
Software Process Planning and Execution: 
Coupling vs. Integration 

Chunnian Liu* 
Norwegian Institute of Technology (NTH), Trondheim, Norway 

A b s t r a c t  

EPO~ 1 is a kernel Software Engineering Environment integrating Software Con- 
figuration Management and Software Process Management. EPOS has a software 
process planner, based on the EPOS-OOER data model, and working on a ver- 
sioned software engineering database - EPOSDB with an original Change-Oriented 
Versioain# (CO V) paradigm. The EPOS Planner applies non-linear and hierarchi- 
cal planning techniques to Software Process Management. This paper describes the 
design, implementation and preliminary experience of the EPOS Planner. Specially, 
we present and discuss two different methods to combine planning and execution of 
software processes: coupling and integration. The former makes a good compromise 
between static reasoning and dynamic execution]triggering; while the latter pro- 
vides a new solution to modeling and automation of software development iteration 
and replanning. 
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1 Introduction 

EPOS IC'89] [COWLg01 is an instrumentable kernel Software Engineering Environ- 
ment (SEE), supporting both Software Configuration Management (CM) and Software 

Process Management (PM). EPOS CM and EPOS PM use the common EPOS-OOER 

semantic data model, describing both software products and software processes in an 

OO style. The core of EPOS is a central EPOSDB, coupled with checked-out, project- 
specific workspaces. 
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The EPOSDB is a versioncd software engineering database to store objects and relation- 
ships produced in software evolution. It applies Change-Orientr~ Versioning (COV), 
which resembles and generalizes conditional compilation. COV keeps the versioning 
orthogonal to the data model and the product (module) structure, and gives better 
support of cooperative work than the traditional Version-Oriented Versioning (VOV). 

A detailed description of COV stands in [LCD*89]. Here we present only some basic 
(and simplified) concepts. In COV, each functional change in the product is represented 
by a global boolean variable, called an option. Each fragment of the database (a line of a 
source file, or a relational tuple) is tagged by a logical expression, a visibility, of options. 
A version of the DB is described by an interpretation of these options, and consists of all 
fragments whose visibilities have the value t r u e  under the current interpretation. An 
interpretation is called a version-choice, expressed as a set of option bindings: [op t ion ,  
t r u e / f a l s e ] .  (see section 5 for more). 

An EPOSDB transaction to update a configuration ks described by a config-descr: 
<version-descr, product-descr>. A version of the DB is first derived from the version- 
descr, and the product.descr is then evaluated to a Product Structure (PS), a configura- 
tion, within this version. Configurations are checked-out from the central EPOSDB into 
local workspaces, so that EPOS PM can work on and coordinate them. (In section 3.3, 
we will give a scenario of serialized transactions). Figure 1 shows the overall structure 
of EPOS. 

~ . . ~ P M  Planner, ! Other WSs 
i , , I I Execution Manager (EM) 

l ~ / Interface to the workspace " 
c . - -  t t t 

according to ~- 
I Interface 

config-descr 

Check-out 
according to  
config-descr 

m 

Product 
Structure 

(PS) 

(wsD) 

Files 

Work-Space (WS1) 
(single-version) 

Task Task 

Network Types 

(Plan) (KB) 

Figure 1: The Overall Structure of EPOS 
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EPOS PM intends to cover the following items of software processes: deriver tools as 
well as human actors; life cycle phases in software development as well as low-level 
derivation graphs; work decomposition (subtasking); project-specific policies for change 
propagation, user coordination and communication, and other work procedures. EPOS 
PM has a Planner to fetch, reason about, modify and store project-specific knowledge 
about the whole life cycle of software development. 

The EPOS-OOER describes the software product model (by CM types or product types). 
A Product Structure (PS) is an instantiation of the product model and serves as the 
World State Description (WSD) for the EPOS Planner. The EPOS-OOER also de- 

scribes the software process model (by P M  types or task types), which serve as the 
Knowledge Base (KB) for the Planner. A generated plan is an instantiated task-network 
within a workspace (Figure 1). 

The EPOS Planner applies several up-to-date AI techniques to the Software PM area: 
Non- l inea r  p lann ing  to support parallel processing; Hie ra rch ica l  p l ann ing  to deal 
with domain complexity; I n t eg ra t i on  of  p l ann ing  and  execu t ion  to automate iter- 
ation and replanning. 

