Time and Message Efficient Reliable
Broadcasts

Tushar Chandra*
Sam Toueg*

TR 90-1094
May 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Supported by NSF Grant No. CCR-8901780.

Time and Message Efficient Reliable Broadcasts

Tushar Chandra* Sam Toueg*
Department of Computer Science
Upson Hall, Cornell University
Ithaca, New York 14853

e-mail(chandra@cs.cornell.edu, sam@cs.cornell.edu)

May 15, 1990

1 Introduction

Reliable Broadcast is a fundamental problem of fault-tolerant distributed computing.
Informally, Reliable Broadcast requires that, despite failures, every message broadcast
is consistently received by all the correct processes in the system. The following formu-
lation of Reliable Broadcast, called Byzantine Agreement, has been extensively studied
[PSL80,LSP82]. A process, the general, broadcasts a message m and all the processes
attempt to reach agreement on the message broadcast. An algorithm solves Byzantine

Agreement if it satisfies the following requirements’:
Validity: If the general is correct, all correct processes agree on m.
Agreement: All correct processes that decide must decide on the same value.

Eventual Decision: All correct processes eventually decide.

*Supported by NSF grant number CCR-8901780

1Note that Byzantine Agreement does not impose any restriction on the decision of faulty processes.
In Section 9 we consider the Uniform Agreement problem which restricts the decision of faulty processes

to be consistent with that of correct processes [Nei88,GT89].

Early solutions to the Byzantine Agreement problem were expensive in both time
and message complexity. With these solutions, broadcasts complete in time propor-
tional to ¢, where t is an a priori upper bound on the number of processes that could
be faulty. To speed up broacasts, the concept of early-stopping was introduced by
[DRS82]. Dolev et al.’s early-stopping algorithms ensure that broadcasts complete in
time proportional to f, the number of processes that actually fail during execution.

However, known early-stopping algorithms are still expensive in terms of the num-
ber of messages they require [DR83,Had83,Per85,PT84,PT86,Ezh87]. For example,
[PT86] describes an early-stopping algorithm for general-omission failures that stops
by round f+2 but requires O(fn?) messages (where n is the total number of processes).
Other researchers have concentrated on minimizing the number of messages exchanged
[Web89,DS83,Bra82]. Such solutions have a poor time complexity. For example, the
algorithm in [Bra82] tolerates upto ¢ crash failures with only O(n + t/t) messages, but
it requires O(t) rounds.

In this paper, we consider crash, send-omission, and general-omission failures. For
these models, we describe Reliable Broadcast algorithms that are efficient both in time
and message complexity: broadcasts complete in O(f) rounds using O(fn) messages.
With these algorithms, each additional process that fails can increase the cost of a
broadcast by at most O(n) messages and a constant number of rounds. In the case of
general-omission failures, this is close to the lower bounds of O(f) rounds and O(ft)

messages per broadcast.

2 Model and Definitions

We assume a system of n processes that can communicate through reliable links in a
fully connected point-to-point network. Processes have unique ids in the range [1,n]
which are known a priori to all processes. The algorithm executes in synchronous
rounds. Informally, a round is an interval of time where processes first send messages
(according to their states), wait to receive messages sent by other processes in the same
round, and then change their states accordingly. We consider the foﬁovﬁng types of

process failures:

Crash failures: A faulty process fails by halting prematurely. Until it halts, it behaves

correctly?.

Send-omission failures: A faulty process may fail not only by crashing, but also by

omitting to send some of the messages that it should send.

General-omission failures: A faulty process may fail by halting or by omitting to

send or receive messages.

We define the notions of decision, quiescence and termination (in the context of agree-
ment algorithms) as follows. A set of processes has decided by time t if all the members
of this set have decided (irrevocably) by time t. A set of processes is said to be quies-
cent at time t if none of its members sends a message after time 3. A set of processes
has terminated the execution of an algorithm by time ¢ if all its members have halted

or crashed by time t.

