
Proving Termination of
General Prolog Programs

Krzysztof R. Apt
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Dino Pedreschi
Dipartimento di Informatica, U niversita di Pisa

Corso Italia 40, 56125 Pisa, Italy

Abstract

We study here termination of general logic programs with the Prolog selection
rule. To this end we extend the approach of Apt and Pedreschi [AP90J and consider
the class of left terminating general programs. These are general logic programs
that terminate with the Prolog selection rule for all ground goals. We introduce
the notion of an acceptable program and prove that acceptable programs are left
terminating. This provides us with a practical method of proving termination.

The converse implication does not hold but we show that under the assumption
of non-floundering from ground goals every left terminating program is acceptable.
Finally, we prove that various ways of defining semantics coincide for acceptable
programs. The method is illustrated by giving simple proofs of termination of a
"game" program and the transitive closure program for the desired class of goals.

Note. First author's work was partly supported by ESPRJT Basic Research Action
3020 (Integration). Second author's work was partly supported by ESPRlT Basic
Research Action 3012 (Compulog).

1 Introduction

Motivation

Prolog is a programming language based on logic programming. However, the use of
a fixed selection rule combined with the depth first search in the resulting search trees
makes Prolog and logic programming different. As a consequence various completeness
results linking the procedural and declarative interpretation of logic programs cannot be
directly applied to Prolog programs. This mismatch makes it difficult to study Prolog
programs using only the logic programming theory. Clearly the main problem is the issue
of termination: a Prolog interpreter will miss a solution if all success nodes lie to the right
of an infinite path in the search tree.

266

In our previous paper we proposed to study pure Prolog programs that terminate
for all ground goals. We called such programs left terminating and claimed that most
pure Prolog programs are left terminating. Then we offered a characterization of left
terminating programs which allowed us to provide simple termination proofs of various
"troublesome" pure Prolog programs.

The aim of this paper is to extend this approach to termination to general Prolog
programs, i.e. p~ograms allowing negative literals. More precisely, we consider here
general logic programs executed with the leftmost selection rule used in Prolog. Our
approach uses the concept of a level mapping (a function assigning natural numbers to
ground atoms) in combination with a limited declarative knowledge about the program
embodied in some interpretation I. I should be a model of the considered program P and
a model of Clark's completion of the "negative" fragment of P.

These two concepts are combined in the notion of an acceptable program. Intuitively,
a general program P is acceptable w.r.t. a level mapping and a model I if for all ground
instances of the clauses of P the level of the head is greater than the level of the atoms
in a certain prefix of the body. Which prefix is considered is determined by the model I.
We prove that acceptable general programs are left terminating. Consequently, to prove
left termination it suffices to prove acceptability.

The converse implication does not hold due. to the possibility of floundering. On
the other hand, we show that for programs that do not flounder from ground goals the
concepts of left termination and acceptability do coincide. Also, we prove that various
ways of defining semantics coincide for acceptable programs.

Once the left termination of a general Prolog program is established, non-ground
terminating goals can be identified by using the concept of a bounded goal. We illustrate
the use of this method by providing simple proofs of termination of a "game" program
and the transitive closure program for the desired class of goals.

The problem of termination of Prolog programs attracted a lot of attention in the
literature. A short overview can be found in Apt and Pedreschi [AP90). In particular, it
is interesting to contrast our approach with that of Ullman and Van Gelder [UvG88), later
improved by Plumer [Plii90b, Plii90a), aimed at the automatic verification of termination
of a pure Prolog program and a goal. In their approach, some sufficient conditions for
termination are identified, which can be statically checked. Obviously, such an approach
cannot be complete due to the undecidability of the halting problem.

We propose instead a complete method, which characterizes precisely the left termi­
nating, non floundering programs. Additionally, in the present paper and in [AP90) we
provide simple proofs of termination for programs and goals which cannot be handled
using the cited approach. On the other hand, we do not determine here any conditions
under which our method could be automated. This should form part of a future research.

We are aware of only one paper in which a method of proving termination of general
Prolog programs is proposed - Baudinet (Bau88). In her proposal negation is treated
indirectly by dealing with termination in presence of the cut operator using which negation
can be simulated. The present paper seems to be the first one in which negation is treated
in a direct way. By virtue of our approach the termination proofs can be built in a modular
way and the limited declarative knowledge ensuring termination of the program can be
identified. This results in our opinion in simple arguments which formalize the reasoning
used informally.

267

Preliminaries

Throughout this paper we use the standard notation and terminology of Lloyd [Llo87] or
Apt [Apt90]. Recall that a general clause is a construct of the form

A+-L1, ... ,L,.

(n ~ 0) where A is an atom and £ 1, .•• , L,. are literals. In turn, a general goal is a
construct of the form

(n;:::: 0) where £ 1 , •.. , Ln are literals. A general program is a finite set of general clauses.
From now on we simply say clause, goal and program instead of general clause, general

goal and general program. When each Li is positiv,e, we call a clause a positive clause
and a goal a positive goal. A program whose all clauses are positive is called a positive
program.

We use the following abbreviations for a program P:
B p for the Her brand Base of P,
Tp for the immediate consequence operator of P,
ground(P) for the set of all ground instances of clauses from P,
comp(P) for Clark's completion of P.

Also, we use Prolog's convention identifying in the context of a program each string
starting with a capital letter with a variable, reserving other strings for the names of
constants, terms or relations.

In the programs we use the usual list notation. The constant [] denotes the empty
list and [. I .] is a binary function which given a term x and a list xs produces a new
list [x I xs] with head x and tail xs. The standard notation [x1, •.. , x,.], for n ;:::: O, is
used as an abbreviation of [x1 I[... [xnl[]] ...]]. Given a list [x1, ••. ,xn], each Xi is called
an element of [x1 , ... , Xn]. In general, the Herbrand Universe will also contain "impure"
elements that contain [J or [. I . J but are not lists - for example s([]) or [s(O) I OJ where
0 is a constant and s a unary function symbol. They will not cause any complications.

Left Termination

In this paper we consider SLDNF-resolution with one selection rule only - namely that
of Prolog, usually called the leftmost selection rule. As S in S LD N F stands for "selection
rule", we denote this form of resolution by LD N F (Linear resolution for Definite clauses
with Negation as Failure).

When studying termination of general Prolog programs, i.e. programs executed using
the LDNF-resolution it is necessary to revise the standard definitions of Lloyd [Llo87].
Indeed, according to his definitions there is no LDNF-derivation for {p +- •P} U { +- p}
whereas the corresponding Prolog execution diverges.

The appropriate revision is achieved by viewing the LDNF-resolution as a top down
interpreter which given a program P and a goal G attempts to build a search tree for
P U { G} by constructing its branches in parallel. The branches in this tree are called
LDNF-derivations for PU {G} and the tree itself is called the LDNF-tree for PU {G}.

268

Negative literals are resolved using the negation as failure rule which calls for the
construction of a subsidiary search tree. If during this subsidiary construction the in­
terpreter diverges, the main LDN F-derivation is considered to be infinite. Adopting
this view the LDN F-derivation for {p <-- -.p} U { <-- p} diverges because the goal <-- p
is resolved to ,__ -.p and the subsequent construction of the subsidiary LDN F-tree for
{p ,__ -ip} U { ,__ p} diverges.

