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Abstract 

The goal of this research is to propose an object-oriented framework for the 
specification, storage and manipulation of decision models in conceptual 
analysis of model management. The framework consists of two major parts: 
a conceptual structure, within which a decision model is represented in the 
form of a class and an inheritance mechanism enables a new class to be 
specified by making use of properties in existing ones; and manipulation 
operations, which is a set of high-level operators for the retrieval and update 
operations in a model management system. Based on this framework, the 
inheritance rules have been derived from function specialization within 
classes. As a result, an inheritance role checking system has been designed 
and implemented to find out the inheritance relationship between two 
classes. 

I. Introduction 

Current research [1, 6] in model management of decision support systems (DSS) has 
shown that the decision model is a kind of information resource which should be effi- 
ciently managed like data. The main purposes for model management are: 

1) to reduce redundancy: In early DSSs, each application had its own implemen- 
tation of functions or procedures for decision models; this led to considerably 
redundancy in stored functions as well as multiplying the task of the model builder. 
2) to avoid inconsistency: Inconsistency in model management is caused by 
redundancy, which allows different versions of function for the same model to exist 
in a centralized model management system (MMS). Thus, ambiguous results may 
be generated when executing a function. 
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3) to share models with multiusers: Different users may have various requirements. 
A MMS should allow not only existing applications to share the implementation of 
functions for decision models, but also new applications to be built by making use 
of the existing ones. 
4) to allow decision makers to use models easily: Related implementations of 
functions for a decision model should be grouped together, so that decision makers 
can use them easily. 
5) to enforce standards: Standards for the specification of decision models are 
desirable as an aid for model sharing, understandability and model interchange 
between systems. 

Several conceptual frameworks have been proposed for the representation of decision 
models in order to meet the requirements for model management. These include the 
relational framework, which views a model as a virtual relation between input and output 
domains [1]; the entity-relationship (E-R) approach, which treats a model as an entity 
comprising a number of attributes, and an interface among models as a relationship [2]; 
the model abstraction approach, which adopts the concept of data abstraction in pro- 
gramming languages and encapsulates related operations on a common data structure 
within a model [6]; and the structured modeling method, which employs a hierarchically 
organized, partitioned, and attributed acyclic graph to represent relationships among model 
elements (e.g. entities, attributes and functions) [8]. The advantages/disadvantages of these 
approaches are compared in Table 1. 

Table 1: Comparison of conceptual frameworks for model management. 

Relational 

Enforce standard 

E-R Model 
abstraction 

W.S. 

Structured 
modeling 

W.S. 

Reduce redundancy P.S. P.S. N.S. W.S. 

Avoid inconsistency P.S. P.S. N.S. W.S. 

Share models P.S. P.S. N.S. W.S. 

Used easily W.S. W.S. W.S. N.S. 

W.S. N.S. 

Notes: W.S.: wholely support; P.S.: partially support; N.S.: not support. 

The relational, E-R and model abstraction approaches do not wholly support model 
sharing, hence redundancy exists and inconsistency is not avoided. Structured modeling 
method specifies the relationship among models in great detail, but the resulting graph 
does not correspond to a real decision model. It is hard to use and difficult to understand. 
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The purpose of this paper is to propose a conceptual framework, based on the object- 
oriented paradigm, for model specification, storage and manipulation. The proposed 
framework is in accordance with model abstraction approach in the sense that related 
functions are grouped together on a common data structure, forming a class. With the 
extension of the inheritance mechanism, a new class can be built by making use of the 
function properties in its superclass. Based on the framework, some useful inheritance 
rules can be derived to help reduce redundancy in designing a centralized model man- 
agement system. 

II. Proposed Object-oriented Framework for Model Management 

2.1 Domains, Functions and ~-calculus 

For our purposes, a domain is a set of values with certain properties. A domain may 
include a special symbol __1 (read "bottom") to represent the meaning of undefinedness. 
Primitive domains are those widely used in the computation (e.g. INTEGER, REAL, 
CHARACTER and BOOL). Composite domains are those constructed by primitive 
domains using such operations as UNION, INTERSECFION, DIFFERENCE and 
PRODUCT (defined in the usual manner). Type is a synonym of domain used to protect 
an underlying representation from arbitrary or unintended use. Type and domain are used 
interchangeablely in this context. 