In this paper we describe and discuss two different methods used in the EPOS Planner 
to combine software process planning and execution, sketched in Figure 2. 

In the coupl ing  m e t h o d  (Figure 2(a)), the EPOS Planner has three layers. The 
inner layer is a domain-independent non-linear planner (section 3.1) which has been 
tested on both robot and PM domains. The middle layer deals with PM-speciflc issues 
described mainly in section 2.2. The outer layer interacts with another PM module - the 
Execution Manager (EM) to achieve hierarchical planning (i.e. task decomposition, see 
section 3.2). This method represents a good compromise between static reasoning and 
dynamic execution/triggering. But exception handling (e.g. iterations) and replanning 
could be difficult or messy. 

In the in t eg ra t ion  m e t h o d  (Figure 2(b)), the inner layer is extended to cover activities 
such as task decomposition, task execution and monitoring, besides basic planning. As 
a result, the outer layer is removed together with the EM. All these activities are 
described and activated in a uniform mechanism, so they can be interleaved at a very 
fine granularity. This gives us the opportunity to automate iterations and replanning, 
being the key point to introduce the integration method (section 4). 

The ensuing sections of this paper are as follows. In section 2 we sl,mmarize the EPOS- 
OOER, and show how it is used to describe the WSD and KB for the Planner. Section 
3 presents the Planner and the EM as two separate mechanisms and shows how they 
cooperate, illustrated by an implemented scenario. The integration of planning and 
execution is described in section 4. The preliminary experience and some ideas on 
future work ( ea,s¢-basexl planning and multi-work.space cooperation) are briefly discussed 
in the concluding section 5. 
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Figure 2: Two Methods to Combine Planning and Execution 

2 The  W S D  and K B  Speci f ied in E P O S - O O E R  

An AI planner needs a World State Description (WSD) and a Knowledge Base (KB). In 
this section we explain how the EPOS-OOER data model describes these fundamental 
and domain-dependent constituents of the EPOS Planner. 

The EPOS-OOER data model handles entity types and relaHon types in a uniform 
way. It incorporates Object-Oriented concepts such as subtyping, multiple inheritance, 
and type descriptors (representing types as objects in the instance level, see section 
2.2). There are two kinds of types - CM types and PM types, for passive and active 
objects, respectively. F~ure  3 shows the (simplified) type hierarchy (the schema of the 
EPOSDB) used in our current implementation of EPOS. All these types (and associated 
annotations in the figure) will be used and explained later. 
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Figure 3: The Type Hierarchy of EPOS schema 

2 . 1  C M  t y p e s  a n d  W S D  

The CM types are subtypes of DataEnt i ty ,  and describe software products by families 
(subsystems) and components (files). These, together with connecting relation types, 
describe the software product model. The following relation types are used: 

Composition(Family,Part) ~ Part belongs to Family 
FamilyOf(Family,Family) ~ SubFamily breakdown 
Interface0f(Family,Interface) ~ Self-explanatory 

ImplementedBy(Interface0Body) ~ Interface is implemented by Body 
SourceImports(SourceCode,Interface) ~ SourceCode imports Interface 

An instantiation of the product model is called a Product Structure (PS). It is a product 
closure, defined by the hierarchical product model, within a particular version of the 
EPOSDB. A PS is checked-out into a workspace as ordinary directories and files, so 
programming tools such as compilers can work on them. Our current implementation 
of EPOS PM is in Prolog: In order to speed up PM work, instances of DataEnt i ty  
subtypes and above relation types, which defines the PS, are also "checked-out" into 
the workspace as a set of Prolog facts. This constitutes the World State Description 
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(WSD) for the EPOS Planner. Whenever the Planner checks if a (sub)goal is satisfied by 
the WSD, it searches this cache of Prolog facts. (Of course, the Planner may search the 
EPOSDB directly, through the DB interface - a set of Prolog predicates implemented 
in C). Figure 4 (scenario) in section 3.3 shows a graphic representation of a sample PS. 

All types can have ATTRIBUTE declarations, and inherit attributes from their super- 
types. In Figure 3 attributes are indicated by text annotations in small font for the 
Part and Component types. For example, attribute status describes the current pro- 
cessing status of a software part. All subtypes of Part (Family. Component and their 
subtypes) inherit this attribute. The value range of this attribute is the enumerated 
domain [created, designed, reviewed, coded, tested .... ]. 

