the simulations. 

I~t  us recall the definition of validity both in total and partial algebras, just in order to fLX the notation. 

Def. 2.5.1. Let Y. = (S,F) be a signature, A be a strict algebra over ~ and cp be a well formed 

formula ove~' I; and an S-sorted family X of variables; 

A ~Tot (p iff A ~V (P for all total valuations V for the variables of ~0 in A. 

Let T = (~,Ax) be a type; PMod(T) denotes the class of  all partial models of T, ie 



138 

PMod(T)={AIA~ NSAlg(~),A strict,A ~Tot ~,~'0~e Ax}, and TMOd(T) denotes the class of all total 

models of T, ie TMOd(T)={ AIA~ NSAlg(E),A total,A ~ T o t ~ , V ~  Ax }. [] 

Since partial algebras coincide with strict algebras, PMod(T) is the class of partial models of T in the 

usual sense and analogously TMod~) is the class of total models of T in the usual sense, too. 

Prop.  2.5.2. Let E = (S,F) be a signature, T = (Y.,Ax) be a conditional type. 

1 Let Par(T) be the conditional type (Y,,AxstrUtot(Ax)), where tot(Ax) = {tot(s)  I ~ e  Ax},  

t o t ( ^  A D e) = A ( A u { D ( y )  I y e  V a r ( A A D e ) } )  D e and Axst r  consists of 

D(f(yl ..... Yn)) D D(yi) for all f~ Fsl...sn,s. 

The partial model class of T coincides with the class of all non-strict models of Par(T), ie 

PMod(T) = Mod(Par(T)). 

2 Let Tot(T) be the conditional type (Y~,AXTotUtot(Ax)), where AXTot consists of all the axioms of 

Axslr and of A {D(yi) l i=l . . .n} D D(f(yl ..... Yn)) for all f~Fsl...sn,s. 

The total model class of- T coincides with the class of all non-strict models of Tot(T), ie 

TMod(T) = Mod(Tot(T)). [] 

Now we can get the well known results of existence of an initial model for partial positive conditional (see 

e.g. [BW1,B]) and for total conditional (see e.g. [MG]) types just as a corollary of theorem 2.4.1. 

T h e o r e m  2.5.3. Let E = (S,F) be a signature, T = (~.,Ax) be a conditional type; using the 

notation of prop. 2.5.2 both TMod(T) and PModff) have an initial model. [] 

Let us finally consider the partial conditional case, ie partial models of axioms of the form A A D e, 

where A~o{e} is a set of possibly strong equalities. Let us recall that t = t '  holds iff 

(~D(t)A---J)(t'))v t =e t' holds, so that strong equality is only a short notation for a particular kind of 

disjunction. 

Def. 2.5.4. Let ~ = (S,F) be a signature and X be an S-sorted family of variables. The set of 

non-positive conditional formulas over E and X consists of 

{A A D e I Au{e}  ~ EEq(E,X)uSEq(E,X)},  where SEq(Y~,X) = {(t = t') I t ,t 'e T~:(X)}. 

Let A be a non-strict algebra over ~; if ¢p is a non-positive conditional formula and V is a valuation for 

Var(9) in A, then we say that 9 holds for V in A (equivalently: is satisfied for V by A) and we 

write A ~ / 9  accordingly with the following definition: 

A ~ v t = t '  iff A ~ v ( ~ D ( t ) A ~ D ( t ' ) ) V t = e t '  and A ~ v A A D e  i f fe i ther  A ~ v e  or 

there exists 8e A s.t. A I~v 8. 

We write A ~ 9 for a non-positive conditional formula 9 and say that ~ holds in ( equivalently: is 

satisfied by, is valid in ) A iff A ~ v  ¢P for all partial valuations V for Vat(9) in A. Moreover we 

write A ~Tot q~ iff A ~V 9 for all total valuations V for the variables of 9 in A. [] 

Remark.  Let us consider a non-positive conditional formula A A D e; if e is the strong equality 

t = t ' ,  then ^ A D e is logically equivalent to the couple of axioms A Au{D(t)} D t =et '  and 

A Au{D(t')} D t =e t'. Thus from now on we assume that the consequences of the non-positive 

conditional formulas are always existential equalities. [] 



139 

A non-positive conditional axiom is logically equivalent to an implication involving only existential 

equalities, but with negated existential equalities in its premises, so that it is not a conditional axiom. 

Let us consider the simplest example: a conditional axiom having just one strong equality in its premises; 

let a be t = f D e. Then a is logically equivalent to (--,D(t)A~D(t'))v t =e t' D e and hence to the 

set consisting of -,D(t)a--,D(t') D e and of t =e t' D e. If more than one strong equalities appear in 

the premises a little more machinery is needed. 

For example let us consider the formula (p = A {D(t),tl = t'l,t2 = t'2} D e; then (p is equivalent to 

D(t) ^ [ ( - - -~( t l )A~D(t ' l ) )v  t l  =e t ' l]  ^ [ (~D(t2)A~D(t '2))v t2 =e t'2] D e, which becomes the set 

consisting of the following four formulas: 

• D(0  a (~D( t l )A~D( t ' l ) )  a (~D(t2)A~D(t '2)) D e 

• D(0  A tl =e t ' l  a (~D(t2)A--,D(t '2)) D e 

• D(t) A (-~D(t l )A--D(t ' l ) )  A t2 =e t'2 D e 

• D ( t )  ^ t l  = e  t ' l  ^ t2 = e  t'2 D ~. 

Generalizing this procedure, we have that one non-positive conditional axiom ^ A D e is logically 

equivalent to the set of all implications having as consequence ~ and as premises the conjunction of all the 

existential equality in A with, for all t = t 'e A, either t =e t' or both - ~ ( t )  and -,D(t'). 

Prop  2.5.5. Let Z be a signature, F to {e} be a set of both strong and existential open equalities 

over 1~, A be a non-strict algebra over ~ and V be a valuation for the variables of F to {e} in A. 

Then A ~ V  ^ F D e iff for all A1, A2 s.t. A1 u A2 = F-EEq(Z,X)  

A ~ v  ^ [(Fc~EEq(Z,X)) to ({t =e t' I t=t 'EA1} v {~D(t) ,  ~D( t ' )  I t= t '~A2})]  D e. V1 

Then, using the notation of prop. 2.5.5, each non-positive conditional axiom ^ F D e is logically 

equivalent to the set 

{^  [(Fc~EEq(Y.,X)) to ({t=et' I t=t'~ A1} u {~D(t),--,D(t') I t=t '~ A2})] D 

e I AltoA2=F-EEq(Z,X) } 

and hence, putting the above formulas in disjunctive form to the set 

{v ({e} v{D(t),D(t')lt=t'~ A2}u{ ~t=et'lt = t'E A1 }u {~y  Iy~ FnEEq(Z,X)  }) I A1uA2=F-EEq(Y.,X) } 

Prop .  2.5.6. Let Z = (S,F) be a signature, q) = ^ F D e be an open non-positive conditional 

formula and Y denote the set of the variables of q). 

Let us denote by tot((p) the set of all disjunctive formulas of the form: 

v ({e} u {D(t) ,D(t ' )I t=t '~ A2} u {~t=et '  It = t'~ A1} u { ~ y  IT~ FnEEq(Z ,Y)}  u {~D(y)  lye Y}) 

for all A1 and A2 s.t. A1 u A2 = F-EEq(Z,Y).  

For any strict algebra A we have that A ~Tot q) iff A ~ # for all ~ tot(q)). [] 
The above propositions gives us sufficient tools to show that each non-positive partial conditional may be 

reduced to a disjunctive non-strict type. 

Prop .  2.5.7. Let Z = (S,F) be a signature, T = (Z,Ax) be a non-positive partial type. 

Using the notation of prop. 2.5.6, let T '  be the conditional type (Z,Axstr u uctE Ax tot(a)), where 

Axstr consists of D(f(yl ..... Yn)) D D(yi) for all f~Fsl...sn,s. 

The partial model class of T coincides with the class of all non-strict models of T',  ie 

PMod(T) = Mod(T') .  I--I 

Let us show now that the necessary and sufficient conditions for the existence of an initial model in the 



140 

case of (non-positive) partial conditional types, given in [ACI,C], can be deduced by condition 5 of 

theorem 2.3.4. 

Theorem 2,5.8. Let T be a non-positive conditional type. There exists an initial model in PModff) 

iff for any instantiation tp = t~[ty/y I y~Y] of an axiom ct by defined closed terms ty, ie A ~ D(ty) 

for all A~PMOd(T) and all y~ Var(ct), 

1 eitherfor all AePModff )  A ~cons(tp); 

2 or there exists t =e t 'e prem(9) s.t. A 1~ t =e t' for some A~ PMod(T); 

3 or there exists t = t'~ prem(tp) s.t. either for all A~ PMOd(T) A ~ D(t), or for all Ae PMod(T) 

A ~ D(t') and B ~ t =et '  for some BE PMod(T).I-1 

Conclusion 

The paper has presented two main results, clarifying, we believe, two basic issues. 

First the relationship between non-strict and totalized algebras is analyzed, emphasing that the relationship 

has been dealt with at three different levels: models, categories, specifications. Only at the first level, 

which is the only considered in basic denotational semantics, the correspondence is trivial. An even deeper 

analysis can be given by using the concepts of institution (see e.g. [GB1]), simulation (see e.g. [AC2]) 

and map of institution (see e.g. [M]). The concept of simulation lifts the idea of implementation to the level 

of formal systems and formalizes the idea that elements living in different frameworks are in some sense 

equivalent, w.r.t, the problem faced at that moment. The existence of a simulation from an institution into 

another one means that signatures and sentences are translated from the first into the second institution in a 

way that each model in the first institution is represented by a (generally more than one) model in the 

second institution with satisfies exactly (in some sense) the same sentences. Thus each model in the frrst 

institution may be seen as an abstraction of its implementations in the second institution. This generalizes 

to classes of models, but in general not to types (ie theories), ie in general for a given theory (specification) 

in the first institution there does not exists a theory in the second institution whose models are exactly all 

the implementations of its models. This becomes true whenever the class of all models of the second 

institution representing some model of the first one are the model class of some theory, ie whenever the 

simulation is also a map of institutions; in this case also the logical aspect is preserved. 

