
Software Process Planning and Execution:
Coupling vs. Integration

Chunnian Liu*
Norwegian Institute of Technology (NTH), Trondheim, Norway

A b s t r a c t

EPO~ 1 is a kernel Software Engineering Environment integrating Software Con-
figuration Management and Software Process Management. EPOS has a software
process planner, based on the EPOS-OOER data model, and working on a ver-
sioned software engineering database - EPOSDB with an original Change-Oriented
Versioain# (CO V) paradigm. The EPOS Planner applies non-linear and hierarchi-
cal planning techniques to Software Process Management. This paper describes the
design, implementation and preliminary experience of the EPOS Planner. Specially,
we present and discuss two different methods to combine planning and execution of
software processes: coupling and integration. The former makes a good compromise
between static reasoning and dynamic execution]triggering; while the latter pro-
vides a new solution to modeling and automation of software development iteration
and replanning.

Keywords: AI for Software, Planning, Software Process Management.

1 Introduction

EPOS IC'89] [COWLg01 is an instrumentable kernel Software Engineering Environ-
ment (SEE), supporting both Software Configuration Management (CM) and Software

Process Management (PM). EPOS CM and EPOS PM use the common EPOS-OOER

semantic data model, describing both software products and software processes in an

OO style. The core of EPOS is a central EPOSDB, coupled with checked-out, project-
specific workspaces.

*Detailed address: Div. of IDTj N-7034 Trondheim-NTH~ Norway. Email: liuQidt.unit.no, Fax: ÷47
7 594466~ Phone: -{-47 7 594483. The author is on leave from Beijing Polytechnic University~ P. R. China,
supported by an NTNF Postdoctoral Fellowship Program of Norway (ST.60.61.221277}.

IEPOS, Expert System for Program and {~og ~} System Development, is supported by the Royal
Norwegian Council for Scientific and Industrial Research (NTNF} through grant ED0224.18457. Do not
confuse with the German real-time environment EPOS [Lem86].

357

The EPOSDB is a versioncd software engineering database to store objects and relation-
ships produced in software evolution. It applies Change-Orientr~ Versioning (COV),
which resembles and generalizes conditional compilation. COV keeps the versioning
orthogonal to the data model and the product (module) structure, and gives better
support of cooperative work than the traditional Version-Oriented Versioning (VOV).

A detailed description of COV stands in [LCD*89]. Here we present only some basic
(and simplified) concepts. In COV, each functional change in the product is represented
by a global boolean variable, called an option. Each fragment of the database (a line of a
source file, or a relational tuple) is tagged by a logical expression, a visibility, of options.
A version of the DB is described by an interpretation of these options, and consists of all
fragments whose visibilities have the value t r u e under the current interpretation. An
interpretation is called a version-choice, expressed as a set of option bindings: [op t ion ,
t r u e / f a l s e] . (see section 5 for more).

An EPOSDB transaction to update a configuration ks described by a config-descr:
<version-descr, product-descr>. A version of the DB is first derived from the version-
descr, and the product.descr is then evaluated to a Product Structure (PS), a configura-
tion, within this version. Configurations are checked-out from the central EPOSDB into
local workspaces, so that EPOS PM can work on and coordinate them. (In section 3.3,
we will give a scenario of serialized transactions). Figure 1 shows the overall structure
of EPOS.

~ . . ~ P M Planner, ! Other WSs
i , , I I Execution Manager (EM)

l ~ / Interface to the workspace "
c . - - t t t

according to ~-
I Interface

config-descr

Check-out
according to
config-descr

m

Product
Structure

(PS)

(wsD)

Files

Work-Space (WS1)
(single-version)

Task Task

Network Types

(Plan) (KB)

Figure 1: The Overall Structure of EPOS

358

EPOS PM intends to cover the following items of software processes: deriver tools as
well as human actors; life cycle phases in software development as well as low-level
derivation graphs; work decomposition (subtasking); project-specific policies for change
propagation, user coordination and communication, and other work procedures. EPOS
PM has a Planner to fetch, reason about, modify and store project-specific knowledge
about the whole life cycle of software development.

The EPOS-OOER describes the software product model (by CM types or product types).
A Product Structure (PS) is an instantiation of the product model and serves as the
World State Description (WSD) for the EPOS Planner. The EPOS-OOER also de-

scribes the software process model (by P M types or task types), which serve as the
Knowledge Base (KB) for the Planner. A generated plan is an instantiated task-network
within a workspace (Figure 1).

The EPOS Planner applies several up-to-date AI techniques to the Software PM area:
Non- l inea r p lann ing to support parallel processing; Hie ra rch ica l p l ann ing to deal
with domain complexity; I n t eg ra t i on of p l ann ing and execu t ion to automate iter-
ation and replanning.

In this paper we describe and discuss two different methods used in the EPOS Planner
to combine software process planning and execution, sketched in Figure 2.

