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Abstract 

Abstractions of various kinds play a vital role in conceptual modeling and knowledge 
representation. These mechanisms are, however, normaUy applied only to object types. In 
this paper we define the semantics and show the usefulness of applying similar 
mechanisms to types of relations among objects. Specifically, we show how cardinality 
constraints of an abstracted attribute relate to those of its constituents. To accomplish this 
we employ a formalism based on information triples (binary predicates) constituting 
elementary assertions about a Universe of Discource. 
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1 Introduction 

We take the term 'information system' in the ISO sense of the word as described in "Concepts 
and Terminology for the Conceptual Schema and the Information Base" [ISO82]. This means 
that an information system consists of three parts, a conceptual schema, an information base 
and an information processor. 

The information base contains assertions describing, in our case, the current state of the 
universe of discourse. It comprises a snapshot view of the state of affairs in the universe of 
discourse and contains, thus, no history. The assertions of the information base must conform 
to assertion types defined in the conceptual schema. A conceptual schema and information base 

1This research was supported by the National Swedish Board for Technic~ Development (STU). 
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is totally static unless something operates on it to cause change. That something is called an 
information processor. Important components of the information processor are an information 
base management system and a conceptual schema facility. 

It is widely acknowledged that the conceptual schema also plays a key role in systems analysis 
and design. The activity of designing a conceptual schema is usually referred to as conceptual 
modeling. According to Brodie et al. [Brodie84a]: 

"conceptual modeling needs can be met only by a leap to a higher, more abstract level of 
system description. The required leap is analogous to the one that has been achieved in going 
from assembly languages to so-called high level programming languages in the tradition of 
Algol 60, PL/! and Lisp. The move to high level languages resulted in developing high level 
mechanisms for algorithm specification in terms of such concepts as variable, function, data 
type and control structure. The leap now needed for conceptual modeling requires high level 
mechanisms for the specification of large, complex models of an enterprise." 

The mechanisms mentioned should support the conceptual modeling process and typically 
involve abstraction mechanisms like: 

• Classification, by which objects which share common characteristics are gathered into 
classes. All elements of a class have the same type. 

• Generalization, by which types with common characteristics are generalized to more 
general types. 

• Aggregation, by which complex objects may be created from tuples of more elementary 
objects. 

• Grouping, by which complex objects may be created from sets of more elementary 
objects. 

As a synonym for conceptual modeling one sometimes uses the term "semantic data modeling" 
[Brodie84b, Hul187b]. The reason for this is the aim of conceptual models to more completely 
describe the universe of discourse. An important means for raising the semantical level of a 
conceptual model is to capture, in the conceptual schema, the various rules and laws that control 
the business area in question. Important classes of such rules are 

1. Constraints such as mapping constraints for relations between objects e.g. 'Every 
person must have a name' or 'A person must not have more than one name'. 

2. Derivation rules defining how certain information is derived from other, such as a rule 
defining how a derived entity of some kind is 'brought into existence', e.g. 'a 
SIBLING-GROUP entity is defined to be the set of CHILD entities who all have the 
same parents'. 

Mapping constraints will be discussed in detail when studying attribute abstraction later in this 
paper. We will also give examples of derivation rules. Such rules are also the natural means for 
defining external schemata. 
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1.1 The Problem 

The aim of this paper is to investigate how mapping constraints propagate under attribute 
abstractions. We take, here, the word mapping to mean a binary relation between two object 
sets. A tuple of such a relation normally is the manifestation of a property that one of the objects 
have. For example <el,'red'> might mean that the entity el  has the color red. 

A mapping constraint restrict, for a certain mapping, the number of objects that may be 
associated with each other. These constraints are defined in the conceptual schema 

• to prevent updates to the database that violate them or, in the case of deletion, possibly, 
propagate the delete so that the database will still be consistent with the constraints. 

• to raise its semantical level in that it assures that the conceptual schema will more closely 
mirror the universe of discourse. This is useful when explaining to a user the meaning 
of  the mapping or when reasoning, possibly automatically, about the propagation of 
these constraints, e.g. when composing or specializing mappings, as may be needed to 
construct external views. 

Mapping constraints are in our case given as rain- and max-values for the cardinality of the set 
of objects that may be associated to a certain object belonging to a type for which the mapping is 
defined [ISO82]. 

referees 

pc_referees' 

Figure 1. Attribute specialization 

It is obvious that the constraints specified for a mapping will restrict what we are allowed to 
specify when we generalize or specialize it. Consider for example Figure 1. We say here that 
pc_.referees specializes the attribute referees to those REFEREE-objects that are members of 
the program committee. It is then obvious that the number of pc referees of a paper can never be 
more than the total number of referees. If, for example, the number of referees is maximized to 
4, so is also pc_referees. In other words restrictions on the referees attribute will constrain what 
is possible to specify forpc_referees. Also for other kinds of abstractions on attributes similar 
concistency rules can, as we shall see, be formulated. 

Defining these meta constraints is an important task, since attribute abstractions are very useful, 
e.g. when it comes to map different data models to each other as may be needed when mapping 
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external schemas to a conceptual schema (cf. the so called three level architecture [ISO82]) or 
when mapping between different data model types, as is examplified in section 4 of this paper. 
Formulating the relationship between mapping constraints of abstract attributes and these of 
their constituents is a main aim of this paper. In order to accomplish this task, we will have to 
clearly define the meaning of generalization, composition and aggregation of attributes. From 
these definitions we then derive the required properties. 

1.2 Related Work 

In [Hul187b], Hull and King survey the area of, what they call, semantic database modeling and 
briefly present 16 prominent semantic data models, all of which, in one way or the other make 
use of  abstraction mechanisms. Aggregation and grouping are in this survey labeled "type 
constructors", thereby emphasizing their use as a means for constructing new complex types. A 
more comprehensive survey of theoretical research on constructed types may be found in 
[HuU87a]. 

Whereas object type generalization is present in most conceptual modeling languages [HuU87b], 
aggregation and grouping are not so commonly used. Some examples are, however, 
[Bracchi84] and [Schie184]. In some of these approaches grouping is referred to as association 
[Bracchi84]. In this paper we use the term grouping, though, since the word association is 
often used to denote a binary relation in general. 

