Improving Known Solutions
is Hard

Desh Ranjan*
Suresh Chari
Pankaj Rohatgi**

TR 90-1171
November 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Supported by an MSI Fellowship.
**Supported by NSF Research Grant CCR-88-23053.

Improving known solutions is hard

Desh Ranjan * Suresh Chari

Pankaj Rohatgi t
Computer Science Department
Cornell University

November 1990

Abstract

In this paper, we study the complexity of computing better solutions to
optimization problems given other solutions. This is done in the context
of the counterexample computation model introduced in [KPS90]. As-
suming PH # X¥, we prove that PTIME transducers cannot compute
optimal solutions for many problems, even given O(n!~¢) non-trivial so-
lutions. These results are used to establish sharp lower bounds for several
problems in the counterexample model. We extend the model by defin-
ing probabilistic counterexample computations and show that our results
hold even in the presence of randomness.

1 Introduction

Efficient solution of optimization problems is one of the most challenging tasks
in computer science. In particular, the characterization of the difficulty of com-
puting optimum solutions of N P-optimization problems is of great interest and
importance in practice and theory.

Several models have been proposed to study N P-optimization problems,
though there is no universally accepted “best” one [AMSP80,Kre88,PY88]. In a
recent investigation Krajicek et al [KPS90]have defined a new model for study-
ing the difficulty of optimization problems called the “counterexample” model.
In this model there is an all-powerful teacher, T', and a student, S, with limited
power(PTIME). The goal of S is to compute the optimum solution. To this
end she is aided by T in the following way : at any point in the computation S
may present a solution claiming it to be optimal. If there is no better solution

*Supported by MSI Fellowship
tSupported by NSF Research Grant CCR-88-23053

T accepts the claim, else T disproves the claim by presenting a counterexam-
ple, i.e. a better solution. The difficulty of a problem is measured by the
number of counterexamples the best student requires to compute the optimum
solution given the least cooperative teacher. The important questions in this
model concern the difficulty of various optimization problems. The model is
also interesting because it relates conjectures about the relative powers of logi-
cal theories [KPS90] to those about this model which are purely computational
in nature.

In the next section we.briefly review the counterexample model, giving the
necessary definitions and relevant results. In Section 3, we establish the difficulty
of computing the lexicographically maximum satisfying assignment of boolean
formulas in this model. The proof uses a result(Lemma 1) which is central to
this paper, and interesting in its own right. It states that, under the assumption
that PH does not collapse, not only is it hard to find satisfying assignments for
satisfiable formulas but there are formulas for which it is hard to find a new
satisfying assignment even given a lot of non-trivial ones. We use similar results
to prove sharp bounds for the computation of the optimum solution for several
graph-theoretic N P-optimization problems such as MAXCLIQUE. We then
define probabilistic counterexample protocols and prove that these bounds exist
even if the student has access to the power of randomness.

2 Preliminaries

In this section we review the basic definition of the computation model and sum-
marize known results. The definitions are variations of those used in [KPS90].

Definition 1 An N P-optimization problem is binary relation RC T* x L*, a
function o : ¥* x ©* — N and a polynomial p such that R, o are computable in
polynomial time. y is called a feasible solution of z if | y |[< p(| z |) and R(z,y).
Given two feasible solutions y and y' of ¢, we say that v is a better solution
than y if o(z,y') > o(x,y). A feasible solution y is optimal if there is no other
feasible y which is better than y.

Example: The N P-optimization problem M AXCLIQUE can be defined
by R(G,y)=“y is a clique in the graph G” and o(G, y)= number of vertices in
.

Example: The canonical N P-optimization problem LEX M AX SAT is de-
fined by Q(F,s) =“s is a satisfying assignment of F” and p(F,s) = s. Here we
assume that s, a truth assignment of F', is an n-bit string where n is the number
of variables in F' and s; = 1 iff the i-th variable is assigned true.

2.1 The Counterexample model

A S-T counterezample protocol for an optimization problem consists of a de-
terministic polynomial time machine S, called the student and an all powerful
Turing machine T, the teacher. Given an instance of the problem the goal of
the student is to produce an optimum solution. During the computation the
student repeatedly presents the teacher with feasible solutions, claiming them
to be optimal. The teacher either produces a better solution, i.e. a counterez-
ample, or accepts if there is none. The computation ends when the teacher
accepts. Note that the student is restricted to spending polynomial time before
producing a new feasible solution. However she is allowed an arbitrary number
of steps over the entire computation.