A function f is a direct mapping from domain A to codomain B, written f:A-->B. In 
general notation, y--fix) means <x,y>:f, where x:A and y:B. 

In a mathematical representation of decision making, there is an assumption that any 
decision model can be abstracted and represented in the form of functions [7]. 

EXAMPLE 2.1: In a production line, the Total Cost (TC) is linearly decided by the 
Production Volume (PV): 

TC = a + b x PV, (2.1) 

where a and b are constants. If we use f and x to represent TC and PV, respectively, 
Equation 2.1 becomes: 

fix) = a + bx (2.2) 

Functions can be classified by their mappings. Some classifications are: 

identity: f:A--->A is the identity function for A iff for all x:A, f(x)=x. 

composite: for functions f:B--->C and g:A--->B, where g is total, then the function (fog)(x) 
= fig(x)) is called composite function of f and g, which denotes a mapping (A--->B)~C. 
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X-calculus [11] is a formal system for the study of functions, their definitions and 
applications. It captures exactly those functions that can be computed by mechanical or 
electronic means, and has shown to be equivalent to Turing machine. We use X-calculus 
as a formal language to specify functions in the framework. 

The basic L-calculus has the syntax: 

e :: = e(e) /* application, (2.3) 

kr.e (x) /* abstraction, (2.4) 

Xx /* variable, (2.5) 

Xc /* constant, (2.6) 

where expression e refers to a function abstraction, which represents a mapping from 
input to output domains. 

EXAMPLE 2.2: In Equation 2.2, x is a variable, a+bx is an expression in which x is 
free, and must either be defined globally to the expression or be undefined: 

f=Xx.(a+bx) (2.7) 

where x is bounded by the Xx and (a+bx) is an abstraction. 

2.2 Conceptual Structure of an Object-oriented Framework 

2.2.1 Class and Object 

A typed expression e is a typed function used to represent basic operations in a decision 
model. It is described by typed ~-calculus and has the following syntax: 

e :: = e (e) /* application, (2.8) 

~:x . e ( x ) : x  /* abstraction, (2.9) 

~ : x  /* typed variable, (2.10) 

~c:x /* typed constant, (2.11) 

where "c is a type with the syntax: 

x:: = INTEGER/BOOLEAN/CHARACTER/REAL 

/..../x x x/'c ---> x/('~) (2.12) 

Typed expressions (abbreviated as expressions, thereafter) are the basic units used to 
describe a decision model. For simplicity, we use f:x ---> x, f=~.e(x) to represent function 
abstraction f = ~ : x . e  (x ):'c. 

EXAMPLE 2.3: With the addition of types, Equation 2.7 becomes: 
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f:REAL--->REAL; 
f=kx.(a+bx) (2.13) 

As a shorthand, we allow e' where x:x= e to represent function abstraction Lx:x.(e')(e). 

DEFINITION 2.1: A class is a conceptual schema specifying a decision model. Based 
on a set of common data structures, it groups relevant expressions together in a fixed 
set: 

C = {e 1 , e 2, ..... e.} (2.14) 

where C is the name of the class and each ei(i < i < n) is an expression. 

Class is the realization of the data abstraction concept. In Equation 2.14, expressions are 
mutually exclusive and orders among them are not important. 

EXAMPLE 2.4: Linear programming (LP) [7] is a basic model in operations research 
or management science (OR/MS), where the simplex method algorithm is commonly used 
to compute its optimal solutions. In practice, sensitivity analysis always follows the 
optimal result. Let c, A and b be the cost coefficient vector, constraint matrix and resource 
vector, respectively, where the vectors have a n-ary REAL type R. and the matrix R~. 

LP is then specified in the following class schema: 

LP={ c:R.; 

c=2W; 
/* input coefficient vector c 

A:R:; 

A=L4; 
/* input constraint matrix A 

b'.R.; 

b=kb; 
/* input resource vector b 

GOAL:(R." xR.  ---> R.) --> REAL; 

GOAL=min { cX where X:R.=A -I xb}; 
/* use simplex method algorithm to solve the problem 

SOLUTIONs'R.; 

SOLUTIONs=X.X; 
/* print standard solution report 

RANGE'R. ---> R.; 

RANGE=LX.(X)(A -1 -b) where GOAL*=cX; 
/* to test the range of X, while still keep the optimal result 

}. 
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In this object-oriented framework, a class schema specifies a general decision model, but 
its instance is represented by an object. 

DEFINITION 2.2: An object is an instance of a class, denoting a special case of the 
model class. Once def'med, it uses all the functions in that class. Formally, if an object 
O is an instance of class C, it is denoted by O:C. 

EXAMPLE 2.5: To decide what is the best percentage of investing one million US$ in 
projects AA and BB is an object, INVEST, belonging to class LP. Object INVEST is 
specified by INVEST:LP. It uses all functions defined in class LP, e.g. INVEST.GOAL 
is to execute the simplex method algorithm to get optimal solutions. 

2.2.2 Inheritance 

In model management, incremental modification is a technique to compose a modifying 
function with an existing one. In typed k-calculus, it is represented by: 

sc = Xp, Xx~op(x) = Z,p, gx. m(p(x)) (2.15) 

where so, p and m are new, existing and modifying functions, respectively. If p(x) has 
function type x ~ x, sc must have the composite function type (~ --) ~) ~ ~. 

In some cases, m may be the identity function, i.e. m=Xy.y, resulting in sc being the 
same as p. In other words, sc is a direct copy of p. However, in most cases, m is an 
expression acting on the values returned by p. 

EXAMPLE 2.6: In the integer programming model [7], one way to get the optimal result 
is to use the simplex method algorithm to obtain the real optimal result and then execute 
the branch&bound algorithm to reach the integer optimal solution. Therefore, GOAL is 
an incremental modification for GOAL in class LP: 

GOAL:((R~ x R  n --~ Rn) -~ IRn) --) REAL; 

GOAL--rain{ cX where X:IP~=A-~.b }. 

DEFINITION 2.3: Inheritance is a mechanism to allow a new class to be defined by 
inheriting properties from existing ones. If SC= {scl, sc~ ..... sc,~ is a subclass of 

P = {Pl,P2 ...... pn}, SC should have the same or more numbers of expressions than P 

(m_~) and the expressions in SC are either direct copies or incremental modifications of 
the corresponding expressions in P. Formally, SC is denoted by: 

S C  = {sc~,  so2, . . . . .  sere} 

inherit from P., (2.16) 

where each expression sq is either a copy or an incremental modification of expression 

Pi. 
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EXAMPLE 2.7: In the multi-objective linear programming model [12], each objective 
function has a weight• One possible approach to determine the weights for each objective 
function is to use the fuzzy delphi mathematics (FDM) [9] method, which can be 
implemented in the class FDM below. 

FDM={ Rwt:R~; 

Rwt=~Rwt; 
/* input nxm-ary real matrix of the raw weights 

W:R~ --) R~I; 

W=~wt.(C~=lRwtij~m); 
/* evaluate proper weights for each objective function 

}; 

With the proper weights for corresponding objective functions, MOLP model can then 
be specified in the class MOLP: 

MOLP={ b:R,; 
• n ,  A.Rn, 

cc:R~; 
cc=~c; 

wc'.R,~ 1 xR~ --) R~I; 

wc=XW,~c (Wxcc); 
/* to combine the weight with each objective function 

GOAL:(R: xRn) --4 REAL; 

GOAL----rain { (wcX where X:Rn=A-lb) (wc/c)}; 
/* use simplex method algorithm to solve the problem 

SOLUTIONs:Rn; 

SOLUTIONs=~; 
/* print standard solution report 

RANGE:Rn --~ R~; 

RANGE=LX.(X)(A -~ .b) where GOAL*=cX; 
/* to test the range of X, while still keep the optimal result 

}, 

where b, A, GOAL, SOLUTIONs and RANGE are direct copies of corresponding 
expressions, and cc is an incremental modification of c in class LP. w is a direct copy 
of expression from class FDM, and wc is a new function abstraction to combine weights 
with corresponding objective functions. Hence, class MOLP can be abbreviated by 
specifying it to inherit function properties from class LP and FDM: 
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MOLP = { wc~IxR~-- ->R;I ;  

wc=~,W, Lcc.(Wxcc); 
/* to combine the weight with each objective function 

} 
inherit from: FDM, LP. 

The above example shows a new class can be built by inheriting function abstractions 
from existing ones. In the next example of inventory control model, we show a different 
variety of inheritance to allow a new class to be incrementally modified from existing 
classes. 

EXAMPLE 2.8: Inventory plays a vital role in the operation of any business or enterprise. 
It should be efficiently managed so that the total cost can be reduced. In the following 
inventory control model [12], we assume that the demand is known and steady. The 
notations used are: 

Let Q = lot size per order, 
Q* -- optimal lot size per order, 
R = units required (demand) per unit time, 
Co = cost of ordering or setup per order placed, 
CO = cost of holding a unit of inventory per unit time, 
C(Q) -- total relevant cost (ordering+holding) per unit time for lot size Q. 

For a simplest optimal lot size model, the total relevant cost is decided by: 

R Q 
C(Q) = 

Then, the optimal lot size and the optimal relevant cost are determined by: 

Q ' = ' x ~  
~ Ch 

C(Q*) = ~ o C ~  = ChQ" 

The simplest optimal lot size model (INVS) can be specified in class INVS: 

INVS={ Q:REAL; 

R:REAL; 
R=~R; 

Q*:REAL-->REAL; 
Q*=LR.(SQRT(2 *R'CO/CO)); 

C(Q*):REAL--->REAL; 
C(Q*)=2~R.(SQRT(2*R*CO*Ch)); 

}. 

(2.17) 

(2.18) 

(2.19) 
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In reality, the inventory history should be considered, hence, the problem refers to the 
optimal lot size model with uniform replenishment: 

Let R'=maximum production possible per unit time (R'>R), and v = 1 - R / R ' ,  the solution 

Q * = ' x ~  
~! Chv 

is then, 

C(Q *) = ~[2RCoChv = ChvQ ° 

(2.20) 

(2.21) 

The improved inventory control model is then specified in class INVUR: 

INVUR={ Q* :(REAL--->REAL)xREAL--->REAL; 
Q*=~,v.(1NVS.Q*/SQRT(v)); 

C(Q*):(REAL-->REAL)xREAL--->REAL; 
C(Q')=~,v.(INVS.C(Q*)*SQRT(v)); 

} 
inherit f rom INVS. 

Inheritance helps to specify the relationship for the reuse of decision models, which 
improves the quality of class schema. Class and inheritance together constitute the 
object-oriented framework for conceptual analysis in model management. 

2.3 Manipulation Operations in the Object-oriented Framework 

The proposed object-oriented framework is a conceptual framework for the representation 
of decision models. In order to allow users to rn~ipulate the classes at an abstract level, 
while neglecting detailed implementation of functions within classes, and to provide an 
efficient minimum subset of the language that can express enough things to make a model 
management system useful, a set of manipulation operations for the framework needs to 
be defined. 

Now recall that a class is a conceptual schema specifying a decision model. Which groups 
relevant expressions together on a common data structure in a fixed set. Therefore, the 
manipulation operations for the object-oriented framework should include two parts, 
namely: 

1) the traditional set operations: UNION, INTERSECTION and DIFFERENCE; 
2) the special operations: FIND, PROJECT, INSERT, DELETE and MODIFY. They 
are defined as follows: 

FIND: to select class names or expression lists in a MMS, whenever some con- 
ditions are met: 

FIND target-list WHERE condition 
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PROJECT: to form a new class with the extracts of expressions from a specified 
class: 

PROJECT class-name WITH expr-list 
INSERT: to create a new class in a model management system: 

INSERT class-name WITH expr-list 
DELETE: to delete a specified class in a model management system: 

DELETE class-name 
MODIFY: to update the expressions in a specified class: 

MODIFY expr WITH expr IN class-name 

Since a class corresponds to the concept of a fixed set, where each expression is an 
element in the set. The completeness of above operations is obvious due to the fact that 
they support the traditional set operations. Manipulation operations on the conceptual 
structure of the object-oriented framework is simpler than relational algebra in the rela- 
tional database model. Their syntax can be defined as shown in Figure 2.1: 

class-defn ::= DEFINE class AS class-name = { expr-list } 
oprt ::= find / project / insert / delete / modify / infix-expr 
find ::= FIND target-list WHERE condition 
target-list ::= class-name / expr-list 
project ::= PROJECT class-name WITH expr-list 
insert ::= INSERT class-name WITH expr-list 
delete ::= DELETE class-name 
modify ::= MODIFY expr WITH expr IN class-name 
expr-list ::= expr / expr-list, expr 
expr ::= id : type 
infix-expr ::= class infix-op class 
infix-op ::= UNION / INTERSECT / DIFFERENCE 
condition ::= condition op condition / class-name cmp-op constant 

/ id cmp-op constant / type cmp-op constant 
cmp-op ::= < / < / = / > / >  
op ::= AND / OR / NOT 

Figure 2.1: A BNF grammar for manipulation operations in the object-oriented 
framework. 

Even though a commercial MMS may include many other operations for a user friendly 
interface, the designed syntax can meet the minimum requirement for manipulation 
operations in object-oriented model management. 
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HI. Design of Model Management 

3.1 Inheritance Rules 

An object-oriented framework consisting of a conceptual structure and its manipulation 
operations has been proposed for model management. However, one question still remains 
to be answered: given a set of decision models to be represented in an object-oriented 
framework, how we decide on what classes are needed and what the inheritance rela- 
tionships among them are. This is the design problem of model management. 

Now, recall the proposed object-oriented framework in Equation 2.14. Most of the 
expressions are typed function abstractions when modeling a decision model, which have 
the form: f:p ~ x, for x:p and e(x):'c. Within this functional framework, some rules for 
functions can be derived: 

RULE 1: If domains p D p' and f:p ~ x, then f:p' --~ x is a specialized function of f:p ~ x. 
f:p' ~ x shares the same function implementation with f:p --> x. 

EXAMPLE 3.1: In the simplest optimal lot size inventory model of Example 2.8, R is 
an integer, denoting the units required per unit time. Hence, the optimal lot size function 
becomes, 

Q*:INTEGER-->REAL; 
Q*=~.(SQRT(2*R*C0/Ch)); 

which is a specialized function of Q*:REAL-->REAL in class INVS. 

RULE 2: If domains ~D ~', f:p--> x and f:p--) ~' is meaningful, then f:p--~ ~' is a 
specialized function of f:p --> x. f:p --) x' shares the same function implementation with 
f:p ~ .  

EXAMPLE 3.2: In the stock cutting problem model [12], since c, A and b are integer 
coefficient vector, integer constraint matrix and integer resource vector, respectively. The 
solution function is then a specialized function abstraction of 

GOAL:((R~ x R .  --) R . )  --) IR. )  ---> REAL in class IP: 

GOAL:((R~ xR,,  ~ R,,) ~ IR,,) ~ INTEGER; 

GOAL=min{ cX where X:IRn=A -1 xb},  

where GOAL first performs the simplex method to get the real optimal results, and then 
executes branch&bound method to reach integer optimal result. The final optimal value 
has the type integer. 

RULE 3: If domains XDx ' ,pD p', f:p--~ X and f:p'--~x' is meaningful, then f:p' ---~ x' 
is a specialized function of f:p ~ x. f:p' ~ x' shares the same function implementation 
with f:p ~ x. 
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EXAMPLE 3.3: In Example 2.3, a,b are integer constants, let the production volume be 
an integer, then Equation 2.13 becomes: 

f:INTEGER-->INTEGER; 
f=Lx.(a+bx) 

which denotes a mapping, INTEGER--)INTEGER, and is a specialized function of 
f:REAL--)REAL in Equation 2.13. 

Then, an inheritance relationship among classes in model management can be derived: 

RULE 4: For a given class C = { el, e2 ...... e, }, and a new class C' = { e'l, e'2 .. . . . .  
e'~, }, where m_>n. If e'i (3i(1 < i < n)) is a specialized function of corresponding ei in 
class C, C' is then a subclass of C. 

EXAMPLE 3.4: The integer programming (IP) model can be specified as: 

IP = { c'.R.; 
• t l  A.'R.; 

b:R.; 

GOAL:((R~ x R .  ---) R.)  --.) IR.) --.) REAL; 

OOAL=min { cX where X:IRn=A-ib}; 
/* combine simplex method with branch&bound algorithm 

SOLUTIONs:R.; 

SOLUTIONs=7~X; 
/* print standard solution report 

RANGE-dR, --~ IR,; 

RANGE=LX.(X)(A -1 .b) where GOAL*=cX; 
/* to test the range of X, while still keep the optimal result 

}, 

where IP.SOLUTIONS and IP.RANGE are specialized functions of LP.SOLUTIONS and 
LP.RANGE, respectively. IP.GOAL is an incremental modification of LP.GOAL in class 
LP. Hence, IP is a subclass of LP, which can be abbreviated by: 

IP={ GOAL:((R~ x R ,  ---> R,) ~ IR,) ~ REAL } 

inherit f rom LP, 

where GOAL is a composite function, which can not be simply inherited. 

Different from the normalization theory in database design, the proposed inheritance rules 
are not sufficient for conceptual design in model management. This is because the decision 
model is much more complicated than data and its abstraction specification is determined 
by practical problem semantics. Hence, only some simple relationships for specialized 
functions can be automatically inferred by inheritance roles. At functional level,the type 
checking rules [4] for typed L-calculus can also be used. 
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3.2 An Inheritance Rule Checking System 

An inheritance rule checking system (IRCS) consisting of a lexical analyzer, a syntax 
analyzer and an inheritance rule checker has been designed and implemented in PASCAL 
to check the correctness of the framework and the applicability of inheritance rules for 
conceptual analysis in model management. 

A lexical analyzer is a programmer scanner, which recognizes every element in the 
specification of decision models, retums a token when it is valid in the object-oriented 
framework, or otherwise, reports a lexical error. Some basic elements in the framework 
include identifiers (e.g. names of classes, functions and variables), operators, types and 
separators. 

A syntax analyzer is a program grammar checker, which accepts model specification if 
it follows the grammar rules. For type checking purposes, we introduce p, c, 13 as inter- 
mediate type variables, and modify grammar rules of Equation 2.12 to reduce ambiguity: 

x:: =p/,~--> p 

p : : = o / p x o  

o : :  =13/('c) 
13 :: =INTEGER / BOOL / .... / R. / IR. / R2 (3.1) 

With the grammar rules for the proposed framework (e.g. Equations 2.8 through 2.14, 
and 3.1), a syntax analyzer is implemented, the result being stored in the following data 
structure: 

eclass, tclass: ARRAY[1..n] of RECORD 
fname: string; 
dmn: string; 
cdmn: string; 
status: string 

END; 

where eclass, tclass, fname, dmn and cdmn stands for existing class, target class, function 
name, function domain and function codomain, respectively, status is a character bit to 
record the inheritance relationship between classes, status = 0, 1 and 2 means the function 
in eclass is nothing, a direct copy and a specialized function of corresponding function 
in tclass, respectively. 

An inheritance rule checker is then a separate program to check if there exists an 
inheritance relationship between two classes. Its algorithm can be specified in Fig. 3.1. 
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i:=l; 
WHILE eclass[i].fname<>' ' DO BEGIN 

j:=l; 
WHILE tclass[j].fname<>' ' DO BEGIN 

IF eclass[i].fname=tclass[j].fname THEN 
IF eclass[i].dmn=tclass[j].dmn THEN 

IF (eclass[i].cdm=tclass[j].cdm) and (eclass[i].status---0) THEN BEGIN 
eclass[i].status:=l; 
tclass[j].status:=l END 

ELSE IF (eclass[i].cdm.~tclass[j].cdm) and (eclass[i].status=0) THEN BEGIN 
eclass [i].status :=2; 
tclass[j].status:=2 END 

ELSE IF (eclass[i].dmr~tclass[j].cdm) and (eclass[i].status=0) THEN BEGIN 
eclass[i].status:=2; 
tclass[j].status:=2 END; 

j:=j+l 
END; 
i:=i+l 

END; 

Fig. 3.1: An algorithm for inheritance role checking 

IV. Conclusions 

A formal object-oriented framework consisting of a conceptual structure and its manip- 
ulation operations has been proposed for model management in DSS. The conceptual 
structure which emphasizes data abstraction, information hiding and inheritance provides 
many advantages over current approaches to model management. 

Since function abstractions are the only elements used in the proposed framework, it is 
possible to analyze and propose the rules for specialized functions and inheritance rules 
for classes in order to reduce redundancy and avoid inconsistency in the conceptual design 
of model management. 

Based on the proposed framework and inheritance rules, an automatic inheritance rule 
checking system has been designed and implemented to check the correctness of model 
specification and to discover the relationship between model classes. 

The proposed framework aims at specifying decision models in operations research or 
management science; however, it may also be useful for more general disciplines. 
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