In the coupl ing m e t h o d (Figure 2(a)), the EPOS Planner has three layers. The
inner layer is a domain-independent non-linear planner (section 3.1) which has been
tested on both robot and PM domains. The middle layer deals with PM-speciflc issues
described mainly in section 2.2. The outer layer interacts with another PM module - the
Execution Manager (EM) to achieve hierarchical planning (i.e. task decomposition, see
section 3.2). This method represents a good compromise between static reasoning and
dynamic execution/triggering. But exception handling (e.g. iterations) and replanning
could be difficult or messy.

In the in t eg ra t ion m e t h o d (Figure 2(b)), the inner layer is extended to cover activities
such as task decomposition, task execution and monitoring, besides basic planning. As
a result, the outer layer is removed together with the EM. All these activities are
described and activated in a uniform mechanism, so they can be interleaved at a very
fine granularity. This gives us the opportunity to automate iterations and replanning,
being the key point to introduce the integration method (section 4).

The ensuing sections of this paper are as follows. In section 2 we sl,mmarize the EPOS-
OOER, and show how it is used to describe the WSD and KB for the Planner. Section
3 presents the Planner and the EM as two separate mechanisms and shows how they
cooperate, illustrated by an implemented scenario. The integration of planning and
execution is described in section 4. The preliminary experience and some ideas on
future work (ea,s¢-basexl planning and multi-work.space cooperation) are briefly discussed
in the concluding section 5.

359

Execution Manager I
(EM) TNG:

TNGE:

IIO ME:

Abbreviations :

Task-Network Generation

Task-Network Generation & Execution

I/O Macro Expansion (section 2)

PS

(a) Coupling (b) Integration

Figure 2: Two Methods to Combine Planning and Execution

2 The W S D and K B Speci f ied in E P O S - O O E R

An AI planner needs a World State Description (WSD) and a Knowledge Base (KB). In
this section we explain how the EPOS-OOER data model describes these fundamental
and domain-dependent constituents of the EPOS Planner.

The EPOS-OOER data model handles entity types and relaHon types in a uniform
way. It incorporates Object-Oriented concepts such as subtyping, multiple inheritance,
and type descriptors (representing types as objects in the instance level, see section
2.2). There are two kinds of types - CM types and PM types, for passive and active
objects, respectively. F~ure 3 shows the (simplified) type hierarchy (the schema of the
EPOSDB) used in our current implementation of EPOS. All these types (and associated
annotations in the figure) will be used and explained later.

360

Entity

Pa~ I accessrlght

Family Component I f ilen~rae
tlrPestamps

Text

Document

TestData

l~ote-"oell Eo~y I
I I

I Cino~u~e II C,oo,oe i

I Binary

/l
I°b~e°lc°~

I L~='ry I

(a) CM types (product types) (b) PM types (task types)

Figure 3: The Type Hierarchy of EPOS schema

2 . 1 C M t y p e s a n d W S D

The CM types are subtypes of DataEnt i ty , and describe software products by families
(subsystems) and components (files). These, together with connecting relation types,
describe the software product model. The following relation types are used:

Composition(Family,Part) ~ Part belongs to Family
FamilyOf(Family,Family) ~ SubFamily breakdown
Interface0f(Family,Interface) ~ Self-explanatory

ImplementedBy(Interface0Body) ~ Interface is implemented by Body
SourceImports(SourceCode,Interface) ~ SourceCode imports Interface

An instantiation of the product model is called a Product Structure (PS). It is a product
closure, defined by the hierarchical product model, within a particular version of the
EPOSDB. A PS is checked-out into a workspace as ordinary directories and files, so
programming tools such as compilers can work on them. Our current implementation
of EPOS PM is in Prolog: In order to speed up PM work, instances of DataEnt i ty
subtypes and above relation types, which defines the PS, are also "checked-out" into
the workspace as a set of Prolog facts. This constitutes the World State Description

361

(WSD) for the EPOS Planner. Whenever the Planner checks if a (sub)goal is satisfied by
the WSD, it searches this cache of Prolog facts. (Of course, the Planner may search the
EPOSDB directly, through the DB interface - a set of Prolog predicates implemented
in C). Figure 4 (scenario) in section 3.3 shows a graphic representation of a sample PS.

All types can have ATTRIBUTE declarations, and inherit attributes from their super-
types. In Figure 3 attributes are indicated by text annotations in small font for the
Part and Component types. For example, attribute status describes the current pro-
cessing status of a software part. All subtypes of Part (Family. Component and their
subtypes) inherit this attribute. The value range of this attribute is the enumerated
domain [created, designed, reviewed, coded, tested].

2.2 P M t y p e s and K B

The PM types (or task types) are subtypes of TaskEntity. Their instances (tasks)
represent software processes, e.g. design activity, editing or compilation, which are the
actions in terms of AI planning. Each task type specifies an action rule, and the sum
of declared task types constitute the Knowledge Base (KB} for the EPOS Planner. A
generated plan is a partially ordered set of task instances, called a task-network.

In addition to ATTRIBUTE declarations, task types have the following type proper-
ties to support planning and execution:

.

.

FORMALS to express the formal parameters of the task type. FORMALS spec-
ifies constraints (type, number, status) on the actual parameters, expressed by the
GenInputs and Gen0utputs relationships (see Figure 1). For example, FORMALS
for task type Toolcc (C compiler) is:

FORMALS Csource(coded) * $Cinclude(coded) -> 0bjectCode(created)

This specifies that a Toolcc task takes one "coded" Csource instance and zero
or more "coded" Cinclude instances as Input, and one "created" 0bjectCode
instance as Output. We will see later in this subsection how the Planner uses the
FOP/VIALS property in reasoning and building of the actual parameters.

D E C O M P O S I T I O N to describe legal subtasking. Instances of "high-level" task
types (expressed as shadowed boxes in Figure 1) should be decomposed into a
network of subtas~. DECOMPOSITION specifies the candidate types for the
subtasks. For example:

DECOM repertoire([toolcc.toolar,toolld]) ~ for Build type
DECOM repertoire([design.review,implement,test])~ for Develop type

The first line specifies that a Bui ld task should be decomposed into a (sub)plan (a
task-network) built from Toolcc, T o l l a r and Tool ld tasks (C compiler, library-
maker and linker). The exact shape of this (sub)plan is the result of the planning

362

process when the Planner is called by the Execution Manager to decompose a par-
ticular Build task. The point here is that, when the Planner makes the (sub)plan
to achieve the effect of Build, it searches the pool of the task types in the above
repertoire, rather than the entire KB. For the second line above we have a sim-
ilar situation for the Develop task type. Section 3.2 and 3.3 will detail how the
DECOMPOSITION property is used.

Note: FORMALS and DECOMPOSITION specify relationships between types, in
contrast to relationships between instances of types. The EPOS-OOER introduces
a special TypeDescr type (not shown in Figure 3). For each type T, we create an
instance of TypeDescr, called the Type Descriptor (TD) of T to represent T at
the instance level. Type relationships can then be implemented by relationships
between TDs.

3. P R E - and POST-condit ions. They are declarative specification of the task,
around the CODE part of the task. The EPOS Planner reasons on P R E / P O S T
chains of tasks as traditional AI planners do. P R E / P O S T are w f f s (well-formed
formulas) in First Order Predicate Logic, with similar restrictions as in the clas-
sical STRIPS. The PRE/POST of task A will be written as PRE(A) /POST(A) .

A large part of the PRE/POST, concerning constraints on Input /Output of the
task type, has been specified implicitly by FORMALS. On the other hand, the
detailed form (as conjunctions of literais) for this part of the P R E / P O S T cannot
be written down at the type level. For example, zero or more Cinclude files may
be a part of the Input to a Toolcc task. However, we do not know the exact
number until the Planner tries to select Toolcc to achieve a particular (sub)goal.

Our strategy to deal with this PM-specific problem is to use the predicates as-
sert_input and assert_output in PRE and POST, respectively, to represent con-
straints on actual I /O parameters. These two predicates can be considered as
macros, at planning time they are expanded into conjunctions of literais, based
on the current (sub)goal and the concrete Product Structure (PS). Therefore, we
can reason on them as any other PRE/POST-conditions.

For example, suppose that the Planner is trying to introduce a Toolcc task to
satisfy the goal thereis(m.o, objeeteode, created). It first expands the macro as-
sert_output in the POST-condition into a literal thereis(AnyObj, objeeteode, cre-
ated), based on the Output constraints specified in FORMALS of Toolcc type
(see above). The matching between the goal and this literal confirms the selection
of Toolcc, with AnyObj bound to m.o.

Next, the Planner expands assert_input in the PRE-condition to deduce the sub-
goals. This expansion is essentially to establish the actual Input to this Toolcc
task, given the established actual Output m.o. It is more complicated, based
on the Input constraints specified in FORMALS and the current Product Struc-
ture (PS). First, the "main" Input m.c is deduced from the Output m.o. Then
the current PS is searched, starting from m.e and following the instances of
ImplementedBy and SourceImporte relations, to find all relevant" ~.h" files which

363

are also a part of the Input to this Toolcc task. In our scenario (section 3.3),
this expansion would find out that the total actual Input is m.c~ m.h and b.h (cf.
Figure 4). Then the subgoals for the Planner to work on is the conjunction:

thereis(rn.c, c_8, coded) A thereis(rn.h, c_i, coded) A thereis(b.h, c_i, coded)

.

This planning-time expansion is task- or language-specific. Each task type has
its own way of doing it. E.g. Deriver tasks for programming languages like C,
Pascal and Fortran needs the transitive closure of the relevant Input, as we have
shown above for Toolcc. This closure is not necessary for languages like Ada and
Modula with separately compiled interfaces.

With the coupling method (section 3), planning and execution are treated as two
different mechanisms, so a PRE-condition is split into two parts: PRE_STATIC
used by the Planner, and PRE_DYNAMIC used by the Execution Manager
(EM) to trigger execution of planned tasks. The dynamic part involves comparison
of timestamps (e.g, a task may start only if its Input is newer than its Output),
or temporal conditions (such as "something can be done only at night"). With
the integration method (section 4), however, there is no need for such a split.

CODE. It is a sequential program performing real task actions upon task execu-
tion (e.g. to call the underlying programming tool). Essentially, CODE contains
the imperative description of the task, while PRE/POST provide the declarative
specification.

To sum up, we sketch the specification for two sample task types as follows:

ENTITY Toolcc IS Deriver{
ATTRIBUTES ...;
FORMALS Csource(coded) *

$Cinclude(coded) ->
0bjectCode(created);

DECOM none; ZZ an "atom" task
PRE assert_input AND

newer(In.0ut);
CODE ca11("cc -c In -o Out");
POST assert_output }

ENTITY Build IS Deriver{
ATTRIBUTES ...;
FORMALS Family(coded) ->

Executable(created)

DECOM repertoire(Toolcc.Toolar,Toolld);
PRE assert_input AND

at_night;
CODE none; ZZ performed by subtasks!
POST assert_output)

Some final comments on type inheritance rules: ATTRIBUTES obey normal OO inher-
itance rules (bottom-up, left-right), while CODE inheritance is by concatenation using
SIMULA's INNER mechanism. Therefore the inheritance rules for PRE/POST etc. are
guided by Hoare's mechanism of program assertions.

364

3 Coupl ing of P l a n n i n g and E x e c u t i o n

In the last section we have elaborated some important (PM) domain-specific issues
which are dealt with in the middle layer of the EPOS Planner (cf. Figure 2 (a)). In this
section, we describe the inner layer (a domain-independent non-linear planner) and the
outer layer (coupling the Planner with the Execution Manager to achieve hierarchical
planning). An implemented scenario follows to illustrate most of the relevant concepts
and techniques.

3.1 Non-Linear Planning

Non-linear planning means that the produced plan is not sequential. Rather, it is a
network of partially ordered task instances, so it can potentially be executed in parallel.
The core of the EPOS Planner is a non-linear planner modeled as a formal P r o d u c -
t ion Sys tem, similar to IPEM [AS881, [Amb87] and TWEAK[Cha87 I. This formalism
represents the state of the art in the AI planning area, and can quite easily be extended
to cover the activities of plan execution and monitoring (see section 4).

According to this formalism, at any time during the planning, we have an incomplete-
plan. The production rules are incomplete-plan transformers, modeling the planning
activities. The germinal plan P0 consists of two dummy tasks: B E G I N with the initial
WSD as its POST, and E N D with the goal G as its PRE. Po is incomplete, containing
many "flaws". At any time during the planning, a proper production rule may be
applied to the current incomplete-plan P~, fixing up some flaw, and transforming Pi to
a new incomplete-plan Pi+l. This process will continue until we get a flaw-free plan P , ,
which is the plan achieving the goal G.

The key concept in non-linear planning is the so-called protection range q ~ p, which
links a conjunct q in POST(A) and a conjunct p in PRE(B) (assuming A is before
B). The two conjuncts linked by a range are required to unify, and the unification is
protected during planning (see below).

We need only two kinds of production rules (Task Selection Rules and Task Ordering
Rules) to specify the planning activities. These rules are quite easy to understand and
express in Prolog. The informal descriptions of these rules are as follows:

I. Task Ordering Rules:

IF there is a range q-->p (q in POST(A), p in PRE(B))
THEN IF

THEN

IF

THEN

IF

THEN

there is C parallel to B and POST(C) undoes p
set B before C

there is C parallel to A and POST(C) undoes p

set C before A

C is between A and B and POST(C) undoes p

introduce a new task W between C and B to re-establish p

365

2. Task

IF

THEN

Selection Rules:

no range supports p in PRE(A)

IF there is B before A and q in POST(B) supports p

THEN set a new range q-->p

IF there is B parallel to A and q in POST(B) supports p

THEN set a new range q-->p; set B before A

IF q in POST(B) supports p but B is not in the plan

THEN introduce B between BEGIN and A; set a new range q-->p

The search space for this production system is the set of all possible incomplete-plans
generated by the production rules starting from the the germinal plan. The goal of
the search is a flaw-free plan. The search strategy is b~ft-~rst plug hat,racking. The
best-first search is guided by a set of heur is t ics to decide which flaw should be fixed
first; and for a flaw, which fix should be tried first.

It is well-known that goal i,t~ractio,8 are the source of complexity in non-linear plan-
ning. The EPOS Planner has been tested on both robot and PM domains. In the
former case, this planner is faster than e.g. IPEM (a factor of 5-10). In the latter case,
because there are much fewer goal interactions in the PM domain, the EPOS Planner
works quite efficiently with a set of simple heuristics. The scenario given in section
3.3 needs only several minutes to run on a Sun station~ including planning, execution,
calling OS tools, and graphics. Planning takes less than one third of the time, even
though it is an AI process involving intensive searching and computation.