Definition 2 An N P-optimization problem P has an f(n)-counterezample pro-
tocol if there is a student S such that for all teachers T, S-T forms a counterez-
ample protocol for P which requires no more than f(n) counterezamples on
inputs of size n.

Definition 3 C[f(n)] is the class of all N P-optimization problems which have
an f(n)-counterezample protocol.

It is easy to see that MAXCLIQUE has a n-counterexample protocol.
Given a graph G the student first presents a one vertex clique. Then the stu-
dent repeatedly presents the same solution the teacher provides as a counterex-
ample. We call such a strategy the trivial strategy. Clearly in this case the
strategy takes at most n counterexamples. However it is not clear that there
is poly-counterexample protocol for LEXM AXSAT. As stated previously the
interesting questions in this model relate to the number of counterexamples re-
quired to compute the optimum solution of a given problem. It is established
in [KPS90] that

Theorem 1 Vf if 1 < f(n) < nl=¢, € > 0, and f is polynomial time con-
structible then C[f(n)] = C[f(n) — 1] implies NP C P/poly.

This shows that extra counterexamples help. As an initial step towards char-
acterizing the difficulty of solving N P-optimization problems using the coun-
terexamples the following theorem is also proved

Theorem 2 If PH does not collapse then there exists an € > 0 such that there
is no nl=¢-counterezample protocol for LEXM AXSAT and MAXCLIQUE.

In the following sections we extend the above result, showing that for for
all € > 0 there is no n!~¢-counterexample protocol for these problems. Since
MAXCLIQUFE has a n-counterexample protocol, this gives a tight bound on
the number of counterexamples required for computing a clique of maximum
size in a graph. We use our techniques to prove such bounds for many other
problems. In fact, we show the same result for these problems even in presence
of randomness.

3 The Complexity of Computing New Satisfy-
ing Assignments

We know that if P # N P then it is difficult to compute the satisfying assignment
of boolean formulas. The question remains whether there are formulas for which
it is hard to compute a new satisfying assignment given a lot of other satisfying
assignments. We answer this question positively, under the assumption that
PH does not collapse.

In the following lemma we use the language USAT, the set of boolean formu-
las with a unique satisfying assignment. It is known that if USAT € coN P/poly
then PH collapses. For a short proof see the appendix.

Notation: For F € USAT, s(F) denotes the unique satisfying assignment of
F. For any set A, A=" denotes {z € A: |z |=n}.

Lemma 1 Assume USAT ¢ coNP/poly. Let D be any deterministic polyno-
mial time transducer and r(n) be any polynomial. Then for infinitely many
n, there are boolean formulas Fy, Fy, ..., F.(n) € USAT=" such that for all j,
1< j < r(n), D given {F,..., Fy(n),s(F1),-..,8(Fj_1),s(Fj+1),- -, 8(Fr(n))}
can not compute s(Fj).

Proof: Suppose, to the contrary, there exists a deterministic polynomial time
transducer D and a polynomial r(n) such that for all but finitely many n the
above fails. This means that given any set F={Fy, F5,..., F,(,,)} of formulas in
USAT=" the following condition holds:

e D given {Fy, F;,..., Fy(n), s(F2),...,5(Fy(n))} computes s(F;), or
e D given {Fy, Fs, ..., F(n), 5(F1), s(F3),...,5(Fy(n))} computes s(F3), or

e D given {F1, Fy,..., Fy(n), s(F1),...,5(Fr(n)-1)} computes s(Fy(n)).

We use this to find a set of r(n) — 1 formulas in USAT=" knowing whose
satisfying assignments D can compute the unique satisfying assignment for a
substantial fraction of the formulas in USAT=". Let Z C USAT=". For each
set g:{Gl, .. .G,.(,,)__l} C Z define

RZ = {H € Z |D given Gy,...,Grn)-1, H,5(G1),...,5(Gr(n)-1)
computes s(H)}.

Rg is the set of all formulas in Z whose satisfying assignment can be computed
by D given the formulas in G and their satisfying assignments. We claim that
for some set A C Z of r(n) — 1 formulas, | R |> (| Z | —r(n))/r(n).