The only works we have found that explicitly deal with abstracted attributes are the knowledge 
representation systems KL-ONE [Brachma85] and Krypton [Brachma83]. In KL-ONE, 
RoleSets (attributes in our terminology) belonging to specialized object types may "restrict" a 
RoleSet of the generic object type. This means that the subordinate RoleSet denotes a subset of 
the superior and that its 'values' may be restricted to some subset of the superior RoleSet's 
range. Also mapping constraints of the subordinate RoleSet may be restricted. A RoleSet may 
also be "differentiated" into several subordinate RoleSets. 

Besides attribute specialization (restriction and differentiation), like in KL-ONE, Krypton 
[Pigman84] also supports "role-chains", i.e. composite attributes. 

As can be understood from the works mentioned in this section, object type and attribute 
abstractions are of central importance for enhancing the expressive power of conceptual models. 
In the sequel of this paper we will elaborate on the meaning and use of such abstractions and 
perform a detailed analysis of important properties of a number of attribute abstractions. 

2 Methodological Approach 

To accomplish our goal of investigating the properties of abstractions, specifically the 
propagation of cardinality constraints when abstracting mappings, we will have to formally 
define the various abstraction mechanisms of interest. The basic elements of our approach are 
entities, properties and values. From these we build, by means of aggregating into tuples and 
grouping into sets, more complex objects. The most basic are elementary <entity, property, 
value>-assertions saying simply that for this entity, that specific property has that value. It 
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should be noted that we do not promote our approach as a new language for conceptual 
modeling. It should rather be seen as a basic formalism in which it is possible to express other 
data model types. 

2.1. Some Basic Definitions 

An information base is considered to consist of objects that are related to each other via binary 
relations. The objects of  the information base are basically of two different kinds, namely 
abstract objects (often called non-lexical objects [ISO82] or entities 2) and descriptor objects 
(lexical objects). The names abstract object and descriptor object are due to [Lyngback84]. An 
abstract object may be elementary, represented by one single internal surrogate, or composite, 
constructed by means of aggregating or grouping, in one or more levels, several surrogates. In 
each of these cases, the single surrogate, the tuple of surrogates and the set of surrogates rcsp., 
will uniquely determine the object. 

The abstract objects represent entities of the Real World, such as a person or a car, whereas 
descriptor objects are 'self-dcscribing' and consist of  strings of characters such as John or 
111111.1111. 

The abstract objects are, however, of little interest unless you can see what properties they 
have. This is accomplished by means of named relations between objects, like e.g. el-- 
has_affiliation--e2 or el--has_social_security_no-.'llllll.llll'. Thus, a triple 

<abstract-object,property-name,range -object>, 

where range-object may be either an abstract object or a descriptor object, represents an 
assertion, i.e. a piece of information, about an entity of the Universe of Discourse. We will 
therefore use the word information triple to denote such triples. Like in CMOL [Lindenc83, 
Bubenko84], we do not distinguish between associations relating an entity to another entity 
(relationship in ER [Chert76] terminology) and properties relating an entity to a value. 

An information base at a particular point in time comprises a collection of information triples. 
Hence, we have the following definition for an information base state: 

Definition 1 

An information base state, IBn, existing at some point in time, is defined to be a non- 
empty set of information triples. 

Every entity of the information base has a certain type as defined by the mandatory information 
triple <entity,type, type_label>, like e.g. in < e l ,  type, "REFEREE'>. The type labels are taken 
from a value set containing names of the types defined in the conceptual schema. 

Now, let e denote an abstract object occurring in IBn. Then we define a(e) to be the set of 

2In the rest of this paper we will altemat~ between the terms entity and abstract objccL 
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'target-objects' associated via the 'property' a to the entity e, and correspondingly for the 
inverse relation. Formally we get 

Definition 2 

Suppose e is an entity of IBn. Then 

a(e)= {r:<e,a,r> e IBn} 

and 

a 1 (r)= {e:<e,a,r> • 1Bnt 

However, since we want to be able to discuss composite attributes, like a(b(e)), we also define 
a(X), where X is an arbitrary set of entities occurring in IBn, we also define: 

Definition 3 

a(X) = ~ a(e) 
e c X  

and 

a "1 (Y) = ~ a -1 (r) 
r 6 Y  

where X is defined as above and Y is a set of arbitrary objects (descriptor or abstract) 
occurring in IBn. 

a" 1 (a(X))  

O 

Figure 2. An example showing X, a(X) (the image of X under a) and a-l(a(X)) 

It follows immediately from definition 3 that 

2-1 a( ~ ) =  ~ and a-l ( ~ ) =  ~ .  
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The set of  objects associated to a set of entities X via a, a(X), is called the image of X under a 
(see Figure 2). For example affiliation(e) refers to the set of UNIVERSITY entities to which 
the PERSON entity e is affiliated, whereas ssn-l('111111-1111 ") refers to the single-element 
set containing the abstract object representing the person having this particular social security 
number. 

To be exact, the function symbol, a, of definitions 2 and 3 is overloaded, since it represents 
functions of different types ('object --~ set' and 'set ---> set', resp.). However, we will not go 
into a detailed discussion of this here, but only consider the function defined in definition 2 to 
be a special case of  the function defined in definition 3. In other words it is a (set ---> set)- 
function, the argument of which is a singleton set. This means that, given that E is the total set 
of entities occurring in IBn and R is the total set of objects ofIBn,  a could also be described 
as a function 

a : 2 E --~2 R 

We may also refer to a(E) as the target or codomain of a and a -1 (R) as the domain of a. Note 
also that a'l(a (X)) is, in general, not equal to X (see Figure 2). 

2.2 The Conceptual Schema 

Having defined the concept of an information base, we now proceed to define the conceptual 
schema of the information base. We will, however, not do that formally in this paper, but only 
briefly explain how we look upon these matters. 