2.2 P M  t y p e s  and K B  

The PM types (or task types) are subtypes of TaskEntity. Their instances (tasks) 
represent software processes, e.g. design activity, editing or compilation, which are the 
actions in terms of AI planning. Each task type specifies an action rule, and the sum 
of declared task types constitute the Knowledge Base (KB} for the EPOS Planner. A 
generated plan is a partially ordered set of task instances, called a task-network. 

In addition to ATTRIBUTE declarations, task types have the following type proper- 
ties to support planning and execution: 

. 

. 

FORMALS to express the formal parameters of the task type. FORMALS spec- 
ifies constraints (type, number, status) on the actual parameters, expressed by the 
GenInputs and Gen0utputs relationships (see Figure 1). For example, FORMALS 
for task type Toolcc (C compiler) is: 

FORMALS Csource(coded) * $Cinclude(coded) -> 0bjectCode(created) 

This specifies that a Toolcc task takes one "coded" Csource instance and zero 
or more "coded" Cinclude instances as Input, and one "created" 0bjectCode 
instance as Output. We will see later in this subsection how the Planner uses the 
FOP/VIALS property in reasoning and building of the actual parameters. 

D E C O M P O S I T I O N  to describe legal subtasking. Instances of "high-level" task 
types (expressed as shadowed boxes in Figure 1) should be decomposed into a 
network of subtas~. DECOMPOSITION specifies the candidate types for the 
subtasks. For example: 

DECOM repertoire([toolcc.toolar,toolld]) ~ for Build type 
DECOM repertoire([design.review,implement,test])~ for Develop type 

The first line specifies that a Bui ld  task should be decomposed into a (sub)plan (a 
task-network) built from Toolcc,  T o l l a r  and Tool ld  tasks (C compiler, library- 
maker and linker). The exact shape of this (sub)plan is the result of the planning 
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process when the Planner is called by the Execution Manager to decompose a par- 
ticular Build task. The point here is that, when the Planner makes the (sub)plan 
to achieve the effect of Build,  it searches the pool of the task types in the above 
repertoire, rather than the entire KB. For the second line above we have a sim- 
ilar situation for the Develop task type. Section 3.2 and 3.3 will detail how the 
DECOMPOSITION property is used. 

Note: FORMALS and DECOMPOSITION specify relationships between types, in 
contrast to relationships between instances of types. The EPOS-OOER introduces 
a special TypeDescr type (not shown in Figure 3). For each type T, we create an 
instance of TypeDescr, called the Type Descriptor (TD) of T to represent T at 
the instance level. Type relationships can then be implemented by relationships 
between TDs. 

3. P R E -  and POST-condit ions.  They are declarative specification of the task, 
around the CODE part of the task. The EPOS Planner reasons on P R E / P O S T  
chains of tasks as traditional AI planners do. P R E / P O S T  are w f f s  (well-formed 
formulas) in First Order Predicate Logic, with similar restrictions as in the clas- 
sical STRIPS. The PRE/POST of task A will be written as PRE(A) /POST(A) .  

A large part of the PRE/POST,  concerning constraints on Input /Output  of the 
task type, has been specified implicitly by FORMALS. On the other hand, the 
detailed form (as conjunctions of literais) for this part of the P R E / P O S T  cannot 
be written down at the type level. For example, zero or more Cinclude files may 
be a part of the Input to a Toolcc task. However, we do not know the exact 
number until the Planner tries to select Toolcc to achieve a particular (sub)goal. 

Our strategy to deal with this PM-specific problem is to use the predicates as- 
sert_input and assert_output in PRE and POST, respectively, to represent con- 
straints on actual I /O parameters. These two predicates can be considered as 
macros, at planning time they are expanded into conjunctions of literais, based 
on the current (sub)goal and the concrete Product Structure (PS). Therefore, we 
can reason on them as any other PRE/POST-conditions. 

For example, suppose that the Planner is trying to introduce a Toolcc task to 
satisfy the goal thereis(m.o, objeeteode, created). It first expands the macro as- 
sert_output in the POST-condition into a literal thereis(AnyObj, objeeteode, cre- 
ated), based on the Output constraints specified in FORMALS of Toolcc type 
(see above). The matching between the goal and this literal confirms the selection 
of Toolcc, with AnyObj bound to m.o. 