To see why this is true, consider any set G ={G1,G?2,...,Gr(n)} C Z. Since
the above condition holds, there is an ¢, 1 < ¢ < r(n), such that D given
{G1,Gy,...,Gr(n),8(G1), ..., 5(Gi—1),5(Gi41), - .-, 8(Gr(n))} computes s(Gj).

Hence G; € Rg\(g,)- Hence for every set G', of size k, there is a formula
H € G’ such that H € Rg,\ g+ Therefore

Y 5cz,B|=r(n)-1| BE | > #(r(n)—element subsets of Z)
_(12]
r(n))’

Thus there is some set F ={F},..., Fr(n)} C Z such that,

1Rk (1)1(4L)=z e

This implies that given F1y,..., Fy(n)~1 and their satisfying assignments, D
can compute the satisfying assignments for about 1/r(n) of the formulas in Z.

This needs to be repeated at most nr(n) times to obtain a polynomially long
advice, given which, we can compute satisfying assignments for all formulas in
USAT=" in polynomial time. The algorithm in Fig. 1 constructs this advice.
Given this advice A=A # A2# ... # A , acoN P machine which works as follows
can recognize USAT.

Given boolean formula F, of length n, as input

e Check that F has no more than one satisfying assignment.

e if F and its satisfying assignment appears in the advice , or for some j,
D given A computes s(F) then ACCEPT else REJECT.

Hence, USAT € coN P/poly contradicting the assumption. This completes
the proof of the lemma. [|

Technicalities apart, the lemma says that there are large collections of equal
sized boolean formulas whose satisfying assignments are “orthogonal”, in the
sense that satisfying assignments of one provide no information about those of
any other. It is then possible to construct boolean formulas, with several satis-
fying assignments, for which the different satisfying assignments are orthogonal
in the above sense. We use the existence of such formulas to improve the lower
bounds for the number of counterexamples required for LEXM AX SAT.

Theorem 3 Unless the Polynomial Hierarchy collapses to $£, for all € > 0,
LEXMAXSAT ¢ C[n'-—¢].

Proof: Choose any € > 0. Assume that there is an nl~¢counterexample pro-

tocol for LEX M AXSAT. Let D be the student in this protocol. Let r(n) be a
polynomial such that (nr(n))!~¢ < r(n). Define polynomial time transducer D’
which on input {Hy, Ha,... Hy(n), Y15+ - - Yk=1, Yk+1- - - Yr(n) } does the following:

o Checks each y; is a satisfying assignment of H;.

Z — USAT="
A « “null string” /* A is the advice string to be computed */
While | Z |> r(n) do
begin
find B C Z of size r(n) — 1 such that RZ >| Z | /r(n)
Let B={Bl, Bg, . °Br(n)—-1}
/* One such B exists by the proof */
Z — Z\ RE
A~ A#B, S(Bl), S(Bz), .o S(Br(n)—l)#
end

A — A#2,5(Z1),5(Z2) . .. s(Zm)#
/* where Z = {Z,,Z,...Z,} */

Figure 1: Algorithm to construct advice for strings of length n

e D’ simulates D on H = Hy\/Hz...\/ Hy(n). Whenever D presents a
solution y to the teacher, if y is a satisfying assignment of Hj then D’
outputs y and stops. If on the other hand y = y;, D’ continues the simu-
lation assuming the teacher provided the lexicographically next satisfying
assignment from the y;’s. In all other cases D’ outputs some arbitrary
fixed string.

If PH does not collapse then, by Lemma 1, there are infinitely many n
such that there are r(n) formulas Fy, Fy, ... Fr(n) € USAT such that D’ given
satisfying assignments for any r7(n) — 1 of these cannot compute the satisfying
assignment for the remaining one. Consider the formula F = Fy \/ F;...\/ Fy(n)
where the variables of all the F;’s are same. Then the only satisfying assign-
ments of F are s(Fy),s(F2),..., s(Fr(n)) . Moreover for all i, D', given F as
input, cannot compute s(F;) even given all the remaining s(Fj)’s. Assume that
the teacher provides the satisfying assignments of F' in lexicographical order.
Since the length of F is c.nr(n) for some constant ¢, D can ask for at most
(c.nr(n))1—¢ counterexamples. By choice of r this is less that r(n) for large
n. This means that D cannot follow the trivial strategy. Hence at some point
of time in the protocol D computed a new satisfying assignment for F' by it-
self. Suppose that the first time this happened, s(F;) was produced. Then, by
construction of D', D'(Fy, Fy, ..., Fr(n), 8(F1),...,5(Fi_1), $(Fi41), - -, 8(Fr(n))
outputs s(F;) which is a contradiction.

Note that D requires at least r(n) counterexamples where n is the number
of variables of F. Thus, for all polynomials p there is no p(n)-counterexample

protocol where n is the number of variables. [|

Corollary 1 Ve > 0, in any counterezample protocol for LEXM AXSAT, the
student can be forced to follow the trivial sirategy for O(nl=¢) steps on infinitely
many formulas.

We now consider the N P-optimization problem MINTSP defined by the
relation R(G,t) =“ t is a tour in the weighted graph G” and p(G,t) = length of
the tour ¢.

In order to establish lower bounds for MINTSP we use the language

UNIQOPTSP = {G | G has a unique tour of minimum size}

UNIQOPTSP is known to be N P-hard[Pap84]. Thus if UNIQOPTSP €
CoN P/poly then PH collapses. As in the case of LEXM AXSAT we establish
the following lemma to prove the result.

Notation: For any graph G in UNIQOPTSP, t(G) denotes its unique min-
imum tour.

Lemma 2 Assume UNIQOPTSP ¢ coNP/poly. Let D be any determinis-
tic polynomial time transducer and r(n) any polynomial. Then for infinitely
many n, there are G1,Gs,...,Gr(n) € UNIQOPTSP=", such that for all j,
1<35< r(n), D given { G,y..., G,.(n), t(Gy),.. .,t(Gj__l), t(Gj+1), ceey t(Gr(n))
} can not compute t(Gj).

Proof: Similar to the proof of Lemma 1.
Using this we establish the desired lower bound on the number of counterex-
amples required to compute MINTSP.

Theorem 4 Unless the Polynomial Hierarchy collapses to £¥, for all € > 0,
MINTSP ¢ C[nl-¢].

Proof: The proof is similar to that of Theorem 3. Assume that there is an
counterexample protocol for MINTSP which requires at most n1—¢ counterex-
amples. Let D be the student in this protocol. Let r(n) be a polynomial such
that (nr(n))!=¢ < r(n). Define transducer D’ as follows:

D’ on input {G,,Ga,.. .G,.(n), t(G1)... t(Gk-1),t(Gk+1) - - - t(Gr(n))}

e Checks each t(Gj;) is a tour of G;.

e D' now constructs a new graph G from the input graphs Gi,...,Gy(n)-
Conceptually the new graph G can be thought of as a chain G1-G2- -G,,.
The link between G; and G5 is constructed as follows:

Let u € G, and v € G be two vertices which are not part of any other
link. Make two copies of u (say v’ and u”) in G;. Link ' and u” to all
the vertices to which u was linked keeping the edge weights same. Also
link «’ and u” with a 0 weight edge. Do the same for v. Finally add the

0 weight edges (u’,v') and (u"”,v"”). The remaining graphs are linked in a
similar fashion. Clearly |G| < enr(n) for some constant ¢. By construction
every tour of G provides tours for each of the graphs G;. Moreover given
tours for Gy,...,Gr(n), one can build a tour for G. It is not hard to
show that if all the G;’s are in UNIQOPTSP then so is G. In that case
t(G) = t(Gl) + t(Gz) +...+ t(G,.(n).

D’ then simulates D on G. Whenever D presents a solution S to the
teacher, D’ finds the smallest j # k (if any), such that the tour of G;
provided S is not minimum. D’ then constructs a better solution S’
by replacing the tour of G; in S by the optimal tour ¢(G;). D’ then
continues the simulation assuming that the teacher T provided S’ as a
counterexample. If D’ cannot improve S in this way (i.e, it can’t find
such a j), it then outputs the minimal tour of G; which was ever output
by the student.

Now exactly as in Theorem 3, if PH does not collapse, by Lemma 2 there
are infinitely many n and graphs G1,G2,...,Gr(n) € UNIQOPTSP such that
D’ given these graphs and the solutions to all but one of these, cannot compute
the minimal tour of the remaining graph. This contradicts the assumption that
D works within the claimed bound. B

4 Lower Bounds in Counterexample Computa-
tions

In the previous section we showed that if PH is infinite then LEXMAXSAT
and MINTSP do not have (n!~¢)-counterexample protocols. However, it is
not known whether these problems even have polynomial-counterexample pro-
tocols. In this section we consider some N P-optimization problems which have
n-counterexample protocols and establish strong lower bounds on the number of
counterexamples required in any protocol to compute their optimal solutions. In
particular we consider M AXCLIQU E and the following optimization problems

MAXINDSET : The N P-optimization problem defined by the relation
R(G,y)= “ y is an independent set of vertices in G” and o(G,y)= the number
of vertices in y.

MINCOVER: defined by the relation (G,y) =“ y is a vertez cover in the
graph G” and p(G,y)= n — | y | where n is the number of vertices of G.

In order to establish bounds for MAXIN DSET we use the language
UNIQINDSET = {G | G has a unique independent set of maximum size}

The reduction from 3CNFSAT to MAXINDSET given in [GJ79] can be
modified to yield a reduction from USAT to UNIQ-INDSET. This implies

that if UNIQ_INDSET € coN P/poly then USAT € coN P/poly and hence
by Lemma 5 PH collapses. As in the case of LEXM AXSAT we establish the
following lemma to prove the result.

Notation: For any graph G in UNIQ_INDSET, i(G) denotes its unique
maximum independent set. Also, UNIQ_IN DSET=" denotes the set of all
n-vertex graphs in UNIQ_INDSET.

Lemma 3 Assume UNIQ_INDSET ¢ coN P/poly. Let D be any determin-
istic polynomial time transducer and r(n) any polynomial. Then for infinitely
many n, there are G1,Gs,...,Gr(n) € UNIQINDSET=", such that for all j,
IS] S r(n), D given { Giyeeey G,.("), l(Gl), ceey i(Gj_l), i(Gj.,,l), ooy Z(Gr("))
} and the size of i(G;) can not compute i(G;).

Proof: Suppose the hypothesis is false. As in Lemma 1, there is a polynomial
time machine D which, given a polynomially long advice S=S;#3S;...#S; and
d = |i(G)| can compute i(G), for all G € UNIQ_INDSET=". Here each S; is
the encoding of r(n)—1 n-vertex graphs and their unique maximum independent
sets.

Using this advice a coN P machine which works as follows can recognize
UNIQ_INDSET.
Given a graph G with n vertices as input

e For each value of d from 1 to n run D on G,S and d.Then for some value
of d, D computes an independent set of largest size .

e Check that there is no more than one independent set of size ! in G.

This contradicts the assumption that UNIQ_INDSET ¢ coN P/poly. Wi
Using this we establish the desired lower bound on the number of counterex-
amples required to compute the maximum independent set of a graph.

Theorem 5 Unless PH collapses, for all € > 0 any protocol for MAXIN DSET
requires at least O(n'~¢) counterezamples on infinitely many n-vertez graphs.

Proof: The proof is similar to that of Theorem 3. Assume that there is an

counterexample protocol for M AXIN DSET which requires at most n!~¢ coun-

terexamples on n-vertex graphs. Let D be the student in this protocol. Let r(n)

be a polynomial such that (nr(n))!~¢ < r(n). Define transducer D’ as follows:
D’ on inI)Ut {Gh Gy .o Gr(n)9 Y1y -y Sto1, St+ls ceey Sr(n)a k}

e Checks each S; is an independent set of vertices in Gj.

e D’ simulates D on G, the disjoint union of Gy, Gs, . .., Gr(n). Whenever D
presents a solution S to the teacher, if S contains at least k vertices of G;
then it outputs these vertices and stops. Otherwise it finds the smallest j,
such that all vertices of S; do not appear in S, and replaces the vertices of
G; in S by S; and continues the simulation. In all other cases it outputs
some fixed string.

Now exactly as in Theorem 3, if P H does not collapse, by Lemma 3 there are
infinitely many n and graphs G1,G3,. . .,Gr(n) € UNIQIN DSET such that D
on input G, the disjoint union of G1,G?;. . . ,Gr(n) cannot compute the maximum
independent set of G, contradicting the assumption. [|

Using the same method we can show that other optimization problems such
as MAXCLIQUE, MINCOVER, MAXCYCLE require at least n1~¢ coun-
terexamples for all € > 0, on graphs of n vertices. These problems can be solved
using by an n-counterexample protocol in which the student adopts the trivial
strategy. It is startling that the this strategy is essentially the best (possibly
modulo polylog factors).