The conceptual schema is basically a collection of entity types, data types, action types, 
constraint specifications and derivation rules to which the information base, in any state, has to 
conform. It contains, thus, a set of entity types, defining the entities allowed to occur in the 
information base and a set of data types, defining the permissible values. It is presupposed that 
the schema is not changed during the life time of the information system. 

An entity type is defined to be a set of property specifications, called attributes, telling 

• the name of a property, a, and 

• the range object type (entity type or data type) 

A data type comprises a definition of a set of descriptor objects. Data types are defined in terms 
of certain pre-def'med value classes, such as INTEGER, REAL, CHARACTER, STRING etc. 
A descriptor object of IBn is said to be of a certain data type i f  it belongs to the value class 
constituting the data type. The information base is at no time allowed to contain descriptor 
objects other than those being of types defined in the schema. 

Action types correspond to types of events that may occur in the universe of discourse and are 
the means for causing change in the information base. Since, in this paper, events are not of 
primary interest, we will not go further into defining the details of action types here. 

We will now proceed to define the notion of mapping constraints for attributes. We do that 
formally, since it is of major impotence henceforth 
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Definition 4 

The mapping constraint, aconstr, for the attribute a, mapping from entities of type A to 
objects of type R, is defined to be the tuple (arch : amax, a'lmin : a'lmax), such that for all 
e being of type A andaUr being of type R: 

amin is the greatest integer, such that/a(e)/>- amin holds in every information base state, 

amax is the smallest integer, such that/a(e)/~amax holds in every information base state, 

a'lmin is the greatest integer, such that /a ' l ( r ) /~  a'lmin holds in every information base 
state, 

a'lmax is the smallest integer, such that/a -l(r)/~_ a-lmax holds in every information base 
state. 

Here amln , a'lmin ~ N 3 and amax , a-lmax ~ (N  - {0}) U{*},  where the asterisk indicates 

that the cardinality may be any number ~ N, greater than or equal to am/n or a -lm/n resp. 

Since * could mean any number ~ 0  we say that n ~*  and n.* 4= • for any n ~ N .  

If am/n ~ 1, we say that a is total, otherwise it is partial. 

The set of entities in IBn being of type A, is said to be the extension of A and is denoted by ~A 
(notation due to [Sowa84]). In other words 

5A = { e: <e, type,'A'> ~ IBn }. 

Correspondingly, the relation 

= {<e,r>: <e,a,r> ~ IBn}  

is called the extension of the attribute a.. 

Updates to the information base are handled under the control of  the information base 
management system which ensures that what is specified in the conceptual schema is not 
violated. Provided consistency rules like those formulated in 3-1, 3-3 and 3-5 are included in 
the conceptual schema facility, it will also have the possibility to initially check the schema for 
consistency. 

2.2.1 Graphical Notation 

Figure 3 describes a subset of the well-known 'IFIP Working Conference example' [Olle82], 
that will be used for examplifying various matters in the sequel. This application concerns an 
information system, supporting the arrangement of an IFIP working conference. Familiarity 
with the example will be assumed. 

3N denotes, throughout this paper, the set of positive integers (incl 0). 

4= n times *, as is needed in various formulas in the sequel. 
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~~'~~_address u~ 

s s n  / ~ "~ . .__ atRllatlon 

pre 
~ a u t h o r s  / 

~ X / r e f e r e e s  
paper n o ~  

X PAPER ~..._.no_pag es 
~.~h, . . . . . . t i t le  ~ - 

Figure 3. A conceptual schema for part of the 'IFIP case' 

We use a graphical description technique for the schema, where ellipses represent abstract 
object types, rectangles represent descriptor types and attributes are represented by arrows. The 
abstraction mechanisms of generalization, aggregation and grouping are, a s is examplified in 
figures 3 and 4, graphically represented by a circle inscribing the symbols iss (is subset), x 
(cartesian product) and P (powerset) resp. 

2.3 Abstractions on Object Types 

In general terms the meaning of the word abstraction is to disregard detail in order to gain a 
more general view of some situation. This can be done in many different ways. 

Firstly one may construct a more general object type by overlooking distinguishing properties 
and only see to what is common to a number of other object types. This is called generalization 
and an example may be the object type PERSON of Figure 3, which is a generalization of 
AUTHOR and REFEREE. The abstraction of generalization establishes an is-a relationship 
between objects. 

Secondly one may overlook the internal structure of an object, i.e. one wants to talk about a 
thing as a whole without bothering about its parts. However, an object may be built up by 
constituents in at least two different ways. It may consist of exactly one each of a number of 
parts, whence we call the composite object an aggregate, or it may consist of an unknown 
number of exactly one kind, whence we call it a group. Examples are here the aggregate couple 
consisting of one man and one woman and the group object program committee which is a 
group of persons. The abstraction of aggregation establishes a part-of relationship between 
objects, whereas grouping establishes a member-of relationship. We will henceforth use the 
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words component to denote the parts of an aggregate and member to denote the members of a 
group object. 

child of 

Figure 4. Abstracted object types 

Aggregation and grouping may, like the entity type FAMILY in Figure 4, be applied to 
aggregates or groups of objects, thus creating more and more complex objects. In some 
situations an object type could also be grouped or aggregated into several aggregate or group 
types. This would constitute something similar to multiple inheritance. 

3 Attr ibute  Abstract ions  

In this section we will define and discuss three kinds of abstractions on attributes, namely 
generalization, composition and aggregation. For the sake of simplicity we define composition 
and aggregation for only two component attributes. The definitions and rules given below 
could, however, easily be increased to an arbitrary number of attributes. We also present a 
number of propositions defining the relationship between mapping constraints of abstracted 
attributes and those of their components. The proofs of the most important of these propositions 
are given in the appendix. 

3.1 Generalized Attributes 

It has been mentioned already in the introduction of this work that pcreferees of Figure 1 is a 
specialization of the attribute referees. This is the same as saying that referees is a generalization 
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ofpc..referees and the exact semantics is that the set of pc referees related to a specific paper, e 
say, must always be a subset (possibly the empty set) of the total set of  referees for that paper 
or, more formally, that pc_referees(e) is always a subset of referees(e). 

Due to this definition it is, for the example of Figure 1, immediately clear that the number of  
referees related to a certain paper via the pc_referees attribute cannot exceed the number of  
objects related via referees. In other words pc_refereesmax cannot exceed refereesmax. By the 
same reason pc refereesrain cannot exceed refereesraln and correspondingly for the inverse 
attribute. Suppose for example that refereesr, an = n (n20). Since this means that the number of 
referees for a paper may be as low as n and since the number of pc_referees cannot be greater 
than the number of  referees, it is obvious that we cannot prescribe any value for pc_refereesnan 
that is greater than n. 

For another example, consider Figure 3. Here we could state that the attribute presented_by is a 
specialization of authors. This would entail the constraint that the person who presents a paper 
must be one of the authors of that paper. 

In these cases a main reason for having the specialized attributes of pc_referees and presented_ 
by in the schema is to give us a possibility to pick up exactly those referees of  the paper who 
are also members of the program committee and the one of the authors who is going to present 
the paper. 

There are also other reasons for specializing attributes. In Figure 1 the attribute pc_referees is 
the only way membership of the program committee is represented. Suppose instead we have a 
specialized object type PC_MEMBER, as in Figure 5. The range of  the pc_referees attribute 
would then be restricted to PC_MEMBER and thus be derivable according to" 

pc_referees(e) = {x: x ~ ~PC_MEMBER & referees(e) = x}; 

As for Figure 1 it is clear that pc_refereesmax cannot exceed refereesmax. Neither can 
pc_refereesmin exceed refereesmln nor pc_referees'lmax exceed referees'lmax. 

pc-re fe ree s ~ ~ , ~ . . ( ~  PC_ME M~E E R 

Figure 5. Specialized attribute with specialized range 
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Since, in the definition of minimum constraints on attribute inverses (definition 4) we require 
that only objects of the range object type are considered, the case for pc_referees'lrain is a bit 
more complicated, though. Suppose for example that refereesl,n~ = 1, i.e. each referee must 
review at least one paper. Then there may very well also be a rule saying that a pc member must 
review at least two papers, i.e. pc referees'l,nln = 2 2 referees'],nin. On the other hand, there 
may be other situations, where the semantics of the specialized attribute is not at all tied to the 
specialized range object type and, hence, the minimum constraint for the attribute inverse may 
be less than the corresponding constraint for the generic attribute. Thus, we cannot say anything 

about the relationship between pc_referees~min and referees'],nin. 

In Figure 6 we have a specific category of papers, called X_PAPERS, which we demand to be 
reviewed by at least 4 referees, while for normal papers it is sufficient with 3 referees. We 
could represent this rule by defining an attribute x_referees, for which we could specify 
x_.refereesmln = 4, whereas referees,nin = 3. It is obvious that the x._referees of an x_paper 
should be equal to the referees of that paper and that the set of x_papers reviewed by a referee 
must be a subset of the total set of papers reviewed by that referee. Hence x_referees should be 
defined as a specialization of referees. 

, referees 

referees 

Figure 6. Specialized attribute with specialized domain 

The case we have here is symmetrical to Figure 5 in that we cannot say anything in general 
about the relationship between the minimum constraints of the generalized and specialized 
attributes (now taken in the positive direction). 

In Figure 7 both the domain and range ofx..pc_referees are specialized and hence we cannot 
know anything about the relationships between the minimum constraints of x_pc_referees as 
related to those of referees. For the maximum constraints, on the other hand, it is as always 
clear that the values for the generic attribute is always greater than the corresponding values for 
the specialized attribute. This is due to the fact that in the definition (definition 4) of the 
maximum constraints it does not matter from where the arguments are taken. 

Note that it is possible to have specialized attributes that are not derivable as those of figures 5, 
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6 and 7 are. pc__referees of Figure 1 is an example of this. Non-derivability is also the case 
when the specific semantics of the specialized attribute is not in any way related to its 
specialized domain and range. 

referees = .  

_referees ~ 
X (,) 

es" X_pC referees " ~ ~  PC_~.~R 

Figure 7. Specialized attribute with specialized domain and range (x_pc_referees) 

We may summarize our findings concerning attribute specialization by establishing that 
minimum and maximum constraints for specialized attributes are always less than the 
corresponding values for the generic attribute, provided the domain and range object types are 
the same. If they are not, we do not know anything about the relationship between minimum 
constraints, while what is said about maximum constraints still hold. 

We now proceed to formally defining the notion of attribute generalization. 

Definition 5 

If  ag is an attribute relating entities of type Eg to objects of type Rg and as is an attribute 
relating entities of type Es to objects of type Rs, where Eg is a generalization of Es and 
R z is a generalization of Rs, then a s is said to be a generalization of as iff in any database 
state, IB n 

as(e) ~ as(e) and 

agl(r)  ,~ a J ( r ) ,  for any e and r. 

If  ag is a generalization of as we also say that as is a specialization of a s. 

The relationships between mapping constraints discussed above may now be summarized as 
follows, 

3-1 If the attribute ag, relating entities of type Eg to objects of type R s is a generalization of 
the attribute as, relating entities of type Es to entities of type Rs, then 

1) agmin ~ asmin , provided Eg = Es 
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2) agmax >- asrnax 

3) ag'lmin 2: as-lmin, provided Rg = Rs 

4) as'lmax --> as'lm=. 

For an example, suppose for Figure 1, that refereesconar = (3:4,1:5). This means that each 
paper must be reviewed by between 3 and 4 referees and that each referee must review between 
1 and 5 papers. According to our findings, by stating that pc_refereesco=tr = (2:4,0:4), it 
would be possible to specify that every paper must be reviewed by at least 2 pc members and 
that each pc member may not review more than 4 papers. However, it is not possible to state 
that each pc member must review at least one paper. This is due to the fact that we have no 
independent way to distinguish which referees are pc members. For the schemata of figures 8 
and 10 it would be permitted, though, to state pc_refereesconstr = (2:4,1:4). 

This section is about generalization. In spite of this we have mostly been discussing 
specialization. However, regardless of whether the specific or generic attributes are primary, the 
same conditions regarding mapping constraint propagation hold. 

3.2 Composite Attributes 

Sometimes we have the need to construct composite attributes. Consider for example Figure 8 
and suppose that the object types in the schema have lots of other attributes than those shown in 
the figure. The secretary returning reviewers reports to the author would probably not be 
interested in all the details about persons. Instead we ought to define an external schema giving 
access only to the name and address of the persons who are going to present each paper. This 
could be accomplished by means of the composite attributes presented_by.p_name and 
presented_by.p_address, as shown in Figure 3. The meaning of these composite attributes 
should be intuifivdy clear. 

.,..~ P N A M E  ! 

presented by.p name,, " " " 7 
• . ,, ," " / p _ n a m e  

~ presented_by 

" " " " ,, ,, .. p address 

presented_by.p_address, ,.,...,... "~  

Figure 8. Composite attributes 

We now proceed to define the concept of composite attribute formally. 
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Definition 6 

If a is an attribute relating entities of type A to entities of type B and b is an attribute of 
B, then a.b is said to be the composite attribute of A, such that 

a.b(X) = b(a(X)) for any X, such that 8A ~ X and the inverse 

(a.b)l(Y) = a "1 (b'l(Y)) for any Y, such that 8B D Y. 

Again note that (a.b)'l(a.b(X)) ~X,  in general. 

We may now fomulate the relationship between the mapping constraints of a composite attribute 
and those of its component attributes as follows: 

3-2  I f a  is an attribute relating A objects toB objects and b is an attribute relating B 
objects to C objects, then 

1) a.bmin >-min(amin. brain, b, nin) 

2) a.bmax -< amax'bmax 

3) (a.b)4min >-min(b'lrain • a'lmin , a'lmin) 

4) (a.b)'lmax _< a'lmax • b'lmax. 

Regarding 1) and 3) above it is impossible to say anything stronger than this since e.g. in the 
case of 1), although there may be many elements in a(e) they might all be associated to the same 
C-object. 

3-2 is a meta constraint, restricting what constraints are possible to specify for a composite 
attribute given certain constraints for the components and vice versa. It should be perfectly 
clear, though, that 3-2 gives only limits. Only by knowing the application could the exact values 
be told. 

As an example consider again Figure 3 and suppose the mapping constraints for the attribute 
referees are (3:3,...). This means that each paper must be reviewed by exactly three referees. If 
nothing more is said they might all be employed at the same university. Given that affiliationmln 
= I they may never be employed at less than one university, though, since refereesrain (= 3) is 
greater than 0. 

However, it might very well be, that there is a rule saying that the referees of a paper must all be 
employed at different universities. This rule could now be taken into account by specifying the 
constraint, (3:3,...) for the composite attribute referees.affiliation. 

A specific use of composition is to create a direct reference from a key descriptor object to some 
other object type via one or more abstract object types, like e.g. paper_no'1.referees('123'). 
Suppose also that pape rno  is the key of PAPER, i.e. paper_noconar= (1:1,1:1). Then, since 
PAPER could be one-to-one replaced by PAPER_NO, obviously 
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(papernol.referees)constr = refereesconst,. 

Hence we have the following 

3- 3 Suppose al and a2 are two attributes of A, then 

if alconstr = (1:1,1:1) then (aj4.a2 )constr = a2constr. 

Finally, there may also be situations where the maximum constraint of a composite attribute 
may be zero. Considering Figure 3, suppose, just for the sake of example, that the authors of a 
paper, must not be affiliated to a university (also supposing, for a moment, that affiliationmin = 
affiliation'lmin = 0). Now, this constraint could be represented by specifying (authors.  
affiliationOconstr = (0:0,0:0). 

3.3 Aggregate Attributes 

Often there is a need to specify aggregates of attributes. This is, for example, the case when 
more than one attribute is needed to identify an object. Consider, e.g., the entity type PERSON 
of Figure 9. Here the attributes ofp_name and p_address in combination uniquely identify a 
person. This implies that, although there may be many persons having the same name and many 
persons having the same address, there must not be two persons having the same name and 
address combination. This, in turn, indicates that the mapping constraints for the < p n a m e ,  
p_address> aggregate are more restrictive than the constraints of the component attributes 
suggest. 

,_, _ ] 

¢O 

J p address ** 
p_name ~ -. ~/' 

~ o  ° • 

j ~  

Figure 9. Aggregation of attributes p_name and p_address 

To analyze this further we now proceed to define the notion of attribute aggregate. 

Definition 7 

If the entitytype A has the attributes al and a2 relating A to B1 and B2 resp (BI and 
B2 need not be disjoint) then <al ,  a2> is said to be an aggregate attribute relating objects 
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of type A to tuples of &91 x ~u92, such that, for any information base state, lBn ,  

<al , az>(e) = {<rl , r2> :<e , a] , r~> ~ IBn &<e  , az , r2> E IBnl  

and the inverse is 

<al  , a2>'J(<rl  , r2>) = { e : < e ,  al  , r]> ~ I B n & < e ,  a2,1"2> E IBn}. 

Like before we also say 

<al , a2>(X) = u <al , a2>(e) 
e E X  

and 

<al , a2>l (Z)  = u < a l  , a2>'l(<r] , r2>) 
<r 1 ,r2> ~ Z 

where 8A ~ X  and 5Bl  X 8B2 ~ Z .  

Once again note that < a l ,  a z>- l (<a l ,  a2>(X)) m X  in general. 

Returning to our discussion of Figure 9, definition 7 now implies that 
<p_name,p_address> -1 (<'Clark Kent',  "Metropolis'>) refers to the single-element set 
containing the PERSON-ent i ty  having this pkrticular p_name and p_address. 

However, definitions 7 and 2 also give us the following: 

3-4 If e is an entity of some type and a l  and a2 are attributes of that entity type then 

f f  a l (e  ) = O or a2 (e) = O then <ax, a2>(e) = 0 .  

We now proceed to formulate the mapping constraints of <al ,  a2> and <ai ,  a2> 4 as related to 
those of al  and a2. 