3 Outline of Algorithms

The algorithms in this paper use the rotating coordinator paradigm [CM84,Rei82]. A
subset of t+1 processes cyclically become coordinators for a constant number of rounds
each. The general is the first coordinator and its i«d is 1. When a process becomes a
coordinator, it determines a “consistent” decision value and tries to impose it on the
remaining processes. Our algorithms ensure that when a correct process becomes the
coordinator, it will succeed in enforcing agreement. Since at most f coordinators can
be faulty during an execution of the algorithm, agreement is achieved in O(f) rounds.
Moreover, in each round, most of the messages are to or from the coordinator; thus
the number of messages sent is O(n) per round, and agreement is reached with O(fn)
messages.

Each process p maintains a variable estimate, that represents p’s current estimate

of the final decision value. Processes can be in one of two states: undecided or decided.

[!
2If a process p crashes in round r then any subset of events on p in round r could fail to occur. It is

possible to weaken this assumption and derive better algorithms.
3Usually quiescence includes channel quiescence as well. In a round based system, channel quiescence

is achieved at most one round after process quiescence.

A process p decides v when it sets decision, « v and state, « decided. Our algorithms
ensure that if a correct process p decides v (for some v), then all correct processes

eventually decide v.

4 Reliable Broadcast for Crash Failures

Algorithm 1la tolerates crash failures. Each coordinator becomes “active” for three
rounds. In the first round undecided processes send a request for “help” to the current
coordinator ¢ (An undecided coordinator “sends” a request to itself). If the current
coordinator ¢ does not receive any request, it skips rounds 2 and 3. If ¢ receives a
request, it broadcasts estimate, in round 2, and decide in round 3. Note that due
to the crash failure assumption, if ¢ begins to broadcast decide, then it must have
successfully sent estimate, to all. Thus, decide is sent only if all processes receive
estimate.: all future coordinators are guaranteed to have the same message estimate,
and will eventually force all processes to decide on it. The proof of correctness of
algorithm 1la is as follows.

Let T be the round in which the first decide message is received by any process.
Let p be the coordinator that sent this decide, and let estimate, be the message p
broadcast in round 7' — 1. We will show that all correct processes eventually decide

estimatep.

Lemma 1.1: At round T — 1, all processes ¢ which did not crash received estimate,
and set estimate, «— estimate,.

Proof: Since p sent decide in round T, it did not crash in round T'— 1. Since p
can only fail by crashing it must have sent estimate, to all processes in round T' — 1.
Thus all processes ¢ which did not crash by round T — 1 receive estimate, and set

estimate, «— estimate,.]

Lemma 1.2: If c is a coordinator after p, and c sends estimate,, then estimate, =
estimatep. \

Proof: The proof follows from the previous lemma and an easy inductioh argument.ll

Lemma 1.3: If coordinator c is correct, all processes which have not crashed decide
by the end of round 3c.

{Initialization}

m if p is the general (m is general’s value)
1 Otherwise

state, «— undecided

{End Initialisation}

estimate, —

Forc+1,2,...,t+1do
{ Processor ¢ becomes the coordinator for three rounds}
Round 1: All undecided processes p send request to c

if ¢ does not receive any requests then it skips rounds 2 and 3
Round 2: ¢ broadcasts estimate,

All undecided processes p that receive estimate. set estimate, «— estimate,
Round 3: ¢ broadcasts decide

All undecided processes p that receive a decide do

decision, «— estimate,

state, «— decided
od

Algorithm 1a: Reliable broadcast with crash failures

Proof: Suppose there is at least one undecided process g which has not crashed by the
end of round 3¢ — 2. By the algorithm, ¢ sends a request to c in round 3c — 2. As there
are only crash failures, c receives this request. In round 3c — 1, ¢ broadcasts estimate,
which is received by all correct processes. Thus, in round 3¢, all the undecided processes