5 Protocols with Randomness

In this section we consider probabilistic counterezample protocols in which the
student is allowed access to a random source such as a fair coin. We will show
that in many cases this additional power does not help the student substantially.

Definition 4 An N P-optimization problem Q has a probabilistic(or random)
f(n)-counterezample protocol if there is a student, S, and a polynomial gs, such
that for all T, S-T forms a probabilistic counterezample protocol for Q. In
addition, with probability > 1/qs(n), this protocol should require no more than
f(n)-counterezamples on inputs of size n.

In the above definition, the probability is taken over the strings z of size
s(n) which are provided as input to S uniformly at random. Here s(n) is some
polynomial.

Definition 5 PC[f(n)] is the class of all N P-optimization problems which have
a probabilistic f(n)-counterezample protocol.

Notice that the student is required to work within the counterexample bound
with a probability which can be as low as 1/poly. For any N P-optimization
problem, there is always an O(1) probabilistic protocol which works with prob-
ability 1/ezponential. In this section we will show that if the student is re-
quired to work with “significantly” better probability, then there are are N P-
optimization problems which do not have nl—¢-counterexample protocols for
any € > 0, unless the PH collapses. We first show that LEXM AXSAT is one
such problem.

Lemma 4 Suppose USAT ¢ BP - (coNP/poly). Let P be any probabilistic
polynomial time transducer and r(n) and p(n) be any polynomials. Then for
infinitely many n, there are formulas F1, F3, ..., Fr(n) € USAT=" such that Vj,
1 < j < r(n),D given Fy,..., Fyn),s(F1),...,8(Fj_1), s(Fj41),.--,8(Fr(n)),
cannot compute s(Fj) with probability > 1/p(n).

10

Proof: Generalization of the proof of Lemma 1.
Theorem 6 Unless the PH collapses, Ve > 0, LEXMAXSAT ¢ PC[n1~¢].

Proof: Assume that the Polynomial Hierarchy is infinite and there is a prob-
abilistic n1—¢-counterexample protocol for LEXM AXSAT. Let P be the stu-
dent in this protocol which works with probability 1/¢(n). Define a trans-
ducer P’ exactly as in Theorem 3. Let g(n) = t(r(n) * n?). From Lemma
4, for p(n) = g(n) * r(n) * n there are infinitely many n’s such that there
are r(n) formulae Fy, F;,...F.(,y € USAT=" such that P’ given satisfying
assignments for any r(n) — 1 of these cannot compute the satisfying assign-
ment for the remaining one with probability > 1/p(n). As in Theorem 3,
we consider the formula F = F,\/ F;...\/ F;(») where the variables of all
the F;’s are same. Let z be the random input to P and let |z| = s(n) for
some polynomial s. For every random input z to P, such that P does not
follow the trivial strategy, there is an 7, 1 < i < r(n) such that with ran-
dom input z, P'(Fy, Fy,..., Fy(n),s(F1),...,s(Fi-1),8(Fi41), ..., 5(Fr(n)) out-
puts s(F;). By definition, more than 1/¢(n) of all strings z of size s(n) cause P
to avoid the trivial strategy. A simple counting argument shows that there is
a j such that P'(Fy, Fy,..., Fr(n), s(F1),...,5(Fj_1), 5(Fj4+1), - - -, 8(Fr(n)) out-
puts s(F;) on more than 1/(g(n) * r(n)) fraction of all 2’s of size s(n). There-
fore P'(Fy, Fy, ..., Fy(n), s(F1),...,8(Fj_1),5(Fj41), .-, S(Fr(n)) outputs s(Fj)
with probability > 1/(g(n) * r(n)) > 1/p(n), which is a contradiction. |

Using a combination of techniques used in Lemmas 1 and 3, and Theorems
3, 5 and 6 we can also prove the following theorem :

Theorem 7 If PH does not collapse, then for all € > 0, any probabilistic
protocol for MAXINDSET, MAXCLIQUE or MINCOV ER requires more
than nl=¢ counterezamples on infinitely many n-verter graphs.

6 Conclusion

In this paper we have established a lemma about the structure of satisfiable for-
mulas. From the lemma, we get two very interesting facts about the structure of
SAT, provided that the world is as we believe it is (P H is infinite). Firstly, there
are large collections A of equal size formulas whose satisfying assignments are
independent i.e. a satisfying assignment of one provides no information useful to
effectively compute that of any other formula in A. Secondly, there are formulas
with almost linear number of satisfying assignments which are independent. We
have used these to establish a lower bound on the number of counterexamples
required to find the lexicographically largest satisfying assignment for boolean
formulas. We then used the techniques developed here to prove almost opti-
mal lower bounds on the number of counterexamples required to compute the
optimum solution for several N P-optimization problems.

11

It is still an open question if there are boolean formulas with superpolynomial
(in fact, even linear) independent satisfying assignments. More generally are
there N P-optimization problems which require a superpolynomial number of
counterexamples.

Acknowledgements:

We would like to thank Radha Jagadeesan for correcting the proof of the all
important Lemma 1. The authors would also like to thank Juris Hartmanis for
his guidance and support.

References

[AMSP80] G. Ausiello, A. Marchetti-Spaccamela, and M. Protasi. Toward

[GI79]

[KPS90]

[Kre88]
[Pap84]

[PYs88]

[Sch89]

[VV86]

[Yap83]

a unified approach for the classification of NP-complete problems.
Theoretical Computer Science, 12:83-96, 1980.

M.R. Garey and D. Johnson. Computers and Intractability. Free-
man, San Fransisco, 1979.

J. Krajicek, P. Pudlak, and J. Sgall. Interactive Computation of Op-
timal Solutions. In Mathematical Foundations of Computer Science,
Springer-Verlag LNCS #452, pages 48-60, 1990.

M.W. Krentel. The Complexity of Optimization. Journal of Com-
puter and System Sciences, 36:490-509, 1988.

C. Papadimitriou. On the complexity of unique solutions. Journal
of the ACM, 31:392-400, 1984.

C. Papadimitriou and M. Yannakakis. Optimization, Approximation
and Complexity Classes. In 20** ACM Symposium on Theory of
Computing, pages 229-234, 1988.

U. Schéning. Probabalistic complexity classes and lowness. Journal
of Computer and System Sciences, 39(1):84-100, 1989.

L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(1):85-93, 1986.

C. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26(3):287-300, 1983.

12

Appendix
Lemma 5 If USAT € BP - (coN P/poly) then PH collapses to T¥.

The proof of this lemma relies on the following facts:
Fact 1: coN P/poly is closed under majority reductions.
Proof: Given any language L we define the languages

MAJ(L) = {< z1,Z2,...,%2n41 > | a majority of the z{s arein L}

MIN(L) = {< z1,Z2,.--,%2n4+1 > | a minority of the zjs arein L}

We have to show that for all L € coNP/poly, MAJ(L) € coNP/[poly. It
is well known that L € coNP/poly <& L € coNP® for some sparse set S.
Now L € coNP5 == T € NP5 = MAJ(L) € NP’ = MIN(L) € NP5 =
MIN(L) € coNPS = MAJ(L) € coNP° = MAJ(L) € coN P/poly
Fact 2: There is a random reduction T which reduces SAT to USAT with a
two sided error of at most 1/2 — 1/16n.

Proof: In [VV86] it was shown that there is a one-sided random reduction
R which reduces SAT to USAT with probability 1/4n. That is

z € SAT = Prob(R(z) € USAT) > 1/4|z|

z € SAT = Prob(R(z) € USAT) = 1

On input z, |z| = n, T outputs a trivial member of USAT with probability 1/2—
1/16|z|. With remaining 1/2+ 1/16|z| probability, T simulates the reduction R
on z.

Analysis: If € SAT then Prob(T(z) € USAT) is at least (1/2 — 1/16|z|) +
(1/2+1/16]|z|) * (1/4|z|) which is at least (1/2+1/16|z[). If, on the other hand
z € SAT then T outputs a member of USAT with probability 1/2 + 1/16|z|.

Proof: Assume USAT € BP-(coN P/poly). By Fact 1 and Fact 2, this implies
that SAT € BP - (coN P/poly). Fact 1 also implies that BP - (coN P/poly) =
(coN P/poly)/poly = coN P/poly [Sch89]. Therefore we get SAT € coN P/poly
which implies that N P/poly = coN P/poly and PH collapses to X% [Yap83].

13

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif

