
A Note on Off-line Permutation Routing
on a Mesh-Connected Processor Array

Danny Krizanc
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

We show how to off-line route any permutation of a n X n mesh
connected processor array in 2.5n - 3 steps with at most 6 packets per
processor per time step and in 2.25n +3 steps with at most 8 packets
per processor per time step.
Keywords: Parallel architectures, parallel algorithms, mesh-connected
array, off-line permutation routing.

1 Introduction

The mesh-connected array is the basis for a number of proposed and imple
mented parallel computers due to its simplicity and the regularity of its inter
connection pattern which makes it ideal for VLSI implementation. The per
formance of an algorithm on a packet-switched mesh depends on the mesh's
ability to realize the communication patterns between processors arising from
the algorithm. Often it is the case that these communication patterns are
permutations of the processors which are known at the time of the algo
rithm's design. This leads naturally to the problem of off-line routing of
permutations on the mesh, i.e., given a fixed permutation of the processors,
each processor being the origin and destination of one packet, find paths
connecting the origin-destination pairs and a schedule of when packets cross
the edges of their path, which minimizes the time required to realize the

1



permutation. At the same time we are interested in minimizing the number
of packets a single processor must store between steps of the routing.

Our model of the n x n mesh is sometimes referred to as the MIMD model.
It consists of n2 processors with the interconnections between them defined
by the two dimensional grid without wraparound edges. Edges are assumed
to be bidirectional and a processor can send (and receive) a single packet
along each of its edges in single time step.

There is an obvious lower bound of 2n-2 steps for our problem since in the
worst case a permutation may have a packet originating in the top left corner
processor and destined for the bottom right corner processor. Lieghton,
Makedon and Tollis [3] gave an algorithm for on-line permutation routing
(and therefore for off-line as well) which achieves this bound. However, in
their algorithm the processors must store a large number of packets between
communication steps. (The number is constant but estimated to be in excess
of 500.) As a corollary to one of their theorems, Annexstein and Blaumslag
[1] show how to off-line route in 3n - 3 steps with at most 3 packets per
processor. In this note we extend this result by showing that by allowing
only a slight increase in the amount of storage required a great improvement
in the time can be made. In particular, by allowing at most 6 packets per
processor per step any permutation can be off-line routed in 2.5n - 3 steps
and by allowing 8 packets per processor per step any permutation can be
off-line routed in 2.25n + 3 steps.

2 Off-line Routing

Our results require the following lemmas which are of interest in their own
right. We assume that n = 4k, for some k, whenever it is convient in the
discussion below.

Lemma 1 On an n processor linear array, any permutation can be routed
(on- or off-line) in n - 1 steps with at most 8 packets per processor per time
step.

Proof. The straightforward greedy algorithm achieves this bound. Note
that at most 2 packets enter a processor during a step and they both leave
on the next step unless the given processor is their destination. Since we are

2



routing a permutation, at most 1 packet has a processor as its destination so
that at most 3 packets ever reside at a processor. 0 .

Lemma 2 On an n processor linear array, 2 permutations can be simulta
neously routed (on- or off-line) in n + 1 steps with at most -4 packets per
processor per time step.

Proof. We use the well known reduction of routing to sorting by destination
and show how to sort 2 sequences in n +1 steps. It is easy to show that odd
even transposition sort sorts a sequence on a linear array in n steps (see [2]).
During odd steps of the sort, packets are compared and exchanged along odd
edges of the array, and during the even steps along even edges. To perform
2 sorts simultaneously, start a second sort after the first step of the first sort
using the odd edges while the first sort uses the even edges and vice versa.
The second sort completes after n +1 steps. On any step a processor receives
at most 2 packets and at most 2 packets are destined for a processor, so that
at most 4 packets reside at a processor between steps. 0

Lemma 3 On an n x n mesh, 2 permutations can be simultaneously routed
off-line in 3n - 3 steps with at most 6 packets per processor per time step.

Proof. Recall how Annexstein and Blaumslag [1] perform off-line permuta
tion routing on the mesh. They show that any permutation can be realized
by first performing a permutation of each of the rows, followed by a permu
tation of the columns and finishing with another permutation of the rows.
(The three permutations are calculated off-line.) We observe that a second
permutation may be simultaneously routed by first performing a permuta
tion of each of the columns (while the first permutation is being routed in the
rows) followed by permutations in the rows and then again in the columns.
Using lemma 1 the above can be performed in 3n - 3 steps. On any step a
processor receives at most 4 packets and at most 2 packets are destined for a
processor, so that at most 6 packets reside at a processor between steps. 0

Lemma 4 On an n x n mesh, -4 permutations can be simultaneously routed
off-line in 3n +3 steps with at most 8 packets per processor per time step.

Proof. Analagous to lemma 3, we send 2 permutations first by row, then by
column and finally by row and send the other 2 permutations first by column,

3



then by row and finally by column. Using lemma 2, the routing is completed
in 3n + 3 steps. On any step a processor recieves at most 4 packets and is
the destination of at most 4 packets, so that at most 8 packets reside at a
processor between steps. 0

We are now ready to show our main results.

Theorem 1 On an n x n mesh, any permutation can be off-line routed in
2.5n - 3 steps with at most 6 packets per processor per time step.

Proof. Divide the mesh into 4 n/2 x n/2 sub meshes in the natural fashion
(i.e., into quadrants). Imagine the submeshes as forming a 2 x 2 mesh. Our
algorithm consists of 3 phases. In the first phase, packets move either 0 or
n/2 steps in their row so as to be in their correct column of the 2 x 2 mesh.
After this phase each processor contains 0, 1, or 2 packets. During the second
phase we route within the submeshes. If a packet's destination is within the
submesh it goes there. If its destination is within the other submesh in the
column of submeshes, it goes to the image of its final destination if the two
submeshes were overlaid. Any processor is now the intermediate destination
of 0, 1 or 2 packets. It is easy to see that the 2 - to - 2 mapping thus defined
can be completed to form 2 permutations which may be routed off-line using
lemma 3. During the last phase, packets travel either 0 or n/2 steps to their
final destination. The storage requirements of the algorithm are the same as
those of the algorithm for lemma 3. 0

Theorem 2 On an n x n mesh, any permutation can be off-line routed in
2.25n + 3 steps with at most 8 packets per processor per time step.

Proof. The proof is analogous to theorem 1. Divide the mesh into 16
n/4 x n/4 submeshes with the submeshes forming a 4 x 4 mesh. First we
correct the column submesh by moving 0, n/4, n/2 or 3n/4 steps. The
second phase consists of a 4 - to - 4 mapping which is realized using lemma
4. During the last phase, packets must travel 0, n/4, n/2 or 3n/4 steps to
their final destination. By sending those that must go furthest first, this can
be achieved in 3n/4 steps. The storage requirements are the same as those
of the algorithm in lemma 4. 0

4



3 Discussion

It should be noted that the above algorithms are very easy to implement
requiring only O(log n) bit headers and the ability to check a flag, subtract
1, and test if a value equals O. The question of wether every permutation can
be routed (on- or off-line) in 2n - 2 steps using a small amount of storage
(say less than 10 packets) remains open.

References

[1] F. ANNEXSTEIN AND M. BLAUMSLAG, A Unified Approach to Off-Line
Permuation Routing on Parallel Networks, Symp. on Parallel Algorithms
and Architectures, 1990, pp. 398-406.

[2] T. LEIGHTON, C. E. LEISERSON, B. MAGGS, S. PLOTKIN AND J.
WEIN, Lecture Notes for Theory of Parallel and VLSI Computation,
MIT/LCS/Research Seminar Series 1, 1988.

[3] T. LEIGHTON, F. MAKE DON AND 1. TaLLIs, A 2n - 2 Step Algorithm for
Routing in an n x n Array with Constant Size Queues, Symp, on Parallel
Algorithms and Architectures, 1989, pp. 328-335.

5