which have not crashed receive decide from c. |

Theorem 1: Algorithm 1la solves Byzantine Agreement in the presence of crash fail-
ures. The correct processes decide and become quiescent by round 3f + 3 using O(fn)
messages.
Proof: It is easy to show that if the general is correct then all correct processes decide
on the general’s value in round 3. Hence the algorithm satisfies the validity condition.
The agreement condition directly follows from Lemma 1.2. From the definition of f, one
of the first f + 1 coordinators is correct. Consequently from Lemma 1.3, all processes
which have not crashed by the end of round 3 f + 3 decide by that round. Thus eventual
decision is achieved by round 3f + 3, and the algorithm solves Byzantine Agreement.
By Lemma 1.3, by the end of round 3f + 3, all processes have either decided or
crashed. Since only undecided processes send requests to coordinators, and coordi-
nators send messages only if they receive such requests, the whole system becomes
quiescent by round 3f + 3. |
Note that the processes do not terminate the execution of the algorithm by round
3f + 3: the t + 1** coordinator must wait for potential requests until round 3¢ + 14.
We can easily improve the time complexity of Algorithm la by merging rounds 1
and 2. In round 1, any process which has not decided sends the coordinator a request.
Furthermore, if the coordinator ¢ has not decided, it broadcasts estimate, (note that if
c is decided at this point, then all surviving processes must have the same estimate as
¢). In round 2, ¢ sends decide if it received a request in round 1. With this modification,
the correct processes decide and become quiescent by round 2f + 2.
Further improvements are possible using pipelini;lg. So far we only allowed a single
coordinator to be active at a time. We can speed up the algorithm by pipelining its
execution so that coordinator i + 1 starts only one round after coordinator ¢ (while :

is still active). Thus coordinator c starts in round c. The resulting algorithm achieves

4However the algorithm can be modified to achieve early-termination at the cost of additional mes-

sages. See Section 8.

decision in f + 2 rounds. See the Appendix for details.

5 Real-Time Reliable Broadcast for Crash Failures

Algorithm 1a relies on the following assumptions:
1. Execution proceeds in synchronous rounds.

2. All processes know a priori which process initiated a broadcast and in which

round.
3. The identities and the order of all the coordinators is common knowledge.

These assumptions preclude the use of Algorithm 1a in a real-time environment where
any process can initiate a broadcast at any time, and where dynamic failures prevent
the use of a static agreement on the coordinators. We can overcome these limitations

as follows:

e We replace Assumption 1 with the assumption that processes have synchronized

clocks®, and that communication delay is bounded by a constant é.

e We remove Assumption 2. Any process can initiate a broadcast at any time.
However, since there is no a priori knowledge of who broadcasts and when, correct
processes may never become aware of a broadcast initiated by a process that

crashes. Therefore, we must replace the eventual decision condition with:
Uniform Decision: If any correct process decides, all correct processes decide.

The resulting specification allows the correct processes to completely ignore a
broadcast initiated by a faulty process. Similar specifications have been studied
in [CASD82,GT89,CM84,5SGS84].

5This is to simplify the presentation of the algorithm. However, approximately synchronized clocks

. []
are sufficient. ‘

e We also remove Assumption 3. The initiator of a broadcast decides on a list of
future coordinators, and includes this list in its initial broadcast®. This list is

also piggybacked on subsequent messages related to this broadcast.

See Algorithm 1b.

6 Reliable Broadcast for Send-Omission Failures

Algorithms 1la and 1b do not tolerate send-omission failures. For example a faulty
coordinator ¢ could first omit to send estimate, to the next coordinator, and then send
decide to one correct process p. Thus p decides on estimate, while the next coordinator,
unaware of this estimate, can make undecided processes decide on L. This leads to
disagreement. To correct this problem, we add an extra round in which processes that
did not receive estimate, send a NACK to c¢. If ¢ receives any NACK, it does not
broadcast decide.