The heuristics used in the Planner is as follows. At each planning cycle, we first check
possible range violations. If there are violations, use a proper Task Ordering Rule to
fix one of them. Otherwise one of the Task Selection Rules is used to solve one of the
unsupported PREs. Whenever an unsupported PRE can be fixed by existing tasks, we
always use them to keep the number of task instances as small as possible. The order
in which the unsupported PREs are considered and the order in which the candidate
task types are tried are determined by more domain-dependent heuristics. Many of
these heuristics can be expressed in Prolog simply by the order in which we write the
production rules and the task types.

To complete the production system, we need a Con t ro l l e r to integrate heuristics and
apply them effectively. It maintains an a g e n d a (a priority queue) of items specifying
all of the necessary planning activities for the current hlcomplete-plan. Items are in
the form of pairs [flaw, fix] and ordered using heuristics. The controlling ,lgorithm is
informally described as:

i. Build germinal plan PO based on initial WSD SO and goal G;
2. Initiate the agenda AG by inspecting the current plan PO;

3. If AG is empty ~ The current plan is flaw-free

Then STOP;

4. If AG(TOP) has no fix ~ A dead-end

Then backtrack; ~ Automatically done by Prolog

366

5. Fix the flaw in AG(TOP); ~ Current plan pi transformed to Pi+l

6. remove AG(TOP). and adjust AG by inspecting the new plan Pi÷1;

7. GOTO 3.

Whenever a new task is introduced in the plan, both the task and its actual In-
put /Output parameters (of VataEnt i ty subtypes) are instantiated, together with in-
stances of connecting relation types GenInputs and Gon0utputs. This instantiation
process is also (PM) domain-specific and carried out in the middle layer of the Planner
(see Figure 2 (a)). The resulting plan is a network of partially ordered task instances
which may potentially be executed in parallel.

3 .2 H i e r a r c h i c a l P l a n n i n g

As the EPOS Planner deals with real world PM problems, a hierarchy of abstractions
is essential. The process of alternatively adding detailed steps to the plan and actually
executing some steps should continue until the goal is achieved. This is the Hierarchical
planning technique. In our coupling method, hierarchical planning is accomplished by
the cooperation of two different mechanisms - The Planner and the Execution Manager
(EM). The interface between them is the outer layer of Figure 2 (a).

Of course the primary functionality of the EM is to execute the tasks of the plan
generated by the Planner. The execution is guided by the partial order among the tasks
set by the Planner (so some tasks can be carried out in parallel), and triggered by the
PRE_DYNAMIC condition of each task. We extend this basic connection between the
Planner and the EM to achieve hierarchical planning.

The EM and the Planner interact as follows. At the beginning, the EM instantiates a
very "high-level" task, based on the user's request. The task could be of Develop type,
for example, to develop an initial version of the software product. This single task can
be regarded as the first coarse plan. When the EM tries to execute this "plan", it calls
the Planner to decompose the "high-level" task into a more detailed (sub)plan. The
process goes like this:

1. The EM sends a PM goal to the Planner. The PM goal consists of the the
"high-level" task (the parent task) and its actual Input/Output, representing a
decomposition request.

2. The Planner translates this PM goal into a set of AI goals - a conjunction of
literals. This translation is (PM) domain-specific, and dealt with also in the
middle layer of the Planner.

3. Then the Planner works to make a (sub)plan to achieve this set of AI goals.
In doing so, it takes the current world state as its initial world state, and the
repertoire specified in the DECOMPOSITION property of the parent task type
as the (sub)KB to select useful tasks.

367

4. The generated (sub)plan is added to the original plan, with each task in the
(sub)plan (called a subtask, which may be a "high-level" task again) linked to the
parent task by an instance of the SubTask relation type.

5. Then the EM executes this (sub)plan to achieve the effects of the parent task.

Obviously, the above process can work in multi-levels: if the EM meets another "high-
level" task when it executes the (sub)plan, it will call the Planner again. This strategy
fully utilizes the desired hierarchical planning techniques. In the next subsection, a
scenario in software PM will illustrate how this strategy works in the real world, and
also how the EPOS Planner works on the real EPOSDB.

3 .3 A S c e n a r i o

Assume that an EPOS user wants to develop an initial version of a software prod-
uct. This is modeled as a Family f, with a tested Executable program re.ere as the
(main)result. The COV option Inlt is introduced, representing this initial function
of f. The config-dcscr for this transaction is <{[Init.true]}. f>, and the empty
Family f is checked-out from EPOSDB as the start point of this transaction.

The first coarse plan consists of only one Develop task. The EM first makes sure that its
PRE_DYNAMIC is O.K., and then tries to execute it. As Develop is a "high-level" task,
the EM calls the the Planner to decompose it. The resulting (sub)plan is a sequence of
Design, Review, Implement and Test tasks.