Next, the Planner expands assert_input in the PRE-condition to deduce the sub- 
goals. This expansion is essentially to establish the actual Input to this Toolcc 
task, given the established actual Output m.o. It is more complicated, based 
on the Input constraints specified in FORMALS and the current Product Struc- 
ture (PS). First, the "main" Input m.c is deduced from the Output m.o. Then 
the current PS is searched, starting from m.e and following the instances of 
ImplementedBy and SourceImporte relations, to find all relevant" ~.h" files which 
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are also a part of the Input to this Toolcc task. In our scenario (section 3.3), 
this expansion would find out that the total actual Input is m.c~ m.h and b.h (cf. 
Figure 4). Then the subgoals for the Planner to work on is the conjunction: 

thereis(rn.c, c_8, coded) A thereis(rn.h, c_i, coded) A thereis(b.h, c_i, coded) 

. 

This planning-time expansion is task- or language-specific. Each task type has 
its own way of doing it. E.g. Deriver tasks for programming languages like C, 
Pascal and Fortran needs the transitive closure of the relevant Input, as we have 
shown above for Toolcc. This closure is not necessary for languages like Ada and 
Modula with separately compiled interfaces. 

With the coupling method (section 3), planning and execution are treated as two 
different mechanisms, so a PRE-condition is split into two parts: PRE_STATIC 
used by the Planner, and PRE_DYNAMIC used by the Execution Manager 
(EM) to trigger execution of planned tasks. The dynamic part involves comparison 
of timestamps (e.g, a task may start only if its Input is newer than its Output), 
or temporal conditions (such as "something can be done only at night"). With 
the integration method (section 4), however, there is no need for such a split. 

CODE. It is a sequential program performing real task actions upon task execu- 
tion (e.g. to call the underlying programming tool). Essentially, CODE contains 
the imperative description of the task, while PRE/POST provide the declarative 
specification. 

To sum up, we sketch the specification for two sample task types as follows: 

ENTITY Toolcc IS Deriver{ 
ATTRIBUTES ...; 
FORMALS Csource(coded) * 

$Cinclude(coded) -> 
0bjectCode(created); 

DECOM none; ZZ an "atom" task 
PRE assert_input AND 

newer(In.0ut); 
CODE ca11("cc -c In -o Out"); 
POST assert_output } 

ENTITY Build IS Deriver{ 
ATTRIBUTES ...; 
FORMALS Family(coded) -> 

Executable(created) 

DECOM repertoire(Toolcc.Toolar,Toolld); 
PRE assert_input AND 

at_night; 
CODE none; ZZ performed by subtasks! 
POST assert_output ) 

Some final comments on type inheritance rules: ATTRIBUTES obey normal OO inher- 
itance rules (bottom-up, left-right), while CODE inheritance is by concatenation using 
SIMULA's INNER mechanism. Therefore the inheritance rules for PRE/POST etc. are 
guided by Hoare's mechanism of program assertions. 
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3 Coupl ing  of  P l a n n i n g  and E x e c u t i o n  

In the last section we have elaborated some important (PM) domain-specific issues 
which are dealt with in the middle layer of the EPOS Planner (cf. Figure 2 (a)). In this 
section, we describe the inner layer (a domain-independent non-linear planner) and the 
outer layer (coupling the Planner with the Execution Manager to achieve hierarchical 
planning). An implemented scenario follows to illustrate most of the relevant concepts 
and techniques. 

3.1 Non-Linear Planning 

Non-linear planning means that the produced plan is not sequential. Rather, it is a 
network of partially ordered task instances, so it can potentially be executed in parallel. 
The core of the EPOS Planner is a non-linear planner modeled as a formal P r o d u c -  
t ion  Sys tem,  similar to IPEM [AS881, [Amb87] and TWEAK[Cha87 I. This formalism 
represents the state of the art in the AI planning area, and can quite easily be extended 
to cover the activities of plan execution and monitoring (see section 4). 

According to this formalism, at any time during the planning, we have an incomplete- 
plan. The production rules are incomplete-plan transformers, modeling the planning 
activities. The germinal plan P0 consists of two dummy tasks: B E G I N  with the initial 
WSD as its POST, and E N D  with the goal G as its PRE. Po is incomplete, containing 
many "flaws". At any time during the planning, a proper production rule may be 
applied to the current incomplete-plan P~, fixing up some flaw, and transforming Pi to 
a new incomplete-plan Pi+l. This process will continue until we get a flaw-free plan P , ,  
which is the plan achieving the goal G. 