However, even with this modification, disagreement is possible. For example, a
faulty coordinator ¢ omits to send estimate, to a faulty process ¢’ which fails to send
a NACK to c. ¢ does not receive any NACKs and thus proceeds to send some decides.
Then ¢ becomes the new coordinator without having received estimate.. At this
point it is possible that some correct process decided on estimate, while other correct
processes are still undecided and rely on ¢ for a decision value.

To solve this problem, a request message from an undecided process p now includes
estimate, with an associated coordinator id. This is the id of the coordinator that
sent this estimate to p. An undecided coordinator c considers all the requests that it
receives, and sets estimate, to the estimate with the largest associated coordinator id.
See algorithm 2.

Let T be the round in which the first decide is received by any process. Let p be
the coordinator that sent this decide and let estimate, be the message p broadcast in

round T — 2. We will show that all correct processes eventually decide estimate,.

6Note that the initiator of a broadcast can decide the resiliency of that broadcast: the length of the

list determines the maximum number of coordinators crashes that can be tolerated.

{Initialization}

. . (m, list of t processes) if p is the general
(estimatey, coord-list,) «— { (L.1) Otherwise
state, « undecided

{ End Initialisation}

If p is the general then
Broadcast (estimate,, coord-list,, 0)
Broadcast decide

cobegin
O Upon the first receipt of an estimate by process p do {Say estimate came from c}
(estimatep, coord-list,, coord-indes,) — (estimate,, coord-list,, coord-index,)
start-time, «— local-time
repeat at intervals of 36 starting from start-time, + 26
if state, = decided then exit repeat
else
coord-indez, — coord-indez, + 1
send (request, estimate,, coord-list,, coord-indez,) to coord-list,[coord-index,)
forever
O Upon the first receipt of a decide do
dectsion, «— estimate,
state, «— decided
O Upon the first receipt of a request do {Say request came from ¢}
(estimate,, coord-list,, coord-indez,) — (estimateg, coord-listy, coord-indez,)
Broadcast (estimate,, coord-list,, coord-index,)
Broadcast decide
coend

Algorithm 1b: Real time version of Algorithm la

T

{ Initialization}

. : (m,0) if p is the general (m is general’s value)
(estimatey, coord-id,) — { (L,—1) Otherwise
state, «— undecided

{End Initialisation}

For c—1,2,...,t+1do
{ Processor c becomes the coordinator for four rounds}
Round 1: All undecided processes p send (request, estimate,, coord-id,) to ¢
if ¢ does not receive any request then it skips rounds 2 to 4
else
estimate, — estimate, with largest coord-id,
Round 2: c broadcasts (estimate,, c)
All undecided processes p that receive (estimate,, c) do
(estimatep, coord-id,) — (estimate,, c)
Round 3: All undecided processes p that did not receive estimate. in round 2
send NACK to ¢
Round 4: If ¢ does not receive a NACK then ¢ broadcasts decide
else ¢ HALTS { The coordinator detects its own failure}
All undecided processes p that receive decide do
decision, «— estimate,
state, «— decided

od

Algorithm 2: Reliable broadcast with send-omission failures

10

Lemma 2.1: By the end of round T — 2, all correct processes ¢ receive estimate, and
set estimate, «— estimate,,.

Proof: Suppose, for contradiction, some correct process ¢ does not receive estimate,
by the end of round T — 2. By the definition of T', ¢ must be undecided in round 7" —1.
Thus ¢q sends a NACK to p in round T — 1. Since g is correct, and only send-omission
failures can occur, p receives this NACK and does not send decide in round T - a

contradiction. |

Lemma 2.2: Suppose a correct process q sets (estimate,, coord-idy) in “round 2” of
the algorithm to some value (v,r). Then, until ¢ decides, all the coordinators can only
send v as their estimate.

Proof: The proof is by induction. Its is clear that coordinator r can only send
v as its estimate. Suppose that when ¢ becomes coordinator, ¢ is still undecided.
By the induction hypothesis, coordinators from r to ¢ — 1 can only send v as their
estimate value. We now show that coordinator ¢ can only send v as its estimate.
Since coordinators r through ¢ — 1 can only send v as their estimate, any estimate
associated with a coordinator id € [r,c—1] must also have value v. When ¢ becomes the
coordinator, all undecided processes p (including ¢) send (request, estimatep, coord-id,)
to c. The induction hypothesis implies that if coord-id, > r then estimate, = v. Since

coord-idy > r, ¢ will set estimate, — v. |

Lemma 2.3: If coordinator c is correct, all correct processes decide by the end of

round 4c.
Proof: Similar to Lemma 1.3. |

Lemma 2.4: All correct processes which decide must decide on the same value.
Proof: From Lemma 2.1, at the end of round T — 2 all correct processes get the same
estimate say v. From Lemma 2.2, it follows that any correct process that decides can

only decide v. |

Theorem 2: Algorithm 2 solves Byzantine Agreement in the presence of send-omission
failures. The correct processes decide by round 4 f + 4 using O(fn) messages.

Proof: It is easy to show that if the general is correct then all correct processes decide
on the general’s value in round 4. Hence the algorithm satisfies the validity condition.

The agreement condition directly follows from Lemma 2.4. From the definition of f,

11

one of the first f+1 coordinators is correct. Consequently from Lemma 2.3, all correct
processes decide by round 4f + 4. Thus eventual decision is achieved by round 4f 4 4,

and the algorithm solves Byzantine Agreement. |

7 Reliable Broadcast for General-Omission Failures

Algorithm 2 tolerates any number of send-omission failures (i.e., for any ¢t < n). To
tolerate general-omission failures we used a “translation” technique from [NT90] which
requires n > 2t. Thus, the resulting algorithm tolerates upto |(n — 1)/2] general-
omission failures. Informally, running algorithm 2 in a system with general-omission

failures does not work for the following three reasons:

1. A faulty coordinator could fail to receive a NACK, and thereby send a decide
when it should not. This problem is remedied by the translation mechanism:

essentially the NACK mechanism is replaced with n — ¢ positive ACKs.

2. A faulty coordinator that is activated by a (request, estimate,, coord-id,) may fail
to receive a (request, estimate,, coord-id,) with coord-id, < coord-id,, where ¢ is
a correct process. To solve this problem, an activated coordinator ¢ broadcasts a
probe asking all processes p to send (estimate,, coord-id,). The coordinator must

receive at least n — t responses before it updates estimate. and broadcasts it.

3. A faulty process may continuously fail to receive decide messages and thus succes-
sively send requests to all coordinators, thereby activating all of them. This re-
sults in too many messages. To overcome this problem, we introduce a technique
that prevents a faulty process from activating more than one correct coordinator.
So at most 2f + 1 coordinators will be activated, resulting in O(fn) messages.
The technique works as follows. An activated coordinator c selects one of the
processes which woke it up, called the requester. Any process p that decides,
relays its decision value to the requester. If later p becomes a coordinator, it

ignores any request from this requester. .

With Algorithm 3 a single coordinator executes every 7 rounds. This can be improved

by pipelining (see the Appendix for details).

12

{ Initialization}
(estimatey, coord-id,) — {

state, — undecided
finishedset, «— ®
{ End Initialisation}

(m,0) if p is the general (m is general’s value)
(1,—1) Otherwise

Forc—1,2,...,t+1do
{ Processor ¢ becomes the coordinator for seven rounds}
Round 1: All undecided processes p send request to c
Let Q. = {q | c received a request from g A ¢ ¢ finishedset.}
If Q. = ® then c skips rounds 2 to 7
else requester «— an element of Q.
Round 2: ¢ broadcasts probe
Round 3: All processes p that receive a probe send (answer, estimate,, coord-id,) to c
Round 4: If ¢ receives > n — t answers then
estimate, «— estimate, with largest coord-id,
¢ broadcasts (estimate,, c)
else ¢ HALTS {The coordinator detects its own failure}
All undecided processes p that receive (estimate,, c) do
(estimate,, coord-id,) «— (estimate,, c)
Round 5: All processes p that received (estimate,,c) send an ACK to c
Round 6: If ¢ receives > n —t ACKs then ¢ broadcasts (decide, requester)
else ¢ HALTS { The coordinator detects its own failure}
All undecided processes p which received estimate, and decide do
decision, — estimate,
state, «— decided
Round 7: All processes p that received estimate. and decide do
Add requester to finishedset,
send (decz'de estimate,) to requester
If requester is undecided and it receives (decide, estzmatep) for some p
dectsion equester — €Stimate,
staterequester — dectded

o d “ ’ .

Algorithm 3: Reliable broadcast with general-omission failures

13

If Q. # ®, we say that coordinator c is active. Let T be the round in which the
first decide is received by any process. Let p be the coordinator that sent this decide
and let estimate, be the message p broadcast in round T' — 2. We will show that all

correct processes eventually decide estimate,,.

Lemma 3.1: By the end of round T — 2, at least n — ¢ processes ¢ receive estimate,
and set estimate, «— estimate,.
Proof: For p to broadcast decide in round k, it must receive n —t ACKs in round k—1

thus at least n — t processes receive estimate, and set estimate, «— estimate,. i

Lemma 3.2: If t + 1 processes receive estimate, from coordinator ¢, all future coordi-
nators which send out their estimate, send out estimate..

Proof: The proof, is by induction and is similar to Lemma 2.2. Assume that all co-
ordinators € [c,c — 1] that send out their estimate, send out estimate.. Thus all we
have to show is that if ¢ broadcasts estimate. then it previously received an answer
from some process p for which coord-id, > c¢. From the algorithm it is clear that if ¢/
broadcasts estimate. then it must have received answers from at least n —t processes.
Hence it must have received an answer from one of the ¢t + 1 processes which received

estimate, from c. For any such process g, coord-id; > c. |

Lemma 3.3: If coordinator c is correct, all correct processes decide by the end of
round 7c¢ — 1.
Proof: Similar to Lemma 2.3. |

Lemma 3.4: All processes which decide, decide on the same value.
Proof: From Lemma 3.1, 3.2 and the fact that n — ¢ > ¢ + 1. |

Lemma 3.5: At most f + 1 correct coordinators become active.
Proof: When the first correct coordinator becomes active, all correct processes decide
and will never be requesters in the future. So only faulty processes can activate
additional correct coordinators. |

We now show that a faulty process can activate at most one correct coordinator.
Suppose r is faulty and activates a correct coordinator c (r is the requester ¢ chooses).

¢ will ensure that all correct processes include r in their finishedsets. Thus r cannot

14

activate any future correct coordinator. |

Theorem 3: Algorithm 3 solves Byzantine Agreement in the presence of general-
omission failures. The correct processes decide by round 7f + 6 using O(fn) messages.
Proof: It is easy to show that if the general is correct then all correct processes decide
on the general’s value in round 6. Hence the algorithm satisfies the validity condition.
The agreement condition directly follows from Lemma 3.4. From the definition of f,
one of the first f +1 coordinators is correct. Consequently from Lemma 3.3, all correct
processes decide by round 7f + 6.

It is easy to see that when the current coordinator is correct but not active, correct
processes do not send any messages. Let ccorrect be the number of correct processes
which become active coordinators and cf4yuiy be the number of faulty coordinators.
From Lemma 3.5, ccorrect < f+1. The number of messages sent by correct coordinators
is bound by:

CeorrectO(n) < O(fn) messages

The number of messages sent by the n — f correct processes while they are not coor-

dinators is bound by:

(n - f) * (ccorrect + Cfaulty) * 0(1) < O(fn) messages

Thus the total number of messages sent by correct processes is bound by O(fn). Hence
algorithm 3 solves Byzantine Agreement using O(fn) messages. |

Note that the total number of messages sent by the f faulty processes is also O(fn).