Suppose that the Design and Review tasks are carried out ("executed") by the user (a
human actor), and that as the result of the executions of these two tasks, the PS for f
is settled down as shown in Figure 4 (cf. section 2.1, also see Figure 5).

Now the EM tries to execute the Implement task, which also is "high-level". The
Planner is called again, and the produced (sub)plan is the sequence of Systemcoding
and Build tasks. Based on the Product Structure of f, Systemcodlng is decomposed
(recursively) into seven parallel Sourcecoding tasks for re.c, rn.h, a.h, al.e, a2.c, b.h and
b.c. Each of these Sourcecoding tasks consists of an editing session which can be
"executed" by the user with some interactive editor tool.

Then the EM tries to execute the Build task. It calls the Planner once again, and
the produced (sub)plan consists of four Toolcc tasks to compile ra.c, b.c, al.c, a2.c, one
Toolar task to make the Library a.a, and one Toolld task to link everything together.
Figure 5 is automatically generated by the Planner so far, showing a fully developed
plan.

Now the EM executes the (sub)plan for the Bu£1d task to produce rn.exe, and then
executes the Test task to complete the first version of the product f.

Note: before the Design and Review tasks have been executed, neither the Systemcod£ng
nor the Build tasks can be decomposed properly, because they both depend on the

368

L,g.n____ 5 ~o._~ R.l,tiooshlp.__._______/~
{ F : a I T ~ | V ~ FamilyOf

• $'k # j~ ~ Composition
stt t .o ~ o - - .

.it °"" "~--~ , . •~m- Inter faceOf

tt~ t _, /~ % dP- ImplementedBy

,o ~'.. __ ~ Sou~o.~mports
t t t • - , o,

,,, Ooo K . J ..

Figure 4: A Sample Product Structure (PS)

product Structure (PS) which is the result of Design and Review. This exaxnple shows
clearly that hierarchical planning is essential in the PM domain.

To conclude this transaction, the PS (including the real files) and the plan for Develop
are checked-in to EPOSDB (the plan is stored for reuse, see below). This is the first
version of f , specified by the version-choice { [I n i t . t rue] }.

Suppose that the end-user of this software product f requests some enhancement, then
the EPOS user should start a new transaction. A new COV option New1 is introduced
to represent the additional functionality requested by the end-nser. The co,fig-dcscr
should be <{[Init.true], [Newl .true]}. f>. Then, the PS for f and the plan for
Develop, which were checked-Lu previously, are checked-out again into a new workspace.
This time the "top" task is of the type Change_Processlng (not shown in Figure 3),
which is a/so a "high-level" one and therefore decomposed into a (sub)plan. A task of
Develop type turns out as one of the subtask within this (sub)plan. Suppose there is
no structural change in the PS, then the old plan for Develop will be reused to make
a new version of the product f. (If there are structural changes, we need replanning for
Develop, see next section). Finally, the new version of the product f, specified by the
version-choice { [Init .true]. [Newl .true] }, is checked-in for future evolution.

369

The or tg lee l Producl~ $ t ructure has been read

t. H

t o o l c c / 1 /
~\\

Figure 5: A Fully Developed Plan

4 Integration of Planning and Execution

As seen in the scenario, with the coupling method, the Planner and the EM (as
two separate mechanisms) work cooperatively in hierarchical planning and plan exe-
cution. This is also a nice compromise between static reasoning (at planning time)
and dynamic scheduling (at execution time - remember that the EM always checks
PRE_DYNAMICs). However, there are several points to consider further:

• ezp¢cted ~zceptio~. A Toolcc task could achieve its effect (producing an object
file) or fail (due to linguistic errors); a Test task could confirm the product or
demand bug-fixing; etc. These "expected" exceptions cause iteratio~ in software
development, and are considered crucial in PM. In the coupling method, we have
some ad hoe solution to this problem (e.g. CODE reports the execution failure to

370

the user, and the user points out which task in the network should be re-executed).
The automation of iterations will give the user more intelligent assistance.

* unexpected exceptions. Hardware failures, file system overflow or other unexpected
events can be only handled by execution monitoring and dynamic adjustment of
the plan.

• replanning. Whenever the Product Structure (PS) or KB has some change, re-
planning is demanded. E.g. if an editing session changes some ~includc statement
in re.c, the plan in Figure 5 may have to be changed accordingly. Here some kind
of incremental replanning is very much desirable.

Inspired by IPEM [AS88], we think that integration of planning, execution, and mon-
itoring would be a promising solution to the above problems. This means a uniform
mechanism for all those activities, so we can interleave them at a very fine granularity.
In the following we show how the set of production rules for non-linear planning (Task
Ordering Rules and Task Selection Rules described in section 3.1) can be extended
to cover plan execution and monitoring, as well as task decomposition (section 3.2).
We will also see how this integration solves the automatic iteration and incremental
replanning problems.

~ I. 2. are Planning Rules (see section 3.1)

3. Execution Rule:
IF A is not "hlgh-level" and PRE(A) is satisfied by current WSD

and A is not involved in any range violation
THEN execute A, and remove A when it times out (succeeds or not)

4. Decomposition Rule:
IF A is "high-level" and ready for execution
THEN decompose A into a subplan

~ 5. 6. 7. are Monitoring Rules:

5. IF
THEN

6. IF
THEN

7. IF
THEN

A is being executed
a). for effect q that really appears, change the producer of

ranges q-->p from A to BEGIN (i.e. put q into WSD);
b). for failed effects, simply excise the relevant ranges
there is some change in the Product Structure (as an exception)
redo I/O macro expansions (sec. 2.2) for all tasks in the plan
some other exception (for example, "q) occurs
delete q from WSD (excise all ranges q-->p starting from BEGIN)

With the new rules, exceptions (failed effects in Rule 5, PS changes in Rule 6, and
others in Rule 7) always cause some new unsupported PREs, which sooner or later will

371

trigger some planning activities (Rule 1 and 2). That is, replanning is automatically
triggered and based on the existing plan (rather than from scratch). This is the key
point to introduce the integrated model.

For example, the Toolcc task #150 in the scenario of section 3.3 may fail to achieve its
effect (i.e. producing b.o), due to some syntax errors in the source files. According to
Rule 3, it is removed nevertheless when it times out. On the other hand, due to Rule 5
b), the subsequent Tool ld task now has an unsupported PRE (thereis(b.o, objeetcode,
created)). This in turn triggers some planning activities to re-introduce to the plan
the previously removed Toolcc task (compiling b.c) to re-establish this PRE. But the
re-introduced Toolcc task has its own PRE unsupported, therefore some Sourcecoding
tasks are also re-introduced to the plan. All these tasks will be re-executed, to modify
b.c and relevant "*.h" files, and then to re-compile b.c. Here, the iteration is obtained
through execution failure.

Another example concerns the changes in the Product Structure. In the same scenario,
b.h was originally implemented by b.c. Suppose that b.h is now implemented by both
b.c and bI.c, i.e. a change in the PS. According to Rule 6, I /O macros are re-expanded,
causing a new unsupported PRE of the Tool ld task (i.e. thereis(bl.o, objectcode, cre-
ated)). This in turn triggers some planning activities to add a new Toolcc task and
a new Sourcecoding task (to process the new bl.c file) to the existing plan. Here,
replanning is incrementally carried out, not from scratch.

The software development strategy (a project- and/or company-specific policy) can be
implemented by proper heuristics determining the priorities among the rules 1 - 7 (an
extension of the heuristics determining the priorities of rules 1 - 2, described in section
3.1). The cor~rollin¢ algorithm given in section 3.1 largely remains unchanged. Here,
the terminating condition for the algorithm - "the Agenda AG is empty" - means that
all tasks in the plan have been successfully executed and removed.

Note that in this integrated model, PRE-conditions need not be split into static and
dynamic parts (Rule 3 checks the entire PRE(A)). Also note that now the WSD is
changing continuously.

5 Conc lus ion and Future Work

The first prototype of the EPOS Planner and EM uses the coupling method, imple-
mented by 5000 lines of SWLProlog, working on the real EPOSDB implemented in C.
SWLProlog has a symmetric interface with C, and an Object-Oriented extension PCE
for graphical UI.

Together with the EM, the EPOS Planner provides the user with intelligent assistance
on the product level. On the project level, it models the life cycle stages in software
development, including task decomposition, human interaction, and develop-review it-
eration.

372

The preliminary experience with our first prototype proves that our EPOS Planner is
capable of covering a large area of software development activities, and can be integrated
with CM systems. It has successfully applied advanced AI planning techniques to an
important Software Engineering area - Software Process Management.

Usually a PM system is based on some particular paradigm: process programming as in
ARCADIA [TBC*88], static reasoning as in ALF [B'89] wad partly MARVEL [KF87],
dynamic triggering as in PCMS [HM88] and NOMADE [BE87], or subtype refinement as
in Process-Oriented CM [BL89]. These PM systems use none or very little AI techniques
(such as simple-minded forward/backward chaining). In contrast, EPOS PM combines
all the above approaches, applies more advanced AI techniques, and also covers larger
area of software development processes.

We are now implementing the integration of planning and execution (section 4) to
support automatic iteration and incremental replanning. Another important direction
for future work is Case -Based P l a n n i n g (C B P) . The central idea of CBP [Kol88]
is learning: (re)planning from memory and parameterization of previously generated
plans to avoid the problem of constantly rederiving the same plan. We have already
realized a simple plan-reuse strategy on the instance level (section 3.3). In future, we
want to be able to generalize frequently used task networks as new, composite task types
and put them back into the KB.

Yet another crucial point for future work is cooperating transactions. A transaction TI
is not only associated with a version-choice C1 (section 1), but also with an ambition
A1 - an incomplete version-choice, with some options unset . A1 represents a set of
version-choices (including C1). When the changes made in T1 is committed, they will
be visible in all these versions. Now suppose there is another transaction T2 with
overlapping ambition and/or Product Structure with those of T1. Then the policies for
change propagation between TI and T2 must be defined and implemented by PM. The
subsequent challenge to the EPOS Planner is how to deal with more dynamic WSDs and
KBs. Here, we will step forward from a single workspace to cooperating workspaces,
and from a single-actor system to a multi-actor system.

A c k n o w l e d g m e n t s

Many thanks are due to Prof. Reidar Conradi for encouragement, inspirations and
valuable comments on earlier drafts of this paper. I also thank P. H. Westby and E.
Osjord for many discussions.

References

[Arab871 J o ~ A. Ambros-Ingerson. IPEM: Integrated Planning, Execution and Mon-
itoring. Technical Report, University of Essex, Colchester CO4 3SQ, U.K.,
1987. M. Phil. Dissertation.

[AS88] Jos~ A. Ambros-Ingerson and Sam Steel. Integrating planning, execution

[B'89]

[BE87]

[BL89]

[C'89]

[Cha87]

[COWL90]

[Hen88]

[HM88]

[KF87]

[Ko188]

[LCD*89]

[Lem86]

373

and monitoring. In Proe. of AAAI'88, pages 83-88, 1988.

K. Benali et al. Presentation of the ALF project. In [MS WgO], May 1989.
23 p.

Noureddine Belkhatir and Jacky EstubUer. Software management con-
straints and action triggering in the ADELE program database. In [NS87],
pages 44-54, 1987.

Yves Bernard and Pierre Lavency. A Process-Oriented Approach to Config-
uration Management. In Proe. of the l l th Int'l A CM-SIGSOFT/IEEE-CS
Conference on Software Engineering, Pittsburgh, PA, 1989. 14 p.

Reidar Conradi et al. Design of the Kernel EPOS Software Engineering
Environment. In [MS WgO], May 1989. 17 p.

David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32:333-377, 1987.

Reidar Conradi, Espen Osjord, Per H. Westby, and Chunnian Liu. Soft-
ware Process Management in EPOS: Design and Initial Implementation.
Technical Report 15/90, EPOS report 100, 12 p., DCST, NTH, Trondheim,
Norway, April 1990. Accepted at 3rd Int'l Workshop on SW Engineering
and its Applications, Toulouse, France, 3-7 Dec. 1990.

Peter B. Henderson, editor. Proe. of the $rd A CM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Envi-
ronments (Boston), 257 p., November 1988. In ACM SIGPLAN Notices
24(2), Feb 1989.

Tani Haque and Juan Montes. A Configuration Management System and
more (on Alcatel's PCMS). In [Win88], pages 217-227, 1988.

Gail E. Kaiser and Peter H. Feiler. An Architecture for Intelligent Assis-
tance in Software Development. In Proe. of the 9th Int'l A CM-SIGSOFT/
IEEE-CS Conference on Software Engineering, Monterey, CA, pages 180-
188, April 1987. (on MARVEL).

Janet Kolodner, editor. Proe. of a Workshop on Case-Based Reasoning, De-
fence Advanced Research Projects Agency, Information Science and Tech-
nology Office (DARPA/ISTO), May 1988.

Anund Lie, Reidar Conradi, Tot M. Didriksen, Even Andr4 Karlsson,
Svein O. Hallsteinsen, and Per Holager. Change Oriented Versioning in
a Software Engineering Database. In [Tie89], pages 56-65, 1989.

P. Lempp. Integrated computer support in the software engineering environ-
ment EPOS - - possibilities of support in system development projects. In
Proe. l t th Symposium on Microprocessing and Microprogramming, Venice,
pages 223-232, North-Holland, Amsterdam, September 1986.

[MSW90]

[Ns871

[TBC*88]

[Tic89]

[WinS8]

374

N. Madhavji, W. Schaefer, and H. Weber, editors. Proe. of the First Inter.
national Conference on System Development Environments and Factories,
Pitman Publishing, London, March 1990. SDEF'89, 9-11 May 1989, Berlin.

Howard K. Nichols and Dan Simpson, editors. Proc. of 1st European Soft-
ware Engineering Conference (Strasbourg, Sept. 1987), Springer Verlag
LNCS 289, 404 p., September 1987.

Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil,
Richard W. Selby, Jack C. Wileden, Alexander L. Wolf, and Michael Young.
Foundations for the Arcadia environment architecture. In [Hen88], pages 1-
13, 1988.

Walter F. Tiehy, editor. Proe. of the 2nd International Workshop on Soft-
ware Configuration Management, Princeton, USA, 25-27 Oct. I989, 178 p.,
ACM SIGSOFT Software Engineering Notes, November 1989.

Jfrgen F. H. Winkler, editor. Proc. of the ACM Workshop on Software
Version and Configuration Control, Grassau, FRG, Beriehte des German
Chapter of the ACM, Band 80, 466 p., B. G. Teubner Verlag, Stuttgart,
January 1988.