Summarizing, by termination of a general Prolog program we actually mean termi­
nation of the underlying interpreter. By choosing variables of the input clauses and the
used mgu's in a fixed way we can assume that for every program P and goal G there
exists exactly one LDNF-tree for PU {G}. The subsidiary LDNF-trees formed during
the construction of this tree are called subsidiary LDNF-trees for PU {G}.

The following notion plays an important role in our considerations.

Definition 1.1 A program P is called left terminating if all LD N F-derivations of P
starting in a ground goal are finite. , 0

In other words, a program is left terminating if all LDNF-trees for P with a ground
root are finite. When studying Prolog programs, one is actually interested in proving
termination of a given program not only for all ground goals but also for a class of non­
ground goals constituting the intended queries. Our method of proving left termination
will allow us to identify for each program such a class of non-ground goals.

The following lemma will be of use later.

Lemma 1.2 Suppose that all LD N F-derivations of P starting in a ground positive goal
are finite. Then P is left terminating.

Proof. It suffices to show that for all ground literals Lall LD N F-derivations of PU{ ,__ L}
are finite. When L is positive it is a part of the assumptions and when L is negative,
say L = -iA, it follows from the fact that by assumption the subsidiary LDNF-tree for
P U { <-- A} is finite.

0

2 Acceptable Programs

Definitions

The subject of termination of Prolog programs has been studied in several articles (see
Apt and Pedreschi [AP90] for a short overview). Our approach to termination of general
Prolog programs is based on a generalization of the approach of Apt and Pedreschi [AP90].
We begin by recalling the relevant notions.

A level mapping for a positive program P (see Bezem [Bez89] and Cavedon [Cav89])
is a function I I : Bp -+ N from ground atoms to natural numbers. For A E Bp, IAI is
the level of A.

Definition 2.1 Let P be a positive program, 11 a level mapping for P and I a (not
necessarily Herbrand) model of P. P is called acceptable with respect to 11 and I if for
every clause A+- B1, ... , En in ground(P)

IAI > IBil for i E [1, n],

269

where

n= min({n} U {i E [1,n] II~ Bi}).

Alternatively, we may define n by

_ _ { n if! I= B1 A ... A Bn,
n - i if I I= B1 A ... A Bi-l and I ~ Bi A • • • A B;.