Theorem 4: Any algorithm which solves the Byzantine Agreement problem with
general-omission failures requires O(ft) messages in the worst case.

Proof: A minor extention of a proof in [DR83]".

8 Termination at a Cost

Even though Algoﬁthms 1la, 1b, 2 and 3 achieve decision in O(f) rduﬂds, processes
can take O(t) rounds to halt. However, all these algorithms can be modified so that

"The result in [DR83] shows that any algorithm which solves the Byzantine Agreement problem with

general-omission failures requires O(t%) messages in the worst case.

15

{ Initialization}

kp — 1

{End Initialisation}

The current coordinator ¢ executes the following [log, n| rounds:

For i — 4 to [log,n] + 3 do

Round i: ¢ sends stop to processes with id € [k./2, k]
ke — kc/2
All processes p receiving stop halt

od

Algorithm 4: Achieving early-termination for crash failures

some (or all) processes halt as soon as they decide, at the cost of n messages for every
process that halts early. In particular, all processes can halt in O(f) rounds at the cost
O(n?) messages. To do so, any deciding process broadcasts the decision to all processes
and then halts®.

For crash and send-omission failures, we can refine this idea to achieve termination
in O(f + logt) rounds with O((f + log t)n) messages. For crash failures, this is done
by first appending Algorithm 4 to Algorithm la, and then pipelining the execution (as
shown in the Appendix) so that O(log t) coordinators run simultaneously. A similar
modification applied to Algorithm 2, appending Algorithm 5 and pipelining, achieves

the same result for send-omission failures.

9 Uniform Agreement

Byzantine Agreement does not impose any restriction on the behaviour of faulty pro-
cesses. However, for “benign” failures such as omission failures (whefe processes do not
change state arbitrarily or lie), we can require that the state of faulty processes satisfy
some requirements. Uniform Agreement is the Byzantine Agreement problem with the

additional requirement that all processes that reach a decision, including the faulty

8For crash and send-omission failures, we can improve this to O(f) rounds and O(fn +t?) messages.

16

{ Initialization}

kp — 1t

{End Initialisation}

The current coordinator ¢ executes the following 2[log, n] rounds:

Round 5: All undecided processes p send NACK to ¢
If c receives a NACK then c halts { The coordinator detects its own failure}
For i « 3 to [log,n] + 2 do
Round 2i: ¢ sends stop to processes with id € [k./2, k]
All processes p receiving stop halt
Round 2: + 1: All processes € [k./2, k.| (which have not halted) do:
Send NACK to ¢
If c receives a NACK then ¢ halts { The coordinator detects its own failure}
else k. — k./2 od

Algorithm 5: Achieving early-termination for send-omission failures

ones, decide on the same value. Thus Uniform Agreement strengthens the agreement

condition to:
Uniformity: All processes that decide, decide on the same value.

We can show that Algorithms 1 and 3 actually solve Uniform Agreement, while the
algorithm for send-omission failures does not. It can be shown that Uniform Agreement
in a system with general-omission failures requires n > 2t [NT90]. Algorithm 3 matches

this bound, and so it is optimal in the number of faulty processes it tolerates.

17

Appendix - Pipelining

It is possible to speed up all the algorithms in this paper by a constant factor. This is
achieved by pipelining their executions. In the pipelined versions, in each round there
are many active coordinators - each one at a different stage of the algorithm. A brief

description of this pipelining scheme and its performance follows:

Crash failures: When process ¢ begins its second round as coordinator, process ¢ + 1
begins its first round. It can be shown that the correctness of the algorithm is

preserved. The system decides by round f + 2 and is quiescent by round f + 3.

Send-omission failures: Coordinator ¢ 4+ 1 starts when coordinator ¢ begins its third
round. With this, the system decides in 2f 4+ 4 rounds. With a few additional
modifications, decision can be achieved in 2f+1 rounds for Byzantine Agreement

and in 2f + 3 rounds for Uniform Agreement.