The key concept in non-linear planning is the so-called protection range q ~ p, which 
links a conjunct q in POST(A) and a conjunct p in PRE(B)  (assuming A is before 
B). The two conjuncts linked by a range are required to unify, and the unification is 
protected during planning (see below). 

We need only two kinds of production rules (Task Selection Rules and Task Ordering 
Rules) to specify the planning activities. These rules are quite easy to understand and 
express in Prolog. The informal descriptions of these rules are as follows: 

I. Task Ordering Rules: 

IF there is a range q-->p (q in POST(A), p in PRE(B)) 
THEN IF 

THEN 

IF 

THEN 

IF 

THEN 

there is C parallel to B and POST(C) undoes p 
set B before C 

there is C parallel to A and POST(C) undoes p 

set C before A 

C is between A and B and POST(C) undoes p 

introduce a new task W between C and B to re-establish p 
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2. Task 

IF 

THEN 

Selection Rules: 

no range supports p in PRE(A) 

IF there is B before A and q in POST(B) supports p 

THEN set a new range q-->p 

IF there is B parallel to A and q in POST(B) supports p 

THEN set a new range q-->p; set B before A 

IF q in POST(B) supports p but B is not in the plan 

THEN introduce B between BEGIN and A; set a new range q-->p 

The search space for this production system is the set of all possible incomplete-plans 
generated by the production rules starting from the the germinal plan. The goal of 
the search is a flaw-free plan. The search strategy is b~ft-~rst plug hat,racking. The 
best-first search is guided by a set of heur is t ics  to decide which flaw should be fixed 
first; and for a flaw, which fix should be tried first. 

It is well-known that goal i,t~ractio,8 are the source of complexity in non-linear plan- 
ning. The EPOS Planner has been tested on both robot and PM domains. In the 
former case, this planner is faster than e.g. IPEM (a factor of 5-10). In the latter case, 
because there are much fewer goal interactions in the PM domain, the EPOS Planner 
works quite efficiently with a set of simple heuristics. The scenario given in section 
3.3 needs only several minutes to run on a Sun station~ including planning, execution, 
calling OS tools, and graphics. Planning takes less than one third of the time, even 
though it is an AI process involving intensive searching and computation. 

The heuristics used in the Planner is as follows. At each planning cycle, we first check 
possible range violations. If there are violations, use a proper Task Ordering Rule to 
fix one of them. Otherwise one of the Task Selection Rules is used to solve one of the 
unsupported PREs. Whenever an unsupported PRE can be fixed by existing tasks, we 
always use them to keep the number of task instances as small as possible. The order 
in which the unsupported PREs are considered and the order in which the candidate 
task types are tried are determined by more domain-dependent heuristics. Many of 
these heuristics can be expressed in Prolog simply by the order in which we write the 
production rules and the task types. 

To complete the production system, we need a Con t ro l l e r  to integrate heuristics and 
apply them effectively. It maintains an a g e n d a  (a priority queue) of items specifying 
all of the necessary planning activities for the current hlcomplete-plan. Items are in 
the form of pairs [flaw, fix] and ordered using heuristics. The controlling ,lgorithm is 
informally described as: 

i. Build germinal plan PO based on initial WSD SO and goal G; 
2. Initiate the agenda AG by inspecting the current plan PO; 

3. If AG is empty ~ The current plan is flaw-free 

Then STOP; 

4. If AG(TOP) has no fix ~ A dead-end 

Then backtrack; ~ Automatically done by Prolog 
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5. Fix the flaw in AG(TOP); ~ Current plan pi transformed to Pi+l 

6. remove AG(TOP). and adjust AG by inspecting the new plan Pi÷1; 

7. GOTO 3. 

Whenever a new task is introduced in the plan, both the task and its actual In- 
put /Output  parameters (of VataEnt i ty  subtypes) are instantiated, together with in- 
stances of connecting relation types GenInputs and Gon0utputs. This instantiation 
process is also (PM) domain-specific and carried out in the middle layer of the Planner 
(see Figure 2 (a)). The resulting plan is a network of partially ordered task instances 
which may potentially be executed in parallel. 

3 .2  H i e r a r c h i c a l  P l a n n i n g  

As the EPOS Planner deals with real world PM problems, a hierarchy of abstractions 
is essential. The process of alternatively adding detailed steps to the plan and actually 
executing some steps should continue until the goal is achieved. This is the Hierarchical 
planning technique. In our coupling method, hierarchical planning is accomplished by 
the cooperation of two different mechanisms - The Planner and the Execution Manager 
(EM). The interface between them is the outer layer of Figure 2 (a). 

Of course the primary functionality of the EM is to execute the tasks of the plan 
generated by the Planner. The execution is guided by the partial order among the tasks 
set by the Planner (so some tasks can be carried out in parallel), and triggered by the 
PRE_DYNAMIC condition of each task. We extend this basic connection between the 
Planner and the EM to achieve hierarchical planning. 

The EM and the Planner interact as follows. At the beginning, the EM instantiates a 
very "high-level" task, based on the user's request. The task could be of Develop type, 
for example, to develop an initial version of the software product. This single task can 
be regarded as the first coarse plan. When the EM tries to execute this "plan", it calls 
the Planner to decompose the "high-level" task into a more detailed (sub)plan. The 
process goes like this: 

1. The EM sends a PM goal to the Planner. The PM goal consists of the the 
"high-level" task (the parent task) and its actual Input/Output,  representing a 
decomposition request. 

2. The Planner translates this PM goal into a set of AI goals - a conjunction of 
literals. This translation is (PM) domain-specific, and dealt with also in the 
middle layer of the Planner. 

3. Then the Planner works to make a (sub)plan to achieve this set of AI goals. 
In doing so, it takes the current world state as its initial world state, and the 
repertoire specified in the DECOMPOSITION property of the parent task type 
as the (sub)KB to select useful tasks. 
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4. The generated (sub)plan is added to the original plan, with each task in the 
(sub)plan (called a subtask, which may be a "high-level" task again) linked to the 
parent task by an instance of the SubTask relation type. 

5. Then the EM executes this (sub)plan to achieve the effects of the parent task. 

Obviously, the above process can work in multi-levels: if the EM meets another "high- 
level" task when it executes the (sub)plan, it will call the Planner again. This strategy 
fully utilizes the desired hierarchical planning techniques. In the next subsection, a 
scenario in software PM will illustrate how this strategy works in the real world, and 
also how the EPOS Planner works on the real EPOSDB. 

3 .3  A S c e n a r i o  

Assume that an EPOS user wants to develop an initial version of a software prod- 
uct. This is modeled as a Family f, with a tested Executable program re.ere as the 
(main)result. The COV option Inlt is introduced, representing this initial function 
of f. The config-dcscr for this transaction is <{[Init.true]}. f>, and the empty 
Family f is checked-out from EPOSDB as the start point of this transaction. 

The first coarse plan consists of only one Develop task. The EM first makes sure that its 
PRE_DYNAMIC is O.K., and then tries to execute it. As Develop is a "high-level" task, 
the EM calls the the Planner to decompose it. The resulting (sub)plan is a sequence of 
Design, Review, Implement and Test tasks. 

Suppose that the Design and Review tasks are carried out ("executed") by the user (a 
human actor), and that as the result of the executions of these two tasks, the PS for f 
is settled down as shown in Figure 4 (cf. section 2.1, also see Figure 5). 

Now the EM tries to execute the Implement task, which also is "high-level". The 
Planner is called again, and the produced (sub)plan is the sequence of Systemcoding 
and Build tasks. Based on the Product Structure of f, Systemcodlng is decomposed 
(recursively) into seven parallel Sourcecoding tasks for re.c, rn.h, a.h, al.e, a2.c, b.h and 
b.c. Each of these Sourcecoding tasks consists of an editing session which can be 
"executed" by the user with some interactive editor tool. 

Then the EM tries to execute the Build task. It calls the Planner once again, and 
the produced (sub)plan consists of four Toolcc tasks to compile ra.c, b.c, al.c, a2.c, one 
Toolar task to make the Library a.a, and one Toolld task to link everything together. 
Figure 5 is automatically generated by the Planner so far, showing a fully developed 
plan. 

Now the EM executes the (sub)plan for the Bu£1d task to produce rn.exe, and then 
executes the Test task to complete the first version of the product f. 

Note: before the Design and Review tasks have been executed, neither the Systemcod£ng 
nor the Build tasks can be decomposed properly, because they both depend on the 
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Figure 4: A Sample Product Structure (PS) 

product Structure (PS) which is the result of Design and Review. This exaxnple shows 
clearly that hierarchical planning is essential in the PM domain. 

To conclude this transaction, the PS (including the real files) and the plan for Develop 
are checked-in to EPOSDB (the plan is stored for reuse, see below). This is the first 
version of f ,  specified by the version-choice { [ I n i t  . t rue ]  }. 

Suppose that the end-user of this software product f requests some enhancement, then 
the EPOS user should start a new transaction. A new COV option New1 is introduced 
to represent the additional functionality requested by the end-nser. The co,fig-dcscr 
should be <{[Init.true], [Newl .true]}. f>. Then, the PS for f and the plan for 
Develop, which were checked-Lu previously, are checked-out again into a new workspace. 
This time the "top" task is of the type Change_Processlng (not shown in Figure 3), 
which is a/so a "high-level" one and therefore decomposed into a (sub)plan. A task of 
Develop type turns out as one of the subtask within this (sub)plan. Suppose there is 
no structural change in the PS, then the old plan for Develop will be reused to make 
a new version of the product f. (If there are structural changes, we need replanning for 
Develop, see next section). Finally, the new version of the product f, specified by the 
version-choice { [Init .true]. [Newl .true] }, is checked-in for future evolution. 
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The or tg lee l  Producl~ $ t ructure  has been read 

t. H 

t o o l c c / 1  / 
~\\ 

Figure 5: A Fully Developed Plan 

4 Integration of Planning and Execution 

As seen in the scenario, with the coupling method, the Planner and the EM (as 
two separate mechanisms) work cooperatively in hierarchical planning and plan exe- 
cution. This is also a nice compromise between static reasoning (at planning time) 
and dynamic scheduling (at execution time - remember that the EM always checks 
PRE_DYNAMICs). However, there are several points to consider further: 

• ezp¢cted ~zceptio~. A Toolcc task could achieve its effect (producing an object 
file) or fail (due to linguistic errors); a Test task could confirm the product or 
demand bug-fixing; etc. These "expected" exceptions cause iteratio~ in software 
development, and are considered crucial in PM. In the coupling method, we have 
some ad hoe solution to this problem (e.g. CODE reports the execution failure to 
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the user, and the user points out which task in the network should be re-executed). 
The automation of iterations will give the user more intelligent assistance. 

* unexpected exceptions. Hardware failures, file system overflow or other unexpected 
events can be only handled by execution monitoring and dynamic adjustment of 
the plan. 

• replanning. Whenever the Product Structure (PS) or KB has some change, re- 
planning is demanded. E.g. if an editing session changes some ~includc statement 
in re.c, the plan in Figure 5 may have to be changed accordingly. Here some kind 
of incremental replanning is very much desirable. 

Inspired by IPEM [AS88], we think that integration of planning, execution, and mon- 
itoring would be a promising solution to the above problems. This means a uniform 
mechanism for all those activities, so we can interleave them at a very fine granularity. 
In the following we show how the set of production rules for non-linear planning (Task 
Ordering Rules and Task Selection Rules described in section 3.1) can be extended 
to cover plan execution and monitoring, as well as task decomposition (section 3.2). 
We will also see how this integration solves the automatic iteration and incremental 
replanning problems. 

~ I. 2. are Planning Rules (see section 3.1) 

3. Execution Rule: 
IF A is not "hlgh-level" and PRE(A) is satisfied by current WSD 

and A is not involved in any range violation 
THEN execute A, and remove A when it times out (succeeds or not) 

4. Decomposition Rule: 
IF A is "high-level" and ready for execution 
THEN decompose A into a subplan 

~ 5. 6. 7. are Monitoring Rules: 

5. IF 
THEN 

6. IF 
THEN 

7. IF 
THEN 

A is being executed 
a). for effect q that really appears, change the producer of 

ranges q-->p from A to BEGIN (i.e. put q into WSD); 
b). for failed effects, simply excise the relevant ranges 
there is some change in the Product Structure (as an exception) 
redo I/O macro expansions (sec. 2.2) for all tasks in the plan 
some other exception (for example, "q) occurs 
delete q from WSD (excise all ranges q-->p starting from BEGIN) 

With the new rules, exceptions (failed effects in Rule 5, PS changes in Rule 6, and 
others in Rule 7) always cause some new unsupported PREs, which sooner or later will 
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trigger some planning activities (Rule 1 and 2). That is, replanning is automatically 
triggered and based on the existing plan (rather than from scratch). This is the key 
point to introduce the integrated model. 

For example, the Toolcc task #150 in the scenario of section 3.3 may fail to achieve its 
effect (i.e. producing b.o), due to some syntax errors in the source files. According to 
Rule 3, it is removed nevertheless when it times out. On the other hand, due to Rule 5 
b), the subsequent Tool ld  task now has an unsupported PRE (thereis(b.o, objeetcode, 
created)). This in turn triggers some planning activities to re-introduce to the plan 
the previously removed Toolcc task (compiling b.c) to re-establish this PRE. But the 
re-introduced Toolcc task has its own PRE unsupported, therefore some Sourcecoding 
tasks are also re-introduced to the plan. All these tasks will be re-executed, to modify 
b.c and relevant "*.h" files, and then to re-compile b.c. Here, the iteration is obtained 
through execution failure. 

Another example concerns the changes in the Product Structure. In the same scenario, 
b.h was originally implemented by b.c. Suppose that b.h is now implemented by both 
b.c and bI.c, i.e. a change in the PS. According to Rule 6, I /O macros are re-expanded, 
causing a new unsupported PRE of the Tool ld  task (i.e. thereis(bl.o, objectcode, cre- 
ated)). This in turn triggers some planning activities to add a new Toolcc task and 
a new Sourcecoding task (to process the new bl.c file) to the existing plan. Here, 
replanning is incrementally carried out, not from scratch. 

The software development strategy (a project- and/or company-specific policy) can be 
implemented by proper heuristics determining the priorities among the rules 1 - 7 (an 
extension of the heuristics determining the priorities of rules 1 - 2, described in section 
3.1). The cor~rollin¢ algorithm given in section 3.1 largely remains unchanged. Here, 
the terminating condition for the algorithm - "the Agenda AG is empty" - means that 
all tasks in the plan have been successfully executed and removed. 

Note that in this integrated model, PRE-conditions need not be split into static and 
dynamic parts (Rule 3 checks the entire PRE(A)). Also note that now the WSD is 
changing continuously. 

5 Conc lus ion  and Future  Work 

The first prototype of the EPOS Planner and EM uses the coupling method, imple- 
mented by 5000 lines of SWLProlog, working on the real EPOSDB implemented in C. 
SWLProlog has a symmetric interface with C, and an Object-Oriented extension PCE 
for graphical UI. 

Together with the EM, the EPOS Planner provides the user with intelligent assistance 
on the product level. On the project level, it models the life cycle stages in software 
development, including task decomposition, human interaction, and develop-review it- 
eration. 
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The preliminary experience with our first prototype proves that our EPOS Planner is 
capable of covering a large area of software development activities, and can be integrated 
with CM systems. It has successfully applied advanced AI planning techniques to an 
important Software Engineering area - Software Process Management. 

Usually a PM system is based on some particular paradigm: process programming as in 
ARCADIA [TBC*88], static reasoning as in ALF [B'89] wad partly MARVEL [KF87], 
dynamic triggering as in PCMS [HM88] and NOMADE [BE87], or subtype refinement as 
in Process-Oriented CM [BL89]. These PM systems use none or very little AI techniques 
(such as simple-minded forward/backward chaining). In contrast, EPOS PM combines 
all the above approaches, applies more advanced AI techniques, and also covers larger 
area of software development processes. 

We are now implementing the integration of planning and execution (section 4) to 
support automatic iteration and incremental replanning. Another important direction 
for future work is Case -Based  P l a n n i n g  ( C B P ) .  The central idea of CBP [Kol88] 
is learning: (re)planning from memory and parameterization of previously generated 
plans to avoid the problem of constantly rederiving the same plan. We have already 
realized a simple plan-reuse strategy on the instance level (section 3.3 ). In future, we 
want to be able to generalize frequently used task networks as new, composite task types 
and put them back into the KB. 

Yet another crucial point for future work is cooperating transactions. A transaction TI 
is not only associated with a version-choice C1 (section 1), but also with an ambition 
A1 - an incomplete version-choice, with some options unset .  A1 represents a set of 
version-choices (including C1). When the changes made in T1 is committed, they will 
be visible in all these versions. Now suppose there is another transaction T2 with 
overlapping ambition and/or Product Structure with those of T1. Then the policies for 
change propagation between TI and T2 must be defined and implemented by PM. The 
subsequent challenge to the EPOS Planner is how to deal with more dynamic WSDs and 
KBs. Here, we will step forward from a single workspace to cooperating workspaces, 
and from a single-actor system to a multi-actor system. 
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