P is called acceptable if it is acceptable with respect to some level mapping and a
~~~~ D 

Our aim is to generalize the above concept of acceptability to general Prolog programs. 
First , we extend in a natural way a level mapping to a mapping from ground literals to 
natural numbers by putting j-,AI = IAI. Next, given a program P, we define its subset 
p-. In p- we collect the definitions of the negated relations and relations on which these 
relations depend. More precisely, we define p- as follows. 

Definition 2.2 Let P be a program and p, q relations. 

(i) We say that p refers to q iff there is a clause in P that uses p in its head and q in 
its body. 

(ii) We say that p depends on q iff (p, q) is in the reflexive, transitive closure of the 
relation refers to. 

0 

Of course, not every relation needs to refer to itself, but by reflexivity every relation 
depends on itself. 

Definition 2.3 Let P be a program. Denote by N egp the set of relations in P which 
occur in a negative literal in a body of a clause from P and by N egj, the set of relations 
in P on which the relations in N egp depend on. We define p- to be the set of clauses in 
P in whose head a relation from N egj, occurs. D 

We can now introduce the desired generalization of the notion of acceptability. 

Definition 2.4 Let P be a program, 11 a level mapping for P and I a model of P whose 
restriction to the relations from N egj, is a model of comp(P-). P is called acceptable with 
respect to 11 and I if for every clause A+- L1, ... , Ln in ground(P) 

IAI > ILil for i E [1, n], 

where 

n = min({n} U {i E [1,n] I I~£,}). 
P is called acceptable if it is acceptable with respect to some level mapping and a model 
of P whose restriction to the relations from Negj, is a model of comp(P-). D 



270 

Note that for a positive program P we have N egj, = 0, so p- is empty and the above 
definition coincides with the definition of acceptability for positive programs. 

The concept of an acceptable program also generalizes that of an acyclic program 
studied in Cavedon [Cav89] and Apt and Bezem [AB90]. 

Definition 2.5 Let P be a program, J J a level mapping for P. P is called acyclic with 
respect to 11 if for every clause A <- Lll ... , Ln in ground(P) 

JAJ > JLiJ for i E [1, n]. 

P is called acyclic if it is acyclic with respect to some level mapping. D 

Lemma 2.6 Every acyclic program is acceptable. 

Proof. Let P be acyclic w.r.t. some level mapping J J. By Theorem 4.1 of Apt and Bezem 
[AB90] comp(P) has a unique Herbrand model, Mp. Then P is acceptable w.r.t. 11 and 
Mp. D 

Apt and Bezem [AB90] proved among others that all SLDN F-derivations of an acyclic 
program starting in a ground goal are finite. This implies that all acyclic programs are 
left terminating, so the concept of acyclicity is of obvious importance when studying 
termination of Prolog programs. Indeed, in Apt and Bezem [AB90] the usefulness of 
this concept was demonstrated by proving termination of a program which formalizes the 
Yale Shooting problem of Hanks and McDermott [HM87]. However, as we shall see in the 
:final section of this paper, there exist natural left terminating programs which are not 
acyclic. Thus the concept of acyclicity is of limited applicability when considering Prolog 
programs. 

Multiset ordering 

In our considerations below we use the multiset ordering. A multiset, sometimes called 
bag, is an unordered sequence. Given a (non-reflexive) ordering< on a set W, the multiset 
ordering over (W, <) is an ordering on finite multisets of the set W. It is defined as the 
transitive closure of the relation in which X is smaller than Y if X can be obtained from 
Y by replacing an element a of Y by a finite (possibly empty) multiset each of whose 
elements is smaller than a in the ordering <. 

In symbols, first we define the relation ~ by 

X -< Y iff X = Y - {a} U Z for some Z such that b < a for b E Z, 

where X, Y, Z are finite multisets of elements of W, and then define the multiset ordering 
over (W, <) as the transitive closure of the relation -<. 

It is well-known (see e.g. Dershowitz [Der87]) that multiset ordering over a well­
founded ordering is again well-founded. Thus it can be iterated while maintaining well­
foundedness. What we need here is, as in Apt and Pedreschi [AP90], two fold iteration. 
We start with the set of natural numbers N ordered by < and apply the multiset ordering 
twice. We call the first iteration multiset ordering and the second double multiset ordering. 
Both are well-founded. The double multiset ordering is defined on the finite multisets of 



271 

finite multisets of natural numbers, but we shall use it only on the finite sets of finite 
multisets of natural numbers. The following simple lemma (see Apt and Pedreschi [AP90]) 
will be of help when using the double multiset ordering. 

Lemma 2. 7 Let X and Y be two finite sets of finite multisets of natural numbers. Sup­
pose that 

Vx EX 3y E Y (y majorizes x), 

where y majorizes x means that x is smaller than y in the multiset ordering. 
Then X is smaller than Y in the double multiset ordering. 

Proof. We call an element y E Y majorizing if it majorizes some x E X. X can be 
obtained from Y by first replacing each majorizing y E Y by the multiset My of elements 
of X it majorizes and then removing from Y the non-majorizing elements. This proves 
the claim. 0 

Below we use the notation bag ( a 1 , ... , an) to denote the multiset consisting of the 
unordered sequence a1 , .. ., an. 

Boundedness 

Another important concept is that of boundedness, originally introduced in Bezem 
[Bez89]. It allows us to identify goals from which no divergence can arise. Recall that 
an atom A is called bounded w.r.t. a level mapping 11 if 11 is bounded on the set [A] of 
ground instances of A. If A is bounded, then I [A] I denotes the maximum that 11 takes on 
[A]. Note that every ground atom is bounded. 

Our concept of a bounded general goal directly generalizes that of a bounded goal 
given in Apt and Pedreschi [AP90]. 

Definition 2.8 Let P be a program, 11 a level mapping for P, I model of P whose 
restriction to the relations from N egj, is a model of comp(P-) and k ~ 0. 

(i) With each ground general goal G = +--- L1 , •. • , Ln we associate a finite multiset IGl1 
of natural numbers defined by 

where 
ii= min({n} U {iE [1,n]IIV=L;}). 

(ii) With each general goal G we associate a set of multisets l[G]l1 defined by 

l(G]l1 = {IG'l1 I G' is a ground instance of G}. 

(iii) A general goal G is called bounded by k w.r.t. 11 and I if k ~ f for f E Ul(G]j1 , where 
Ul[G]l1 stands for the set-theoretic union of the elements of l[G]l1 . 

(iv) A general goal is called bounded w.r.t. 11 and I if it is bounded by some k ~ O w.r.t. 
JI and I. 



272 

0 

It is useful to note the following. 

Lemma 2.9 Let P be a program, 11 a level mapping for P and I a model of P whose 
restriction to the relations from Neg'j, is a model of comp(P-). A general goal G is 
bounded w.r.t. 11 and I iff the set l[G]l1 is finite. 

Proof. Consider a general goal G that is bounded by some k. Suppose that G has n 
atoms. Then each element of j(G] 11 is a multiset of at most n numbers selected from [O, k]. 
The number of such multisets is finite. 

The other implication is obvious. 0 

The following lemma is an analogue of Lemma 3.7 of Apt and Pedreschi [AP90]. Recall 
that a goal is called positive if it contains only positive literals. 

Lemma 2.10 Let P be a program that is acceptable w.r.t. a level mapping 11 and an 
interpretation I. Let G be a goal which is a descendant of a positive goal and which is 
bounded ( w. r. t. 11 and I) and let H be an LD N F -resolvent of G from P. Then 

{i) H is bounded, 

{ii) l[H]l1 is smaller than l[G]l1 in the double multiset ordering. 

Proof. The proof is analogous to the proof of Lemma 3.7 of Apt and Pedreschi [AP90]. 
Due to the presence of negative literals we only have to consider one additional case. 

Let G =+-Li, ... , Ln (n;::: 1). For sm;ne literals M1, ... , Mk (k ;::: 0) and a substitution 
B we have H =+-(Mi. .. ., Mk, L2, .. ., Ln)B. 

First we show that for every ground instance Ho of H there exists a ground instance 
G' of G such that IHol1 is smaller that IG'l1 in the multiset ordering. 

Case 1 H is obtained from G by the negation as failure rule. 
Then L1 is a ground negative literal, say Li =-.A, and H = +- L2 , •. ., Ln, i.e. k = 0 and 
B = c (c stands for the empty substitution). 

Denote by T the finitely failed LDNF-tree for PU{ +-A}. By the definition of Negp 
and the fact that G is a descendant of a positive goal, the relation occurring in A is in 
Negp. Thus all relations which occur in the goals of the tree T are elements of Neg[,. 
So T is in fact a finitely failed LDNF-tree for p- U {+-A}. By the soundness of the 
SLDNF-resolution, comp(P-) f= -.A, so If= Li. 

Let Ho be a ground instance of H. For some substitution 8 

Ho = +- L~, .. ., L~, 

where Li denotes Li8. Thus 

G'-+-L L' L' - li 2>''" n> 

is a ground instance of G. Then 

IHol1 = bag (IL~I, .. ., IL~I) 



273 

where 
n = min({n} u {i E [2,n] II~ Lm. 

and, since I != £ 1 , 

IG'l1 = bag (ILd, IL~I,. · ., IL~I). 
This shows that IHolr is smaller than IG'lr in the multiset ordering. 0 

Case 2 H is obtained from G by the proper resolution step. 
Then L1 is a positive literal, so for some atom A, C = A - Mi, ... , M1c is an input 
clause of P and 8 is an mgu of A and £ 1. Let Ho be a ground instance of H. For some 
substitution 6 

Ho = - M{, .. . , M~, L~, .. . , L~, 

where for brevity for any atom, clause or goal M, M1 denotes MBo. Note that 

C1 = L~ -M{, ... ,M~ 

and 

since A'= Li as AB = L18. 
Subcase 1 For i E [1, k] I!= Mf. 
Then 

G' = - Li, ... ,L~, 

IHolr = bag (IM~I,. · ., IM~j, IL~I, .. . , IL~I) 

where 
n= min({n}U{iE[2,n]II~Lm. 

Additionally I != L~ because I is a model of Panda fortiori a model of the clause C1• 

Thus 

IG'lr = bag (JLil, IL~I, · · ., IL~I). 

This means that IHol1 is obtained from IG'l1 by replacing !Li! by !Mfj, ... , IM11· But 
by the definition of acceptability 

IMII < ILil 

for i E [1, k], so IHol1 is smaller than IG1l1 in the multiset ordering. 

Subcase 2 For some i E [1, k] I !;t= Mf. 
Then 

IHol1 = bag(IMn, ... , IMW 

where 
k = min({i E [1, k] I I~ MI}). 

0 



274 

Also, by the definition of acceptability 

[M:i < [L~[ 

for i E [1, k], so [Holr is smaller than [G'l1 in the multiset ordering. 0 

D 

The statement we just proved implies claim (i) since G is bounded. By Lemma 2.9 

l[HJl1 is finite and claim (ii) now follows by Lemma 2.7. 0 

Corollary 2.11 Let P be an acceptable program and G a bounded positive goal. Then all 

LD N F -derivations of P U { G} are finite. 

Proof. The double multiset ordering is well-founded. D 

Corollary 2.12 Every acceptable program is left terminating. 

Proof. By the fact that every ground goal is bounded, Corollary 2.11 and Lemma 1.2. 0 

Thus to prove that a program is left terminating it suffices to show that it is acceptable. 
To apply Corollaries 2.11 and 2.12 we need a method for verifying that an interpreta­

tion is a model of comp(P-). In the case of Herbrand interpretations this task becomes 
much simpler thanks to the following theorem due to Apt, Blair and Walker [ABW88]. 
Here an interpretation is supported if for all ground atoms A, I I= A implies that for some 
clause A+- Lb .. ., Ln in ground(?) we have I I= £1 /\ ... /\ Ln. 

Theorem 2.13 A Herbrand interpretation I is a model of comp(P) iff it is a supported 
model of P. 0 

3 Acceptability versus Left Termination 

The converse of Corollary 2.12 does not hold. This is in contrast to the case of positive 
programs. Below we say that an LDN F-derivation flounders if there occurs in it or in any 
of its subsidiary LDNF-trees a goal with the first literal being non-ground and negative. 
An LDNF-tree is called non-floundering if none of its branches flounders. 

Example 3.1 Consider the program P which consists of only one clause: p(O) +- -ip(X). 
Then the only LDNF-derivation of PU { +- p(O)} flounders, so it is finite. By the 
definition of SLDNF-resolution the only LDNF-derivation of PU { +- -ip(O)} flounders, 
as well. Thus P is left terminating, since the only ground goals are of the form G = +­

L1, .. ., Ln (n 2: 1) where each L; is either p(O) or -ip(O). On the other hand P is not 
acceptable since p(O) +- -ip(O) is in ground(P) and by definition for any level mapping 
jp(O) I = j-ip(O) [. 0 



275 

The above example exploits the fact that S LD N F-derivations may terminate by floun­
dering. We now show that in the absence of floundering Corollary 2.12 can be reversed. 
We proceed analogously to the case of positive programs and study the size of finite 
LDNF-trees. We need the following lemma, where nodesp(G) for a program Panda 
goal G denotes the total number of nodes in the LDNF-tree for PU {G} and in all the 
subsidiary LDNF-trees for PU {G}. 

Lemma 3.2 Let P be a program and G a goal such that the LDNF-tree for PU {G} is 
finite and non-floundering. Then 

(i) for all substitutions(), the LDNF-tree for PU {GO} is finite and non-floundering 
and nodesp(GB) ~ nodesp(G), 

{ii) for all prefixes H of G, the LDNF-tree for PU {H} is finite and non-floundering 
and nodesp(H) ~ nodesp(G), 

{iii) for all non-root nodes Hin the LDNF-treefor PU{G}, nodesp(H) < nodesp(G). 

Proof. 
(i) The proof proceeds by structural induction on the LDNF-tree T for PU {G}. 

The Base Case. Then T is formed by the only node G. The following three subcases 
arise. 

Subcase 1 G =D. Then G =GB, and the claim trivially holds. 
Subcase 2 G = +-A, L2, •• • , Lk. Then A does not unify with the head of any clause in 
P and neither AB does. As a consequence, the goal GB also immediately fails, and the 
LDNF-tree T for PU {GB} is formed by the only node GB. 
Subcase 3 G = +--.A, L2 , •• • , Lk. By the fact that T has no floundering derivation, A 
is ground. The goal G immediately fails, so by the definition of the LDNF-resolution 
there is an LDNF-refutation of PU {+-A}. Then GO also immediately fails as A= AB. 
Hence the LDNF-tree T for PU {GB} is formed by the only node GO. By definition 

nodesp(GB) = 1 + nodesp( +-AB) = 1 + nodesp( +-A)= nodesp(G). 

The Induction Case. Two subcases arise here. 