On the basis of the above concepts the correspondence between non-strict and total algebras is completely 

characterized by giving three simulations. 

• non-strict algebras with equalities by total algebras with atomic formulas; 

• non-strict algebras with conditional formulas by total algebras with conditional formulas; 

• non-strict algebras with disjuntive formulas by total algebras with disjunctive formtflas; 

only the third one is also a map of institutions. We refer to the full paper [AC3] for this analysis. 

The second main result is a theory of initial models of non-strict disjunctive types which encompasses not 

only the well-known initial theories of total conditional specifications and partial positive-conditional 

specifications, but also of the recently explored partial nonpositive conditional specifications. 



141 

We see a main direction for further research, i.e. allowing in the same paradigm don't care conditions and 

error-handling; a promising approach seems to merge the present theory with the development of error- 

handling in [P]. 

Acknowledgement  

We thank some referees for their careful and competent comments which, together with suggesting 

improvements, have pointed out a misprint in the definition Of homomorphism (the preliminary condition 

"fA(a) ~ s A implies" in Def.l.l.3 was unfortunately missing), clearly causing ambiguities and 

inconsistencies with the counterexamples. 

References 

[AC1] 

[AC2] 

[AC3] 

[B] 

[Br] 

[BW1] 

[BW2] 

[C] 

[GB 1] 

[GB2] 

[K] 

[M] 

Astesiano E.; Cerioli M. "On the Existence of Initial Models for Partial (Higher-Order) 

Conditional Specifications", Proc. TAPSOFT'89, vol.l, Lecture Notes in Computer Science 

n. 351, 1989. 

Astesiano E.; Cerioli M. "Commuting between Institutions via Simulation" submitted for 

acceptance, also available as Technical Report n. 2, 1990, Formal Methods Group, 

University of Genoa (Italy). 

Astesiano E.; Cerioti M. "Non-strict don't care algebras and specifications", Technical Report 

n. 5, 1990, Formal Methods Group, University of Genoa (Italy). 

Burmeister P. A Model Theoretic Oriented Approach to Partial Algebras, Akademie-Verlag 

Berlin, 1986. 

Broy M. Partial Interpretation of Higher-Order Algebraic Types, in Proc. of Mathematical 

foundations of Computer Science 1986, Lecture Notes in Computer Science n.233. 

Broy M.; Wirsing M. "Partial abstract types", Acta Informatica 18 (1982). 

Broy M., Wirsing M, "Generalized Heterogeneous Algebras and Partial Interpretations" Proc. 

CAAP'84, Lecture Notes in Computer Science n.159, 1984. 

Cerioli M. "A sound and equationaUy-complete deduction system for partial conditional (higher 

order) types", Proc 3rd Italian Conference of Theoretical Computer Science, World 
Scientific,1989. 

Goguen J.A.; Burstall R.M. "Introducing Institutions". Logic of Programs, Lecture Notes in 
Computer Science n. 164, 1984. 

Goguen J.A.; Burstall R.M. "Institutions: Abstract Model Theory for Specification and 

Programming". Technical Report of Computer Science Laboratory, SRI International, 1990. 

Keisler H.J. Model Theory for Infinitary Logic, North-Holland, 1971. 

Meseguer J. "General logic", in Proc. Logic Colloquium '87, H.-D. Ebbinghaus et al. 

(eds.), North-Holland, 1989 



[MG] 

[MS] 

[P] 

[R] 

[~  

[W] 

142 

Meseguer J.; Goguen LA. "Initiality, Induction and Computability", in Algebraic Methods in 

Semantics, Cambridge University Press, 1985. 

Manca V.; Salibra A "Equational Calculi for Many-sorted Algebras with Empty Carders", 

Proc. Mathematical Foundations of Computer Science 1990, Lecture Notes in Computer 
Science n.452, 1990. 

Poign~ A. "Partial Algebras, Subsorting, and Dependent Types", Proc. 5th Workshop on 

Specification of Abstract Data Types, GuUane, Scotland September '87, Lecture Notes in 

Computer Science n. 332, 1988. 

Reichel H. Initial Computability, Algebraic Specifications, and Partial Algebras, Akademie- 

Vertag, Berlin, 1986. 

Tarlecki A. "Quasi-varieties in Abstract Algebraic Institutions", Journal of Computer and 

System Science, n. 33, 1986. 

Wirsing M. "Algebraic Specification" in Handbook of Theoretical Computer Science, 

vol.B, Elsevier, 1990. 