3- $ If a] and a2 are attributes relating A objects to BI objects and B2 objects respectively, 
then, for any information base state,/Bn,: 

1) <ai , a2>min >- aImin " a2min 

2) <al , a2>max ~ almax " a2max 

3) <a l ,  a2>']min ~ 0 

4) < a l , a 2 > ' l r,~x -< m i n( a f lmax , a 2 qrnax ) 

Again we have a consistency rule restricting what would be legal to specify for an attribute 
constructed by means of abstraction, given certain constraints for the components. Consider, 
again, the example of Figure 3 and suppose p_nameconstr = (1:1,1: * ) and paddressconstr  = 

(1:1,0 : *) (p_address'lmin = 0 since p_addres s  shares its codomain with u_address ). By 
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means of 3-5 we can now immediately conclude that 

a) <p_name,p address>mln = <p_name,p_address>max = 1 ; 

This is trivial. 

b) <p_name,p_address>'~ nan > 0 ; 

<p_name,p_address> "1 relates tuples of 5NAME x 8ADDRESS to objects of type 
PERSON.  However, there must, of course be lots of invalid p_name-p_address  
combinations, i.e. combinations for which there are no corresponding persons. Hence 
<p_name,p_address>-lnan = 0. This would have been the case even if p_address "lmln 
= 1. In fact, it is, most likely, the case for most aggregate attributes. It is probably only 
for quite degenerate cases one could think of a value greater than 0. 

c) <p_name,p_address>'l max -<*. 

It was, however, said earlier thatp_name andp_address together uniquely identify a 
person. The semantics of this is that <p_name,p_address>-lmax = 1. 

Thus we have found that for this example <p_name,p__address>conar = (1:1,0:1). 

Also the case of mutually exclusive attributes may be taken care of by means of constraining 
aggregate attributes. Supposing we live in a society where no one is allowed to have both a cat 
and a dog and supposing ownership of these'kinds of pets is represented by two (partial) 
attributes dog and cat, we could represent the mentioned rule by <cat, dog>constr = <0:0,0:0>. 

4 Mapping Entities to Relations 

In section 3 we have demonstrated the possibility to express important database constraints by 
means of constraining the mappings for abstracted attributes. In this section we want to point 
out how abstracted attributes may be utilized for defining mappings between the conceptual 
schema and the relational model [Codd70]. To make it possible to express other than binary 
relations, our results need to be generalized to include aggregation and composition of an arbi- 
trary number of attributes as well as nesting aggregation and composition. We will, however 
not deal explicitly with these questions here. 

Since the relational model only allows descriptors (values), the problem of transforming a 
conceptual schema to the relational model is one of replacing abstract objects with expressions 
involving only descriptor objects. 

As it turns out, aggregating the attributes of entities is a natural means for mapping our data 
model to the relational model. Attributes which do not relate to descriptor objects may by means 
of composition, be made to do so. 

As a first example, consider once again Figure 3. Here, the expression 

<ssn,p_name,p_address>(SPERSON) 
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would mean a set of<ssn,p_name,p_address> triples describing persons in the information 
base. It is, thus, a (ternary) relation containing only descriptors, i.e. the extension of a 
'relational model relation'. In the usual formalism of the relational model [Date86] this relation 
(intension) would be written PERSON(ssn,p_name,p_address). Hence, we can define our 
transformation by equating this with the aggregate attribute expression, i.e. 

PERSON(ssn,p_name,p_address) = <ssn,p_name,p_address>(~PERSON) 

Given that the attributes of the left side are identified with those on the right side in turn, a set of 
such equations define a mapping to the relational model. 

By taking 8PERSON as the argument of the aggregate attribute, we express that we want the 
aggregate attribute tuples for all persons. Attributes that are partial would, however, according 
to 3-4, result in the corresponding tuples being left out. Thus, we will always get relations 
without nuU-values. Suppose, for a moment, that p_address above is partial, i.e. p_addressmm 
=0. This means that our relation would contain only those persons who have addresses. To deal 
with partial attributes we have, therefore to employ a strategy where we always treat such att- 
ributes separately. Given that ssn and p_name are total, the relation<ssn,p_name> (SPERSON) 
would describe all persons in the database, whereas<ssn,p_address> (SPERSON) would list 
only those who have addresses. 

The expression 

<ssn,p_name>( ~AUTHOR) 

denotes a subset of <ssn,p_name>(8PERSON) describing all the authors. Hence, we have 
here a means for expressing specialized relations simply by giving an expression for the 
requested type as an argument to the aggregate attribute. 

The second subtype of PERSON would yield the relation 

<ssn'p-name'p-address'affiliati°n'uname'affiliati°n'uaddress>( 8REFEREE) 

where affiliation is made refer to descriptors by composing it with u_name. Note that we have 
here a relation containing all the attributes that REFEREE inherits from PERSON. 

The primary key of  these relations would be ssn, since it uniquely determines a PERSON- 
entity, which in turn uniquely determines a P_NAME and a P_ADDRESS. Hence we have a 
(indirect) functional dependency from ssn to p_name and p_address. <p_name,p_address> 
might be an alternate key. For the transformation of entities to tuples to be one-to-one, each 
entity type must have a unique key, otherwise there could be identical tuples for certain entities. 
These duplicate tuples would then be 'collapsed' to a single tuple, due to the set property of 
relations. 

Given, now, that p_address is total, the mapping constraint of our relation is <ssn,p_name, 
p_address>constr = (1:1,0:1), since each entity of type PERSON corresponds to exactly one 
triple and since there obviously are triples in 8SSN x ~P_NAME x 8ADDRESS that do not 
correspond to any person, whereas each triple corresponds to at most one person. However, by 
taking <ssn,p_name,paddress>(8PERSON) we select exactly those triples corresponding to 
existing persons. 
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Since, in these examples, all attributes are directly and fully functionally dependent on the entity 
key, the mentioned relations are all fourth normal form. This is not always the case, though, 
since for instance some attributes of an entity type may be multivalued. An example of this is 
the entity type PAPER, where the attributes authors and referees are multivalued and, hence, 
should each be taken separately together with the key to yield 4NF relations, i.e. 

<paper_.no,authors>(SPAPER) and <paper_no,referees>(SPAPER). 

We have in these examples considered only transformation to relations in the classical relational 
model sense. It seems, however, reasonable that similar mechanisms may also be used for 
transforming conceptual schemata according to our modeling approach to other data models, 
such as non fin'st normalform relations [Makinou77], the network model or the hierarchical 
model. 

5 Concluding Remarks 

In this paper we have considered abstractions, specifically on attributes. Using a formalism 
based on elementary, three-place, assertions we build a theory in which important properties of 
abstracted attributes are derived. In particular, we consider the propagation of mapping con- 
straints under attribute abstraction. 

Attributes may be abstracted by 

generalizing one or more attributes to form a generic attribute subsuming the former 
attribute(s). More specifically, this means that the extension of the generic attribute is a 
superset of the extension of the subordinate attribute(s). This entails, for the simplest 
case that the mapping constraints of the generic attribute must be greater than those of 
the specific attributes. 

composition of two or more attributes to form a 'chain' attribute directly relating some 
object set to objects to which it is, originally, only indirectly related. It is shown that the 
mapping constraints of a composite attribute is not always the product of those of its 
components. Composite attribute mappings may also be used to express important 
constraints that do not follow directly from the mapping constraints of the component 
attributes. An important use of composite attributes is to make abstract objects referable 
by descriptors. 

aggregating several attributes defined over the same entity type. This is needed e.g. 
when defining keys for attributes that do not have a single attribute key. Moreover, 
mapping constraints for aggregate attributes may be used to express other important 
constraints, i.e. where the mapping constraints of the aggregate attribute is more 
restrictive than the constraints of the component attributes suggest. This is useful, for 
example, in the case where an aggregate attribute is a candidate key for some entity 
type. 
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It should be noted that composite and aggregate attributes are always derivable, i.e. the way 
they are defined, uniquely determine their extensions. Generalized attributes, on the other hand, 
are not derivable. Generalization over attributes should, instead, simply be considered a 
constraint demanding certain attribute extensions to be subsets of others. 

In section 4 we have indicated the way in which abstractions may be used to define 'relational 
model relations' for abstract objects. 

Acknowledgements 

The author is grateful to Janis Bubenko and Paul Johannesson for carefully reading and 
commenting on an earlier version this paper. Thanks also to Moira Norrie for giving valuable 
suggestions both regarding the contents and the language. Thanks also to Erik Knudsen who 
read and commented an early draft of the paper. 

ANSI75 

Bracchi84. 

Brachma83 

Brachma85 

Brodie84a. 

Brodie84b. 

Bubenko84 

CardeUi85 

REFERENCES 

ANS!/X3/SPARC, "Study Group on Data Base Management Systems: Interim 
Report 75-02-08", in ACM SIGMOD Newsletter, FDT, Vol. 7, No. 2, 1975. 

G. Bracchi and B. Pernici, "SOS: A conceptual model for office information 
systems," Proceedings of ACM SIGMOD Database Week Conference, pp. 108- 
116, San Jose, Calif., May 1984. 

R.J. Brachman, R.E. Fikes and H.J. Levesque, " Krypton: A Functional 
Approach to Knowledge Representation" in IEEE Computer, pp 67-73, October 
1983. 

R.J. Brachman and J.G. Schmolze, " An overview of the KL-ONE Knowledge 
Representation System", Cognitive Science, Vol.9, No. 2, April-June, 1985. 

M.L. Brodie, J. Mylopoulos, J.W. Schmidt (Eds.), "On Conceptual Modelling - 
Perspectives from Artificial Intelligence, Databases and Programming 
Languages", Springer Verlag, New York, 1984. 

M.L. Brodie, "On the Development of Data Models", in "On Conceptual 
Modelling - Perspectives from Artificial Intelligence, Databases and Programming 
Languages", pp 19-47, Springer Verlag, New York, 1984. 

J. Bubenko and E. Lindencrona, Konceptuell Modellering, Informations-analys, 
Studentlitteratur, Lund, Sweden, 1984. (In Swedish) 

L. Cardelli, P. Wegner, "On Understanding Types, Data Abstraction, and 
Polymorphism", in ACM Computing Surveys, Vol. 17, No. 4, pp.-471-522, 
December 1985. 

Chen76. P.P.S. Chela, "The Entity-relationship Model - Towards a Unified View of Data," 



437 

Codd70 

Dam86 

Hul187a. 

HuU87b. 

ISO82. 

Lindenc83 

ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976. 

E.F. Codd, "A Relational Model of Data for Large Shared Data Banks.", CACM 
13, No.6 (June 1970). Republished in Milestones of  Research - Selected Papers 
1958-1982: CACM 25th Aniversary Issue, CACM 26, No. 1, January 1983. 

C.J. Date, "An Introduction to Database Systems, Volume I", Fourth Edition, 
Addison-Wesley Systems Programming Series, Addison-Wesley Publishing 
Company, 1986. 

R. Hull, " A Survey of Theoretical Research on Typed Complex Database 
Objects", in Databases, J Paredaens (Ed), Academic Press, London, 1987. 

R. Hull and R. King, "Semantic Database Modeling: Survey, Applications and 
Research Issues", ACM Computing Surveys, vol 19, no 3, pp 201-260, 1987. 

ISO, "Concepts and Terminology for the Conceptual Schema and the Information 
Base," Report N695, ISO/TC9/SC5AVG3, 1982. Eds J.J. van Griethuysen 

E. Lindencrona-Ohlin, J.A. Bubenko jr, "Towards a Formal Syntax for a Data 
Modeling Language - DMOL", SYSLAB Working Paper no. 63 version 2, 
Department for Information Processing and Computer Science, University of 
Stockholm, S-106 91 Stockholm, December 1983. 

Lyngbaek84 P. Lyngbaek, D. McLeod, "Object Management in Distributed Information 
Systems", in ACM Transactions on Office Information Systems, Vol. 2, No. 2, 
pp. 96-122, April 1984. 

Makinou77 

OUe82. 

Pigman84. 

Schie184 

Sowa84 

Wang189 

A. Makinouchi, "A Consideration on Normal Form of Not-Necessarily- 
Normalized Relations in the Relational Data Model", in Proceedings of the 
Conference on Very Large Data Bases (Tokyo, 1977), pp. 48-69, 1977. 

T W OUe, H G Sol, and A A Verrijn-Stuart (Editors), Information System Design 
Methodologies: a Comparative Review, North Holland, Amsterdam, 1982. 

V. Pigman, "Krypton: Description of an Implemantation, Volume I", Artificial 
Laboratory, Sehlumberger Palo Alto Research, Report no 40, Palo Alto, 
November 1984. 

U. Schiel, A.L. Furtado, E.J. Neuhold, M.A. Casanova, "Towards Multi-level 
and Modular Conceptual Schema Specifications", in Information Systems, Vol. 9, 
No. 1, pp. 43-57, 1984. 

J.F. Sowa, "Conceptual Structures - Information Processing in Mind and 
Machine", Addison-Wesley, 1984. 

B. Wangler, "On the Use of Abstractions in Database Modeling: Propagation of 
Mapping Constraints under Attribute Abstraction", SYSLAB Report No. 61, 
Depadment for Computer and Systems Sciences, Stockholm University, January 
1989. 



438 

Appendix 

In this appendix we present the most important propositions of our paper together with proofs. 

Generalized Attributes 

3-1 If the attribute ag, relating entities of type Eg to objects of type Re, is a generalization of 
the attribute as, relating entities of type Es to entities of type Rs, then 

1) agmin >- asmin , provided Eg = Es 

2) agmax ~ asmax 

3) ag'lmin ~ as'lmi~, provided Rg = Rs 

4) ag'lmax >_ as'lmax. 

Proof: 3-1 follows immediately from definitions 4 and 5 and the fact that 

as(e) ~ as(e) impliesthat/ag(e)/ >_ ~as(e)~ andthefactthat 

ag'l(e) ~ asl(e) implies that /ag-l(e) / >_/as-l(e)/. 

Composite Attributes 

In order to arrive at how the mapping constraints of a.b relate to those of a and b (3-2), we 
first give the following: 

3-2a I fa  is an attribute relating objects of type A to objects of type B and 

6A ~ X ;~ ~ ,  then 

anan -~ /a(X)/ _~ /X[ . am,=. 

Proof: 

1) We first prove the left part: 

amin ~_/a(X)/follows immediately from the definition of a(X) and the fact thatX is a 
non-empty subset of 8,4 (otherwise/a(X)/= 0 by (2-1), regardless of am/n). 

2) For the right part we have from definition 3 
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/a(X)/ =/~a(e)/_<Z,/a(e)/5 S;/X/ . am~ 
eEX e ~ X  

If a is an attribute relating A objects to B objects and b is an attribute relating B 
objects to C objects, then 

1) a.bmin ~ min(amin" brain, brain) 

2) a.bmax ~- amax'brnax 

3) (a.b)'lmin ~ min(b'lmin • a'lmin , a'lmln) 

4) (a.b)'lmox <_ a'lmax • b'l,nax. 

Proof: 

We prove the formulas one at a time. 

1) If amin = 0 formula 1) simply says that a.bmin ~ O, which is trivial (in fact it is, of  
course = 0, for this case). If  amin > 0 it says that a.bmin >- brain, which holds 
according to the following: 

Suppose e e 8A. Then according to 3-2a and the fact that amin > 0 (i.e. a(e) ~ 0 ): 

/a.b(e)/ = /b(a(e))/ >_ b,,~; 

2) Suppose e ~ 6A. Then according to definition 6 and 3-2a 

/a.b(e)/= /b(a(e))/ ~ /a(e)/'bmax ~ am~'bmax 

3-4) are proved accordingly. 

Aggregate Attributes 

We now proceed to formulate the mapping constraints of <a l ,  a2> and <a l ,  a2> -1 as related to 
those of  al  and a2. For the proof we need, however, the following: 

3-5a Suppose P(x) and Q(x) are two predicates. Then 

/{<x,y> :P(x)&Q(y)}/ = /[x:P(x)}/ . /[x:Q(x)}/. 
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P ( x ) & Q ( y )  holds for each tuple <x,y>, where x e {x:P(x)}  and y e {x:Q(x)} .  

Hence/[<x,y>:e(x)&Q(y))/=/{x:e(x))/./{x:Q(x))/. 

I f  a l  and a2 are attributes relating A objects to B1 objects and B2 objects respectively, 
then, for any information base state, IBn,:  

1) < a l  , a2>min ~ almin " a2min 

2) <al  , a2>max-<'almax • a2max 

3) <a I , a2>'lmln > 0 

4) <a l ,  a2>-t,,~ -<min(art,na.~, a2"t,,w.O 

PrQof~ 

We first prove 1) and 2). From definition 7 and 3-5afoUows 

/ <al  , a2 >( e )/=/ { <rt  , r2 > : <e , a t ,  rt  > e IBn  & <e , a2 , r2> ~ IB n] / = 

/ {r t  :<e , a t ,  r l>  ~ IBn} /  . /{r2:<e , a2 , r2> e IBn} /  = 

~at(e)~./a2(e)/ 

Now, I) and 2) follows from definition 4. 

3) is trivial. See discussion following this proof. 

For 4) we have from definitions 6 and 2 

~<at, a2>l(<rt  , r2>)/ = 

/ { e : < e ,  al  , r l>  ~ 1 B n & < e ,  a2 ,  r2> e IBn}/= 

/{e: <e , al  , r t>  ~ IBn}  n e :  <e , a2 , !"2> e IBn} /  

min( /{e:<e , a l  , r l>  E IBn} / , / {e :<e , a2 , r2> E IBn}/ )  6 = 

min( /  a l -t (r l )/,/ a2"l ( r2 )/ ) -<min( a l-l,,~,ae-l,,,ax) . 

6/t, c~ Q/ -<min (IPIJQI)) 