Subcase 1 G = +-A, L2, •• • , Lk. Assume that H 1 , .•. , Hm are the resolvents of G from 
P. Consider GO = +-- (A, L2, ••• , Lk)B, and let Hf, .. . , H{ be the resolvents of GB from P. 
Clearly, for all i in [1, l] there exist j in [l, m] and a substitution 8 such that HI= H;c. 
By the induction hypothesis, nodesp(Hi) ~ nodesp(H;). Hence: 

nodesp(GB) = 1 + nodesp(HD + ... + nodesp(Hf)::::; 
1 + nodesp(H1 ) + ... + nodesp(Hm) = nodesp(G). 

Moreover, the LDNF-tree for PU{GB} is finite and non-floundering and by the induc­
tion hypothesis the LDNF-trees for the resolvents of GB are finite and non-floundering. 
Subcase 2 G = +--.A, L2, •• • , Lk. By the fact that T has no floundering derivation, A is 
ground. The fact that G is not a terminal node in T implies that there exists an LDNF­
refutation of PU {+--.A}, i.e. the LDN F-tree for PU {+-A} is finitely failed. Then G 



276 

has only one resolvent, namely +-- L 2 , •• . , Lk· Moreover, GB = +--•A, (L2, ... , Lk)B, since 
A is ground, so +-- (L2 , ••• , Lk)B is the only resolvent of GB. By the induction hypothesis, 
nodesp( +-- (L2, ••• , L1o)O) ~ nodesp( +-- L 2 , •• • , Lk)· Hence: 

nodesp(GO) = 1 + nodesp( +--A)+ nodesp( +-- (L2, .. . , Lk)B) ~ 
1 + nodesp( +--A)+ nodesp( +-- L 2 , •. • , Lk) = nodesp(G). 

Moreover, the LDNF-tree for PU {GO} is finite and non-floundering, since by the 
induction hypothesis the LDNF-tree for the resolvent of GB is finite and non-floundering. 

(ii) Consider a prefix H = +-Li, ... , Lk of G = <--Li, ... , Ln (n ~ k). By an ap­
propriate renaming of variables (formally justified by a straightforward extension to the 
LDN F-resolution of the Variant Lemma 2.8 in Apt [Apt90]) we can assume that all input 
clauses used in the LDNF-tree for PU {H} have no variables in common with G. We 
can now transform the LDN F-tree for PU { H} into an initial subtree of the LDN F-tree 
for PU {G} by replacing in it a node +-- M1, .•. , M1 by +--Mi, ... , M1, Lk+1B, .. . , LnB, 
where (}is the composition of the mgu's used on the path from the root H to the node 
.-- Mi, ... , Mi. This implies the claim, since every subsidiary LDN F-tree for PU { H} is 
also a subsidiary LDNF-tree for PU {G}. 

(iii) Immediate by the definition. 0 

The following definition will now be useful. 

Definition 3.3 We call a program P non-floundering if all its LDN F-derivations starting 
in a ground goal are non-floundering. 

Theorem 3.4 Let P be a left terminating, non-floundering program. Then for some level 
mapping I I and a model I of comp(P) 

{i) P is acceptable w.r.t. I I and I, 

(ii) for every goal G, G is bounded w.r.t. I I and I iff all LDNF-derivations of PU{G} 
are finite. 

Proof. Define the level mapping by putting for A E Bp 

IAI = nodesp ( +-- A). 

Since P is left terminating, this level mapping is well defined. Note that by definition 
for A E Bp ' 

nodesp( +-- -iA) > nodesp( +-A)= !Al= l-iAI, 
so 

Next, choose 

I= {A E Bp I there is an LDNF-refutation of Pu {<--A}}. 



277 

Let us show that I is a model of comp(P). To this end, we use Theorem 2.13 and show 
that I is a supported model of P. 

To establish that I is a model of P, assume by contradiction that some ground instance 
A+- Li, ... , L~ of a clause C from P is false in J. Then I I= Li /\ ... /\ L~ and I ~ A. 
Since P is left terminating and non-floundering, I ~A implies that the LDNF-tree for 
PU { ...,_ A} is finitely failed and non-floundering. 

For some ground substitution ry, A= Bry where Bis the head of the clause C. Thus 
Ary= B1'Y = B1, so A and B unify. 

Let +- L1, •.. , Ln be the resolvent of +-A from the clause C. The LDNF-tree 
for P U { +- Li. ... , Ln} is al.so :finitely failed and non-floundering. As Li, ... , L~ = 
(Lb ... , Ln)8 for some substitution 8, we have by Lemma 3.2(i) that the LDNF-tree 
for PU {+-Li, ... , L~} is non-floundering. Moreover, it is finitely failed, since a di­
rect consequence of the proof of Lemma 3.2(i) is that the goals present in the LDNF­
tree for PU {...,_Li, ... , L~} are all instances of the goals present in the LDNF-tree for 
PU {+-Li. ... , Ln}· But the fact that the LDNF-tree for PU {+-Li, ... , L~} is finitely 
failed and non-floundering contradicts the hypothesis that I I= Li /\ ... /\ L~. 

To establish that I is a supported interpretation of P, consider A E Bp such that 
I I= A, and let C be the first input clause used in the leftmost LDNF-refutation of 
PU {+-A}. Let +- L1 , •.• , Ln be the resolvent of +-A from the clause C. Clearly, 
an LDNF-refutation for PU { ...,_L1, .•. ,Ln}, with a computed answer substitution 8, 
can be extracted from the LDNF-refutation of PU {+-A}. Let Li, ... , L~ be a ground 
instance of (Lb ... , Ln)B. By a straightforward generalization of Lemma 3.20 in [Apt90] 
to the LDNF-resolution there exists an LDNF-refutation for PU {...,_Li, ... ,£~}. We 
conclude that I I= Li /\ ... /\ L~. This establishes that I is a supported interpretation of 
P. 

We are now in the position to prove (i) and (ii). First we prove one implication of (ii). 

(iil) Consider a goal G such that all LDNF-derivations of PU {G} are finite. We prove 
that G is bounded by nodesp(G) w.r.t. 11 and I. 

To this end take e E ul[G]j1 . For some ground instance +- L1, .•. , Ln of G and 
i E [1, n], where 

n = min({n} U {i E [1,n] I I~ Li}), 

we have e = ILil· We now calculate 

nodesp(G) 
~ {Lemma 3.2 (i)} 

nodesp( +- Li. ... , Ln) 
~ {Lemma 3.2 (ii)} 

nodesp( +- L1 , ... , Lt1) 
~ {Lemma 3.2 (iii), noting that for j E [1, n -1] 

there is an LDNF-refutation of PU { +- L1, ... , Lj}} 

nodesp( +-Li, ... , Lfl.) 



278 

~ {Lemma 3.2 (ii)} 

nodesp (+-Li) 
~ {definition of I I, Li is ground} 

ILil 
= i. 

(i) We now prove that P is acceptable w.r.t. 11 and I. We showed that I is a model of 
comp(P), so the restriction of I to the relations in Negj, is trivially a model of comp(P-). 
To complete the proof, take a clause A +- Li, ... , Ln in P and its ground instance AO +­

L1B, .. • , LnB· We need to show that 

where 
n= min({n} U {iE[l,n]IIp!:LiO}). 

We have ABB= AO, so AO and A unify. Letµ= mgu(AB, A). Then B = µ8 for some 8. 
By the definition of LDNF-resolution, +- L1µ, ... ,Lnµ is an LDNF-resolvent of+- AO. 

Then for i E [1, n] 

IAOI 
= {definition of 11} 

nodesp (+-AO) 
> {Lemma 3.2(iii), +- L1µ, .. . , Lnµ is a resolvent of +- AO} 

nodesp ( +- L1µ, .. . , Lnµ) 

> {part (iil), noting that L;B E UI[+- Liµ, ... , Lnµ] 11} 
IL;BI. 

(ii2) Consider a goal G which is bounded w.r.t. 11 and I. Then by (i) and Corollary 2.10 
all LDNF-derivations of PU {G} are finite. D 

Corollary 3.5 A non-floundering program is left terminating iff it is acceptable. 

Proof. By Corollary 2.12 and Theorem 3.4. D 

4 Semantic Considerations 

In this section we study semantics of acceptable programs. We show here that various 
ways of defining their semantics coincide. 

We recall first the relevant definitions and results. We use below Fitting's approach to 
the semantics of general programs. Fitting [Fit85] uses a 3-valued logic based on a logic 



279 

due to Kleene (Kle52]. In Kleene's logic there are three truth values: t for true, f for false 
and u for undefined. 

A Herbrand interpretation for this logic (called a 3-valued Herbrand interpretation) is 
defined as a pair (T, F) of disjoint sets of ground atoms. Given such an interpretation 
I = (T, F) a ground atom A is true in I if A E T, false in I if A E F and undefined 
otherwise; -.A is true in l if A is false in I and -.A is false in l if A is true in J. 

Every binary connective takes the value t or f if it takes that value in 2-valued logic 
for all possible substitutions of u's by t or f; otherwise it takes value u. 

Given a formula <Panda 3-valued Herbrand interpretation I, we write <P is truea in l 
(respectively <P is f alse3 in J) to denote the fact that <P is true in l (respectively that <P 

is false in I) in the above defined sense. 
Given I= (T, F) we denote T by J+ and F by 1-. Thus I= (J+, 1-). If J+uJ- = Bp, 

we call I a total 3-valued Herbrand interpretation for the program P. 
Every (2-valued) Herbrand interpretation l for a program P determines a total 3-

valued Herbrand interpretation (I, Bp-I) for P. This allows us to identify every 2-valued 
Herbrand interpretation I for a program P with its 3-valued counterpart (1, Bp -1). For 
uniformity, given a (2-valued) Herbrand interpretation I we write <P is true2 in I instead 
of l I= <P and <P is false2 in I instead of l ~ </J. The following proposition relates truth in 
3- and 2-valued intepretations and will be useful later. 

Proposition 4.1 Let I be a 3-valued interpretation and L a literal. Then 

{i) L is true3 in l implies L is true2 in J+, 

{ii) Lis true2 in J+ implies L is not false3 in I, i.e. L is either true3 or undefined in 
I. 

Proof. 
(i) If L = A, L is truea in I implies A E J+, hence A is true2 in J+. If L = -.A, -.A is 
true3 in I implies A E 1-, which implies A (/. J+. Hence -.A is true2 in J+. 
(ii) If L = A, L is true2 in J+ implies A E J+, hence A is true3 in I. If L = -.A, -.A is 
true2 in J+ implies A r/. J+. Hence -.A is either truea or undefined in I. D 

Given a program P, the 3-valued Herbrand interpretations for P form a complete 
partial ordering with the ordering ~ defined by 

and with the least element (0, 0). Note that in this ordering every total 3-valued Her brand 
interpretation is ~-maximal. Intuitively, I~ J if J decides both truth and falsity for 
more atoms than I does. 

Following Fitting (Fit85], given a program P we define an operator <bp on the complete 
partial ordering of 3-valued Herbrand interpretations for P as follows: 

'Pp(l) = (T, F), 

where 



280 

T = {A I for some A+- L1, •• ., L1c in ground(P), L1 /\ ... /\ L1c is true3 in I}, 
F = {A I for all A+- £ 1, .. ., L,. in ground(P), L1 /\ ... /\ L1c is f al sea in I}. 

It is easy to see that T and F are disjoint, so i!?p(J) is indeed a 3-valued Herbrand 
interpretation. 4? p is a natural generalization of the usual immediate consequence operator 
Tp to the case of 3-valued logic. <I> p is easily seen to be monotonic. 

The upward ordinal powers of <Pp, denoted by cl>p j a:, are defined in the usual way 
starting the iteration at the <;-least 3-valued Herbrand interpretation, (0, 0). In partic­
ular 

4? P i w = LJ CJ? p i n. 
n<w 

Before studying semantics of acceptable programs we prove a number of auxiliary 
results about the operators Tp and 4?p. The following lemma relates these two operators. 

Lemma 4.2 Let I be a 3-valued interpretation and P a program. Then 

<l>p(J)+ <; Tp(J+) <;BP - <l>p(f)-. 

Moreover, if I is total then <I>p(J)+ = Tp(J+) = Bp - <l>p(I)-. 

Proof. By definition of Tp and tPp we obtain: 

A E tl>p(J)+ 
AE Tp(J+) 

iff for some A+- Li, ... , L1c in ground(P) L1 /\ ... /\ L1c is true3 in I, 
iff for some A+- L1, ... , L1c in ground(P) L1 /\ ... /\ L,. is true2 in J+, 

A E Bp - <I>p(I)- iff for some A+- L1, .. . , L1c in ground(P) L1 /\ ... /\ L1c is not false3 

in I. 

Hence, the implication A E <l>p(J)+ =?A E Tp(J+) (respectively A E Tp(f+) =?A E 

Bp - i!?p(Jt) directly follows from Proposition 4.l(i) (respectively Proposition 4.l(ii)). 
If I is total, then L1 /\ ... /\ L1c is true3 in I iff L1 /\ ... /\ L1c is true2 in J+ iff 

L1 /\ ... /\ L1c is not f alse3 in J. O 

The following corollaries relate the fix:points of the operators Tp and cl>p. 

Corollary 4. 3 Let I = ( J+, B p - J+) be a total 8-valued interpretation and P a program. 
Then J+ is a fixpoint of Tp if and only if I is a fixpoint of cl> p. 

Proof. 
(=?)Assume J+ = Tp(J+). By Lemma 4.2 we have <l>p(J)+ = Tp(J+) = Bp - tPp(Jt. 
Hence J+ = 4?p(J)+ and 1- = Bp - J+ = <Pp(It, i.e. I= <I>p(I). 
(-<=)Assume I= <l?p(l). Then by Lemma 4.2 we have 

l+ = <l?p(J)+ <; Tp(l+) <; Bp - if!p(l)- = Bp - r = l+. 

Hence J+ is a :fi.xpoint of Tp. 0 

Corollary 4.4 If if!p has exactly one fixpoint I and I ~ total, then J+ is the unique 
fixpoint of Tp. 



281 

Proof. By Corollary 4.3. 0 

The fixpoints of the operator Tp are of interest for us because of the following result 
of Apt, Blair and Walker [ABW88]. 

Theorem 4.5 A Herbrand interpretation I is a model of comp(P) iff it is a fixpoint of 
~. 0 

Corollary 4.6 If I is a Herbrand model of comp(P) then <I> pi w ~(I, Bp - I). 

Proof. Suppose I is a Herbrand model of comp(P). Then by Theorem 4.5 I is a fixpoint 
of Tp, so by Corollary 4.3 (l,Bp - I) is fixpoint of <I?p. By the monotonicity of <l>p the 
least fixpoint of <I> p, lf p( <l> p), exists and <l> p j w ~ lfp( <b p ). But lf p(<I?p) ~ (I, B p - I), 
so cl?p i w ~ (l,Bp - I). 

0 

We are now ready to analyze the semantics of acceptable programs. 

Theorem 4. 7 Let P be an acceptable program w. r. t. 11 and I. Then <I> p i w is total. 

Proof. To establish that <I> p i w is total we prove that, for n E w and A E B p, IAI = n 
implies that A is not undefined in <.f?p T (n + 1), i.e. A is either true3 or f alse3 in 
cl?p i (n + 1). The proof proceeds by induction on n. Fix A E Bp. 

In the base case we have JAJ = 0 and since P is acceptable, two possibilities arise: (i) 
there is a unit clause A+- in ground(P) and (ii) there is no clause in ground(P) with A 
as conclusion. In case (i) A is true3 in cl?p i 1, and in case (ii) A is falsea in <bp T 1. 

In the induction case we have JAI = n > 0. Consider the set CA of the clauses in 
ground(P) with A as conclusion. If CA is empty then A is false3 in <lip T 1 and, by 
the monotonicity of <°Pp, it is false3 in <I?p j (n + 1). If CA is non-empty, take a clause 
A +-L1,. . ., Lk from CA, and let k == min({k} U {i E [1,k] I Li is false2 in I}. We now 
prove that L1 /\ •.. /\ Lk is not undefined in <l> p T n. To this end we consider two subcases. 

Subcase 1. k = k and Lk is true2 in I. Then, by the acceptability of P, n = IAI > ILkl 
for i E [1, k]. By the induction hypothesis Li is either true3 or f al sea in <l>p i n, for 
i E [1, k]. 

Subcase 2. k ::; k and L-r. is false2 in I. Then n = jAJ > ILkl for i E [l, k]. By the 
induction hypothesis, Li is either true3 or f alse3 in <.f?p in, for i E [1, k]. Moreover, we 
claim that L-,. is f alse3 in <I> p i n. To establish this point, the following two possibilities 
have to be taken into account. 

Suppose the relation occurring in L-,. is in N egj,. A simple proof by induction on n 
shows that <l>p in and 'l>p- j n coincide on the relations in Neg[,. Thus L-,. is truea in 
<.f?p j n implies L-,. is true3 in <l>p- j n. Hence, by Corollary 4.6 and Proposition 4.l(i), 
L-,. is true2 in the restriction of I to the relations in Negj, which is a model of comp(P-). 
This contradicts the fact that L-,. is f alse2 in I. 



282 

If the relation occurring in L-;. is not in N egf>, then L;; is a positive literal. We show 
tha.t in this case L;; is true3 in <I> p j n implies LI; is true2 in I by induction on the 
stage i at which Lr. becomes true3 in <I> p j i. For i = 0 there is nothing to prove. If 
L-r. becomes true3 in <l>p ii, then there is a clause Lk ~Mi, ... , Mm in ground(P) with 
M 1 /\ ... /\Mm being true3 in <l>p j (i-1). For j E [1,m], if the relation occurring in 
Mi is in Negf>, then Mj is true3 in <l>p j (i -1) implies Mj is true2 in I by Corollary 4.6 
and Proposition 4.l(i). If the relation occurring in Mj is not in Neg'},, then Mj is true3 in 
<l?p i (i -1) implies Mi is true2 in I by the induction hypothesis. Hence Mi /\ ... /\Mm 
is true2 in I, which implies L,.. is true2 in I, since I is a model of LT<~ M1, .. . , Mm. This 
contradicts the fact that LI: is f alse2 in I. 

In both Subcase 1 and 2, we have that L1 /\ ... /\ L1c is not undefined in <I> p i n, as it 
is either true3 or f alse3 in Subcase 1, and f alse3 in Subcase 2. As a consequence, A is 
either true3 or f alse3 in <l>p j (n + 1), which establishes the claim. D 

Corollary 4.8 Let P be an acceptable program. Then 4>p i w is the unique fixpoint of 
<l> P· 

Proof. We have !Pp j w ~!Pp j (w + 1), i.e. !Pp i w ~ 4>p(<l>p i w). By Theorem 4.7 
<I> p i w is total, so in fact <I> p i w = <I> p (<I> p i w), i.e. <Pp i w is a fixpoint of <I> p. Moreover, 
by the monotonicity of <I> p, every fixpoint of <I> p of the form <I> p i a is contained in any 
other fixpoint, so in fact <Pp j w is the unique fixpoint of <l>p. 0 

The following corollary summarizes the relevant properties of Mp = cl>p j w. 

Corollary 4.9 Let P be an acceptable program. Then 

(i) Mp is total, 

{ii) Mp is the unique fixpoint of <I> p, 

{iii) Mp is the unique 3-valued Herbrand model of comp(P), 

(iv) Mt is the unique fixpoint of Tp, 

(v) Mt is the unique Herbrand model of comp(P), 

(vi) for all ground atoms A such that no LDNF-derivation of Pu {~A} flounders, 

A E Mt iff there exists an LDNF-rejutation of PU {+-A}. 

In particular, this equivalence holds for all ground atoms A when P is non­
fioundering. 

Proof. 
(i) By Theorem 4.7. 
(ii) By Corollary 4.8. 

~iii) By (ii) and the res~t ~f~itting [Fit85] stating that a 3-valued Her brand interpretation 
is a model of comp(P) iff it is a fixpoint of qi P· 



283 

(iv) By Theorem 4. 7 and Corollaries 4.8 and 4.4. 
(v) By Theorem 4.5. 
( vi) Consider a ground atom A such that no LD N F-derivation of P U { +- A} flounders. 
By the soundness of the SLDNF-resolution and (v) if there exists an LDNF-refutation 
of P U { +- A} then A E Mt. To prove the converse implication assume A E Mt. By 
Corollary 2.11 all LDNF-derivations of PU {+-A} are finite. Suppose by contradiction 
that none of them is successful. Then the LD N F-tree for P U { +- A} is non-floundering 
and finitely failed. By the soundness of the SLDN F-resolution and (v), Mt p 0 A, i.e. 
A tJ. MJ which is a contradiction. 

D 

Clause (vi) of the above Corollary can be seen as a completeness result for acceptable 
programs relating the LD N F-resolution to the model Mt. 

5 Applications 

Theorem 3.4 shows that our method of proving termination based on the concepts of 
acceptability and boundedness is complete for left terminating, non-floundering general 
Prolog programs. In this section we illustrate its use by proving termination of two simple, 
well-known programs. None of them can be handled within the framework of Apt and 
Bezem [AB90]. 

A GAME Program 

Suppose that g is an acyclic finite graph. Consider the following program GAME: 

win(X) +- move(X,Y),-, win(Y). 
move(a, b) +- for (a,b) E 9. 

Lemma 5.1 GAME is not acyclic. 

Proof. For any ground instance win( a)+- move( a, a), -iwin(a) of the first clause and a 
level mapping 11 we have lwin(a)I = l•win(a)I. D 

We now proceed to show that GAME is acceptable. Since g is acyclic and finite, there 
exists a function f from the elements of its domain to natural numbers such that for 
a E dom(Q) 

{ 0 if for no b, (a, b) E 9 
f(a) = 1 + max {f(b) I (a, b) E 9} otherwise. 

We define appropriate level mapping by putting for all (a, b) E dom(Q) 

lmove(a, b)I = f(a) 

and for a E dom(Q) 



284 

Jwin(a)J = f(a) + 1. 

Next, since g is acyclic and finite, there exists a function g from the elements of its 
domain to {O, 1} such that for a E dom(g) 

{ 
0 if for no b, (a, b) E g 

g(a) = 1 - min {g(b) J (a, b) E 9} otherwise. 

Let 

I = {move( a, b) J (a, b) E 9} 
U {win(a) I g(a) = 1}. 

Lemma 5.2 I is a model of comp(GAME). 

Proof. The following two statements hold. 
(a) I is a model of GAME. 

Indeed, consider a ground instance 

win( a) -move( a, b), --iwin(b) 

of the first clause of GAME and suppose that 

If= move( a, b) /\ -iwin(b). 

Then (a, b) E g and g(b) = 0, so g(a) = 1 and consequently 

If= win(a). 

Additionally, I is a model for all move clauses. 

(b) I is a supported interpretation of GAME. 
Indeed, consider an atom win(a) E I. Then g(a) = 1, so for some b E g we have 

(a,b) E g and g(b) = 0. We conclude that 

If= move( a, b) /\ -.win(b). 

By Theorem 2.13 we conclude that I is a model of comp(GAME). 0 

We can now prove the desired result. 

Theorem 5.3 GAME is acceptable w.r.t. 11 and I. 

Proof. For a program P every model of comp(P) is also a model of P, thus I is a model 
of GAME. Moreover, GAME- = GAME. 

Consider a ground instance 

win( a) - move( a, b), --iwin(b) 



285 

of the first clause of GAME. Then by definition 

lwin(a)I = f(a) + 1 > J(a) = lmove(a, b)j. 

Suppose now that I I= move( a, b). Then move( a, b) E J, so (a, b) E g and consequently 
f(a) > f(b). Thus 

lwin(a)I = f(a) + 1>f(b)+1 = 1-iwin(b)I. 

D 

Corollary 5.4 GAME is left terminating. 

Proof. By Corollary 2.12. D 

Corollary 5.5 For all terms t, the goal -win(t) is bounded w.r.t. 11 and I. 

Proof. The goal - win(t) is bounded by ma.x {!(a)+ 1 I a E dom(Q)}. Note that be­
cause of the syntax of GAME, t is either a variable or a constant. In the latter case we can 
improve the bound to f (t) + 1. D 

Corollary 5.6 For all terms t, all LDN F-derivations of GAME U { - win( t)} are finite. 

Proof. By Corollary 2.11. 

Transitive Closure 

Consider the following program computing the transitive closure of a graph. 

(r1) r(X, Y ,E, V) -
member( [X, Y] ,E). 

(r2) r(X,Z,E, V) -
member ( [X , Y] , E) , 
..., member (Y, V), 
r (Y, Z, E, [Y I V] ) . 

(m1) member(X, [X IT]) - . 
(m2) member(X, [YITJ) +­

member(X, T). 

D 

In a typical use of this program one evaluates a goal +- r(x, y, e, []) where x, y are 
nodes and e is a graph specified by a list of its edges. The nodes of e belong to a finite set 
A. This goal is ·supposed to suc.ceed when [x, y] is in the transitive closure of e. The last 
argument of r(x, y, e, v) acts as an accumulator in which one maintains the list of nodes 
which should not be reused when looking for a path connecting x with yin e (to keep the 
path acyclic). 

To ensure that the elements of A are in the Herbrand Universe of the program we add 
to the program the clauses 



286 

(e) element(a) ~ fora EA, 

and call the resulting program TRANS. 

Lemma 5. 7 TRANS is not acyclic. 

Proof. By Lemma 4.1 of Apt and Bezem [AB90] all SLDN F-derivations of an acyclic 
program P starting with a ground goal are finite. Thus it suffices to exhibit an infinite 
SLDN F-derivation of TRANS starting in a ground goal. Such a derivation is obtained 
by using the rightmost selection rule and starting with the ground goal ~ r(x, z, e, v) 
repeatedly using clause (r2). 0 

We now prove that TRANS is acceptable. Below we call a list consisting of two elements 
a pair. 

First, we define by structural induction two functions on ground terms. We denote 
the first function by J J: 

J[xjxs]J = Jxsj + 1, 
Jf(xi, ... ,xn)I= Giff# [.J.]. 

Then for a list xs, Jxsj equals its length. We denote the second function by set: 

set([xjxs]) = { x} U set(xs ), 
set(f(x1,.' •• ,xn))= 0iff# [.J.]. 

Then for a list xs, set(xs) is the set of its elements. 
Define now a Herbrand interpretation I by 

I= [r(X, Y, E, V)] U 11 U {element(x) Ix EA} 

where 

Ii== {member(x, xs) Ix E set(xs)}. 

Recall that for an atom A, [A] stands for the set of all ground instances of A. 
We now prove two lemmata about I and J1. 

Lemma 5.8 I is a model of TRANS. 

Proof. I is clearly a model of (r1), (r2) and of the clauses (e). I is also a model of the 
clauses (m1) and (m2) because by definition x E set([xjt]) holds and x E set(t) implies 
x E set([yjt]). o 

Lemma 5.9 11 is a model of comp(TRANs-). 



287 

Proof. Note that TRANS- = {(m1), (m2)}. We prove that J1 is a supported inter­
pretation of {(m1), (m2)}. Consider an atom member(x, xs) E J1• We prove that 
there exists a ground instance member(x, xs) +- L 1 , ... , Ln of (mi) or (m2) such that 
I f= L1 /\ ... /\ Ln. 

By definition x E set(xs), so for some y and t we have xs = [ylt] and x E {y} U set(t). 
If x = y, then xs = [xlt], and the desired clause is an instance of (m1). Otherwise 
x E set(t), so member(x, t) E I, i.e. If= member(x, t). In this case the desired clause is 
an instance of (m2). 

By Lemma 5.8 J1 is a model of {(m1), (m2)}, so by Theorem 2.13 we now conclude 
that 11 is a model of comp( { (m1), ( m2)} ). 0 

We now define an appropriate level mapping. It is clear that by putting 

lmember(x, Y)I =/YI 

we obtain the desired decrease for clause (m2). Having made this choice in order to obtain 
the desired decrease for clause (r1) we need to have 

jr(x, z, e, v) I > lei- (1) 

Additionally, to obtain the desired decrease for clause (r2) we need to have (assuming 
that If= member([x, y], e) ) 

lr(x, z, e, v)I > lvl (2) 

and, assuming 

If= member([x, y], e) /\ --imember(y, v), (3) 

we need to prove 

lr(x,z,e,v)I > jr(y,z,e, [yjv])j. (4) 

To define jr(x, z, e, v)I we first define two auxiliary functions. Let 

nodes(e) = {x I for some pair b, x E set(b) and b E set(e)}. 

If e is a list of pairs that specifies the edges of a graph Q, then nodes( e) is the set of 
nodes of Q. 

Let 
out(e, v) = {x Ix E nodes(e) and x ~ set(v)}. 

If e is a list of pairs that specify the edges of a graph Q and v is a list, then out( e, v) 
is the set of nodes of g that are not elements of v. 

We now put 

lr(x, z, e, v)I =lei+ lvl + 2 ·card out(e, v) + 1, 

where card X stands for the cardinality of the set X. 



288 

Then (1) and (2) hold. Assume now (3). Then [x, y] E set(e) and y ~ set(v). Thus 
y E nodes( e) and consequently y E out( e, v). 

On the other hand set([ylv]) = {y} U set(v). Thus y 'I. out(e, [yjv]) and out(e, v) = 
{y} U out(e, [y\v]) so card out(e, v) =card out(e, [yJv]) + 1. 

We now have 

\r(x, z, e, v)I = lei+ \vl + 2 ·card out(e, v) + 1 
= lei+ \vl + 2 ·card out(e, [y\v]) + 3 

which proves (4). 

> lei+ l[y\v]\ + 2 ·card out(e, [y\v]) + 1 
= \r(y,z,e, [y\v])\ 

Summarizing, we proved the following result. 

Theorem 5.10 TRANS is acceptable w.r.t. 11 and I. 

Corollary 5.11 TRANS is left terminating. 

Proof. By Corollary 2.12. 

D 

0 

Corollary 5.12 For all terms x, y and lists e, v, the goal t- r(x, y, e, v) is bounded w.r.t. 
11 and!. 

Proof. The goal t- r(x, y, e, v) is bounded by iel +Iv!+ 2 ·card out(e, v) + 1. D 

Corollary 5.13 For all terms x, y and lists e, v, all LDN F-derivations of 
TRANS U { t- r(x, y, e, v)} are finite. 

Proof. By Corollary 2.11. 

Acknowledgement 

D 

Marc Bezem made us aware of the importance of including subsidiary LDN F-trees in the 
definition of nodesp(G). 

References 

[AB90] K. R. Apt and M. Bezem. Acyclic programs. In D. H. D. Warren and P. Sz­
eredi, editors, Proceedings of the Seventh International Conference on Logic 
Programming, pages 617-633. The MIT Press, 1990. 

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowl­
edge. In J. Minker, editor, Foundations of Deductive Databases and Logic 
Programming, pages 89-148. Morgan Kaufmann, 1988. 

[AP90] K. R. Apt and D. Pedreschi. Studies in pure Prolog: termination. In J.W. 
Lloyd, editor, Symposium on Gomputional Logic, pages 150-176, Berlin, 1990. 
Springer-Verlag. 



289 

[Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theo­
retical Computer Science, pages 493-574. Elsevier, 1990. Vol. B. 

[Bau88] M. Baudinet. Proving termination properties of PROLOG programs. In Pro­
ceedings of the Srd Annual Symposium on Logic in Computer Science (LICS), 
pages 336-347, Edinburgh, Scotland, 1988. 

[Bez89] M. Bezem. Characterizing termination of logic programs with level mappings. 
In E. L. Lusk and R. A. Overbeek, editors, Proceedings of the North American 
Conference on Logic Programming, pages 69-80. The MIT Press, 1989. 

[Cav89] L. Cavedon. Continuity, consistency, and completeness properties for logic 
programs. In G. Levi and M. Martelli, editors, Proceedings of the Sixth Inter­
national Conference on Logic Programming, pages 571-584. The MIT Press, 
1989. 

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 
8:69-116, 1987. 

[Fit85] M. Fitting. A Kripke-Kleene semantics for general logic programs. Journal of 
Logic Programming, 2:295-312, 1985. 

[HM87] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. 
Artificial Intelligence, 33:379-412, 1987. 

[Kle52] S. C. Kleene. Introduction to Metamathematics. van Nostrand, New York, 
1952. 

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 
second edition, 1987. 

[Plii90a] L. Plumer. Termination Proofs for Logic Programs. Lecture Notes in Artificial 
Intelligence 446, Springer-Verlag, Berlin, 1990. 

[Plii90b] L. Plii.mer. Termination proofs for logic programs based on predicate inequali­
ties. In D. H. D. Warren and P. Szeredi, editors, Proceedings of the Seventh In­
ternational Conference on Logic Programming, pages 634-648. The MIT Press, 
1990. 

[UvG88] J. D. Ullman and A. van Gelder. Efficient tests for top-down termination of 
logical rules. J. ACM, 35(2):345-373, 1988. 