General-omission failures: Asin the send-omission case, two successive coordinators
can be run with a gap of two rounds between them. With this modification
decision is achieved in 2f + 6 rounds. With a few additional changes decision can
be achieved in 2f + 3 rounds.

Acknowledgements

We would like to thank Navin Budhiraja, Ajei Gopal, Prasad Jayanti, Keith Marzullo,
Pat Stephenson and the distributed systems group at Cornell University for their crit-
ical comments. Navin Budhiraja proposed a simplified version of Algorithm 1a which

took O(n?) messages to reach agreement.

References

[Bra82] Gabriel Bracha. Personal communication. 1982. e

[CASD82] Flaviu Cristian, Houtan Aghili, H. Ray Strong, and Danny Dolev. Atomic
broadcast: From simple message diffusion to Byzantine agreement. pages
200-206, 1982. A revised version appears as IBM Technical Report RJ5244.

18

[CMs84]

[DR83]

[DRS82]

[DS83]

[Ezh87]

[GT89)

[Had83]

[LSP82]

[Nei88]

J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Trans-
actions on Computer Systems, 2(3):251-273, August 1984.

Danny Dolev and R. Reischuk. Bounds on information exchange for Byzan-
tine agreement. Technical report, IBM Research Laboratory, IBM Research
Laboratory, San Jose, CA, 1983.

Danny Dolev, R. Reischuk, and Raymond Strong. ‘Eventual’ is earlier than
‘Immediate’. In Proceedings 28rd Symposium on Foundations of Computer
Science, Chicago, Illinois, pages 196-203, November 1982.

C. Dwork and D. Skeen. The inherent cost of nonblocking commitment. In
Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed
Computing, pages 1-11, August 1983.

Paul D. Ezhilchelvan. Early stopping algorithms for distributed agreement
under fail-stop, omission, and timing fault types. In IEEE 1987 Sizth Sym-
posium on Reliability in Distributed Software and Database Systems, pages
201-212, Computing Laboratory, The university, Newcastle upon Tyne,
England, 1987. IEEE computer society press.

Ajei Gopal and Sam Toueg. Reliable broadcast in synchronous and asyn-
chronous environments. In J.-C. Bermond and M. Raynal, editors, Dis-
tributed Algorithms, 3rd International Workshop, Nice, France, pages 110-
123. Springer, September 1989.

Vassos Hadzilacos. Byzantine agreement under restricted types of failures
(not telling the truth is different from telling lies). Technical Report 18-83,

Department of Computer Science, Harvard University, 1983.

Leslie Lamport, R. Shostak, and M. Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):382-
401, July 1982. '

L]

Gil Neiger. Techniques for Simplifying the Design of Distributed Systems.
PhD thesis, Cornell University, August 1988. Department of Computer
Science Technical Report 88-933.

19

[NT90]

[Per85]

[PSL8O]

[PT84]

[PT86]

[Rei82]

[SGS84)

[Web89]

Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of
distributed algorithms. Technical Report TR 90-1081, Cornell University,
January 1990. To be published in the Journal of Algorithms.

Kenneth J. Perry. Early Stopping Protocols for Fault-Tolerant Distributed
Agreement. PhD thesis, Cornell University, February 1985. Department of
Computer Science Technical Report 85-662.

M. Pease, R. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228-234, April 1980.

K. J. Perry and Sam Toueg. An authenticated Byzantine generals algorithm
with early stopping. Technical Report 84-620, Department of Computer

Science, Cornell University, June 1984.

Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence
of processor and communication faults. IEEE Transactions on Software
Engineering, 12(3):477-482, March 1986.

R. Reischuk. A new solution for the Byzantine general’s problem. Technical
report, IBM Research Laboratory, November 1982.

F. Schneider, D. Gries, and R. D. Schlichting. Fault-tolerant broadcasts.
Science of Computer Programming, pages 1-15, 1984.

Samuel Weber. Bounds on the message complexity of Byzantine agreement.
Master’s thesis, University of Toronto, October 1989.

20

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif

