Wrapper Semantics of an
Object Oriented
Programming Language
with State

Andreas V. Hense
Fachbereich 14

Universitat des Saarlandes

Technischer Bericht Nr. A 14/90
(this report overwrites Nr. A 01/90)

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication and will probably be copyrighted if accepted.
It has been issued as a Research Report for early dissemination of its contents. In view of
the transfer of copyright to the publisher, its distribution prior to publication should be

limited to peer communication and specific requests.

Wrapper Semantics of an Object Oriented
Programming Language with State

Andreas V. Hense*

July 5, 1990

Abstract

Recently, several descriptions of object oriented programming languages with
denotational semantics have been given. Cook presented an intuitive denotational
semantics of class inheritance. This semantics abstracts from the internal state of
objects, which is one of their salient characteristics.

In this paper we show that Cook’s denotational semantics of class inheritance is
applicable to object oriented programming languages, where ob jects have a state. For
this purpose we define a direct denotational semantics of a small example language.
The insertion of state into class definitions can be done before or after the related
fixed point operations. The choice of the alternative considerably influences the
semantic domains and clauses. We claim that despite the introduction of state the
resulting denotational semantics is clear and intuitive.

*Lehrstuhl fir Programmiersprachen und Ubersetzerbau, FB-Informatik, Universitit des Saarlandes,
6600 Saarbriicken 11, Fed. Rep. of Germany, e-mail: hense@cs.uni-sb.de

1

1 Introduction

The method-lookup-semantics of class inheritance [GR89], which includes the semantics of the
pseudo-variables self and super, may look obvious and simple to the novice. But we conjecture
that this simplicity is a fallacious one and that the true nature of inheritance, namely the
difference between inheriting from a class and using a class, may be concealed.

The first semantics for Smalltalk! was operational. [Wol87] described the semantics of a
subset of Smalltalk in the denotational style. This semantics still has some operational elements:
inheritance is described by method lookup. [Kam88] described Smalltalk with a denotational
semantics in continuation style. Both semantics have the disadvantage of being long because
they describe a large subset of Smalltalk. This disadvantage was removed by [Red88] who
described a small object oriented programming language with a direct semantics. Like [Car84]
he uses fixed points for modeling self. [CP89] described the semantics of inheritance without
state. This results in a clear semantics because inheritance is elucidated by a special mechanism
called wrapper.

The essential features of object oriented programming are listed in [Weg87]: an object ori-
ented programming language must support the concepts of objects, object classes, and class
inheritance. An object has a set of operations and a state. Objects communicate with each
other by message sending. The result of a message sent to an object (the receiver) is not com-
pletely determined by the actual parameters but depends on the state of the receiver. Object
classes specify an interface of operations. They can serve as templates for creating objects with
the specified interface. They may also contain the implementation of the operations specified
in the interface. Class inheritance is a mechanism for the composition of interfaces. There is
dynamic binding for operations modified in subclasses.

The programming language O’small, which is presented in this paper, is object oriented
in this sense. The name O’small gives a hint at the purpose and the origin of the language.
[Gor79] described an imperative language called SMALL by giving it a denotational semantics.
O’small is an object oriented extension of SMALL. The reason for describing an extension of
a well known language concept instead of describing the prototype Smalltalk is “inheritance at
another level”: we only show the differences between object oriented and imperative languages;
the description of the latter is well known [Sto77,Gor79).

In this paper we describe a full object oriented language using wrappers. Our goal is a concise
semantics that preserves as much as possible of the intuitiveness of the wrapper mechanism.

1.1 Overview

In anticipation of section 4 the next section intuitively introduces our object oriented program-
ming language O’small. Section 3 describes the semantics of inheritance in method systems.
Method systems are an abstraction of object oriented programming languages. In method sy-
stems there is no state. In section 4 we present the abstract syntax and the direct semantics
of O’small. This semantics is based on the semantics of inheritance in method systems. In
other words: the semantics of inheritance in method systems is embedded in a denotational
semantics without continuations (direct semantics). In section 4.6 O’small is extended to allow
the creation of an object of the receiver’s class.

2 An Introductory Example

Before we present the syntax and the semantics of our object oriented programming language
we will give an intuitive introduction by an example. The O’small program in figure 2 on page 4

!Smalltalk [GR89] serves as a prototype of object oriented programming languages.

2

YA y A
c
c
11T 1+
F—t—t—+— = P ——1+—A
1 < 1 p T
before moving after moving

Figure 1: Points and circles in the plane

is derived from an example by [CP89]: it is about points and circles with Cartesian coordinates
in the plane. Points and circles can be moved in the plane as in figure 1. There are two
class definitions and the inheritance graph is as in figure 3. The class Base is a class “without
contents” (see section 4.5).

Objects of class Potnt have two instance variables representing the Cartesian coordinates of
the point. A point object created with new is in the origin because its instance variables are
initialized to zero. There are two methods for inspecting the instance variables because they are
not directly visible from the outside. The method move changes the position of the receiver.
In object oriented terminology the O’small expression p.m(a) stands for the sending of m with
argument a to the receiver p. There is a method for the distance from the origin and a method
that returns TRUE if the receiver is closer to the origin than the argument. Booleans, numbers,
and some standard functions on them are primitive.

The class Circle, which inherits instance variables and methods from Point, has an additional
instance variable for the radius, methods for reading and changing the radius, and it redefines
distFromOrg. For the redefinition of distFromOrg the distFromOrgdefinition of the superclass
is referred to by super.distFromOrg. Note that the inherited function closerToOrg has not been
redefined in the class Circle. Nevertheless with self.distFromOrg in the body of closerToOrg
the distFromOrg-definition of Circle is meant when the receiver of closerToOrg is in class Circle
(dynamic binding). The output of example 2 results in: FALSE FALSE. This is what we intended.
We are now able to compare points and circles with respect to their closeness to the origin and
always get consistent behavior.

3 Semantics of Inheritance

The contents of this section are taken from [Coo89]. Note that this semantics abstracts from
state. So it is not a description of O’small, which was introduced informally by example 2. The
semantics of O’small will be introduced in section 4.

class Point subclass0f Base
def var xComp := 0; var yComp := 0
in meth x() xComp
meth y() yComp
meth move(X,Y) xComp := X+xComp; yComp := Y+yComp
meth distFromOrg() sqrt(xComp*xComp + yComp*yComp)
meth closerToOrg(point) self.distFromOrg < point.distFromOrg
ni

class Circle subclass0f Point
def var radius := 0O
in meth r() radius
meth setR(r) radius := r
meth distFromOrg() max(0, super.distFromOrg - radius)
ni

def var p := new Point;
var ¢ := new Circle

in p.move(2,2); c.move(3,3); c.setR(2);
output p.closerToOrg(c);

p.move(0,-2); c.move(0,-2);

output p.closerToOrg(c)
ni

Figure 2: Example program in O’small

Base

Figure 3: Inheritance graph

Definition 1 A record is a finite mapping from a set of labels onto a set of values. A record
1 — U

is denoted by | : . : with labels z; and values v;. All labels that are not in the list are
Tn M Un

mapped onto L. The empty record, where all labels are mapped onto L is denoted by [].

Definition 2 Let dom(m) = {z | m(z) #L1}. The left-preferential combination of records is
defined by:
m(s) if s € dom(m)
(m@n)(s) =4 n(s) ifsedom(n)— dom(m)
1 otherwise

@ is left-associative.

An object is a record with functions as values. A generator is a function to which a fixed point
operator can be applied. Its first formal parameter represents self-reference. The functional for
the factorial function is an example of a generator:

FACT = Asdn.if n=1then 1 else n*s(n—1)

Let Y denote the fixed point operator. The following holds: Y f = f('Y f). The factorial function
fact is defined as the least fixed point of the generator FACT:

fact = Y(FACT)

A class is a generator that creates objects. The domain of classes is Class = Object — Object.
We use the term domain instead of type because of the following chapters. C is an example of
a class:

€ = . [abs — Az.\/s.sqr(z)

8qr — Az.z*x T }

If, as here, the class has no further parameters the objects it creates are all identical. An object
c of class C is created by application of the fixed point operator to C':

sqr — Az.z %]_[squAm.z*z

c=Y(C) = [abs > Az./Y(C).sqr(z) abs — Az.\/z xz

Inheritance is the derivation of a new generator from an existing one, whereby the formal para-
meters for self-reference of both generators are shared. A wrapper is a function that modifies a
generator in a self-referential way. A wrapper has a parameter for self-reference and a parameter
for the generator it modifies. From now on we will consider wrappers that operate on classes.
Thus the domain of wrappers is Wrapper = Object — Object — Object.

Definition 3 Let x be a binary operator on values. The distributive version of x is denoted by
. It operates on generators and is defined by:

G1 E' G2 = /\s.Gl(s) * Gz(S)
Definition 4 The inheritance function [>]applies a wrapper W to a class C and returns a
class. It is defined by:

wr]c=(W[]C)[e]C
where wc = (w-c)® c = w(c)® c and - is the application.

5

Wrappers are central to the semantics of inheritance. In every class declaration a superclass is
named. If nothing is inherited Base is named as superclass. Base is the class whose objects
are empty records. The semantics of a class definition is a wrapper being wrapped around the
superclass, and this results in a new class. As pointed out above we can get objects by applying
the fixed point operator to a class. Examples of wrapper applications can be found in [Co089].

Whereas here objects have no state, the definitions presented so far will be used in section 4
where objects do have state. The definitions are also used in [CP89] for the definition of method
systems.

3.1 Method Systems

Method systems are a model of object oriented programming languages. Method systems de-
scribe inheritance only. They do not describe state, i.e. there are no assignments, no instance
variables etc. In [CP89] a denotational semantics for method systems based on wrapper ap-
plication is given. This denotational semantics is proved to be equivalent to a method lookup
semantics, the operational semantics of inheritance in Smalltalk.

4 Semantics of Object Oriented Programming Languages

In section 3 we briefly reviewed the semantics of inheritance by [Co089,CP89]. [Coo89] then goes
on and builds a continuation style semantics for a small object oriented programming language.
We found this semantics difficult to verify. In addition, when continuation style semantics is not
necessary, we prefer direct semantics because the latter is easier to understand.

In this section we show how to extend the semantics of inheritance without state of section 3
to a semantics of an object oriented programming language, i.e. we add the state we abstracted
from in section 3. The proper semantics definition consists of the abstract syntax (section 4.4)
and the mapping from the syntactic domains onto the semantic domains defined by the semantic
clauses (section 4.5).

4.1 Designing O’small

We designed the programming language O’small for the semantics description of object oriented
programming languages. It is based on SMALL [Gor79], an imperative programming language
for semantics description. We chose SMALL and Gordon’s notation for direct semantics because
it is fairly standard. O’small is limited in general: it does not include recursive classes, but it
contains all the essential features of an object oriented programming language (section 1). For
the formulation of examples O’small is provided with a concrete syntax. The description of the
concrete syntax is not included in this paper.

Some properties of O’small are listed now. A class definition consists of a clause where the
instance variables are declared and a method clause. Instance variables are not visible outside
the object. Method definitions are restricted to the method clause of class definitions. Therefore
methods can only be called via message sending. Instance variables are encapsulated: they are
only accessible to methods defined in the class but not to methods defined in a subclass. There
is “call by reference” for parameters of functions and procedures. After an assignment z := y,
where ¢ and y denote objects, z denotes the same object as y.

4.2 Extending the Semantic Domains

In the description of the imperative programming language SMALL there are three semantic
domains for values. For the description of O’small these domains have to be extended. There
are Storable values which can be put into locations in the store. Denotable values can be bound

6

to an identifier in an environment. Ezpressible values can be the result of expressions. Storable
values are so called R-values and files. Files serve for input and output. R-values are the results
of evaluating the right hand sides of assignments. We extend R-values by objects. Denotable
values are locations in the store, R-values, procedures and functions. We extend the denotable
values by classes. Expressible values are the same as denotable values. We will refer to them as
denotable values from now on.

4.3 The New Semantic Domains

The newly introduced semantic domains are Object, Class, and Wrapper. Objects, classes, and
wrappers were introduced in section 3. Their domains were:

Object = Record
Class = Object — Object
Wrapper = Object — Object — Object

These domains have to be modified to include state. Object remains unchanged, except that the
record values are different now because the state is hidden inside them. The domain of wrappers -
is completely determined by the domain of classes because wrappers take fixed points of classes
and return classes.

The domain of classes

To understand the semantic domain of classes we take a closer look at class declaration and object
creation. When a class is declared, the current environment is enriched by the class name. The
class name is bound to the result of a wrapper application. In this wrapper application the
wrapper for the current class is applied to the superclass. The store remains unchanged because
the instance variables are not allocated at the time of the class declaration. An object is created
by application of the fixed point operator to the class.

For the domain of classes there are two possible choices. The problem with the introduction
of state is as follows. The method environment is recursive and a fixed point operation has
to be applied. The allocation of instance variables must not be recursive — otherwise repeated
allocation in the store may be the result. One choice consists of feeding the current store before
applying the fixed point operation. This results in

Store — [(Object — Object) x Store]

as the domain for classes. The store has to appear in the domain and in the codomain because the
instance variables of objects have to be allocated. (Object — Object) appears in the codomain
because the fixed point operation has to be applied. The domain looks simple but the semantic
clauses for object creation and class definition become cluttered.

We decided to keep the clutter in these clauses to a minimum and therefore opt for the
second choice: the store is fed after the fixed point operation. For the fixed point operator to
be applied to it the domain of the class must be

a— Qa

where a is any domain (the domain of classes was Object — Object in section 3). A function is
needed for the allocation of all instance variables of the new object. They include the instance
variables declared in superclasses. This function has to “know” the current store and has to
return it with the instance variables inside it; the store must thus appear in the domain and
the codomain of the function. In addition this function has to return an object. Therefore the
result of the application of the fixed point operator to the class is:

Store — [Object x Store]

7

This is our a. Thus the domain for classes is:
(Store — [Object x Store]) — (Store — [Object x Store])
This type is more complicated than the type of the other solution.

4.4 Syntax of O’small

Our way of describing semantics goes back to [Sto77] and [Gor79).

4.4.1 Syntactic Domains

Primitive syntactic domains

Ide the domain of identifiers I
Bas the domain of basic constants B

BinOp the domain of binary operators O

Compound syntactic domains

Pro the domain of programs P
Exp the domain of expressions E
CExp the domain of compound expressions C
Var the domain of variable declarations \Y%
Cla the domain of class declarations K

Meth the domain of method declarations M

Method declarations are distinguished from variable and class declarations because methods are
declared in classes only. In lieu of commands [Gor79] we have compound expressions. Their
syntactic appearance is similar to commands but compound expressions return a value, whence

the name.

4.4.2 Syntactic Clauses

P =:=KC

K ::= class I; subclassOf I def Vin M | K; K, | ¢

C u=E |I:=E |output E |if E then C; else C; | while Edo C | def Vin C | C;;C,
E =B |true |false |read |I |I,.I3(E;,..,E,) |new E | E; O E,

V u=varl:=E |V, V, |e¢

M :=methI(I,...],) C | M; M; |e

Class, variable, and method declarations may be empty.

4.5 Semantics of O’small
4.5.1 Semantic Domains

Primitive semantic domains:

Unit the one-point-domain u
Bool the domain of booleans b
Loc the domain of locations i

Bv the domain of basic values e

The element of Unit is denoted by unit. Compound semantic domains are defined by the fol-
lowing domain equations:

Recordyag = a — [B + {L}] records

Env = Recordyge, Do environments T
Object = Recordyge,Dv objects o
Dv = Loc + Rv + Method,, + Class denotable values d
Sv = File + Rv storable values v
Rv = Unit + Bool + Bv + Object R-values e
File = Rv* files i
Store = Recordpoc,sv stores s

Method, = Dv™ — Store — [DvxStore] method values m

Class = Fixed — Fixed class values c
Fixed = Store — [Object x Store] fixed values X
Wrapper = Fixed — Class wrapper values w
Ans = Filex {error, stop} program answers a

Records are polymorphic. Domains Method,, are needed for each n € Ny. Fixed values can
create objects but are not suited for inheritance. They are the results of fixed point operations

applied to classes.

4.5.2 Semantic Clauses

The following semantic functions are primitive:

B: Bas — Bv
O : BinOp — Rv — Rv — Store — [DvxStore]

B takes syntactic basic constants and returns semantic basic values. O takes a syntactic binary
operator (e.g. +), two R-values, and a store; it returns the result of the binary operation and
leaves the store unchanged. The remaining semantic functions will be defined by clauses and
have the following types:

P : Pro — File — Ans
R,E : Exp — Env — Store — [DvxStore]
C : CExp — Env — Store — [DvxStore]
Vv : Var — Env — Store — [EnvXStore]
K : Cla — Env — Store — [EnvxStore]
M : Meth — Env — Env

Definitions

Differing from [Gor79] we use record notation for environments and stores. Alternatives are
denoted in braces. Note that in the following clause err, inp and out are locations and not
identifiers.

Note that the dot of A-abstractions is the operator with the least precedence. An abstracted
variable is bound until the end of the clause. This is only in a few cases indicated by extra
parentheses.

P[K CJi = extractans s final

where

extractans = As.(s out,
stop , otherwise

error, if s err }

(rclann—) = K[[Kllrinitial Sinitial
(—;sfinal) = C[[C]]rclau Sinitial
Tinitial = [Base — Xo.)s.result []]

err — false
Sinitial = | inp — i

out — €

An answer from a program is gained by running it with an input. The store is initialized with
the error flag set to false, the input, and an empty output. The initial environment contains
the “empty” class Base. The initial environment is enriched by the declared classes. Then the
compound expression is evaluated Objects of the base class are records where every label is
mapped to L. In addition to the output the error flag shows if the program has come to a
normal end (stop) or if it stopped with an error (error). For the definition of auxiliary functions
in the following clauses refer to appendix A.

R[EJr = E[E]r * deref x Rv?

The semantic function R produces R-values.

10

E[B]r =
E[true]r =
E[false]r =

E[read]r =

E[I]r =
EIIII-Iz(El,- . .,En)]]l' =

result(B[B])

result true

result false

cont inp * Ai.Js. { seterr s it =& }
(hd i, [inp — tli] @ s), otherwise

result (rI) » Dv?

R[I;iJr x Object? % Mo.(result(o I;)xMethod?x

Am.R[E1JrxAd;. ...R[E,]rxAd,.m(d4,...,d,))

The last clause is for message sending, which is record field selection (hence the notation). The
first expression is evaluated as an R-value. The result of this evaluation must be an object.
The resulting record o is applied to the message I. This should result in a method that is then

applied to the parameters.

E[new EJr = E[E]r x Class? % Ac.Xs.(Y ¢)s

After evaluating E we get a class. The fixed point operator Y is applied to this class. The result
of the application of Y is applied to the current store s.

E [[El (0] Ez]]l‘ = R[[E]_]]l’ * /\el.R[[Ez]]r * /\ez.OIIO]](el, ez)
C[E]r = E[E]r
C[I:= EJr E[Ilr x Loc? x Al R[EJr x (update 1)

C[output E]Jr
C[if E then C; else C,]r
C[while E do C[r

C[def V in C end]r
C[Cy; Cor

R[EJr * Ae.As.(unit, [out — append(s out,e)] & s)
= R[E]Jr * Bool? x cond(C[C,]r, C[C.]r)
= R[E]Jr * Bool? x
cond(C[C]r * Ae.C[while E do C]r, result unit)
= V[V]r = Ar’.C[C](r’&r)
= C[Ci]r x Xe.C[C;]r

The result of assignment, output-term, and while-loop is unit. In the sequence the transmitted
value is discarded. This practice has been adopted from ML [Mil84].

K[I; subclassOf I, def V in M]r
= E[IzJr « Class? « Ag.result[l; — w[>]c]

where

w = Axaclf-Axouper-’\scrcate- ([

where

self > 1,
self } @ Tiocal @ (M[[M]]l‘)) Snew)
SUDET — Tyyper

(raupcr) sauper) = Xsuper Screate
(rlocala snew) = VIIV]]I' Ssuper

(rulfy—) = Xgelf Screate

The result of the evaluation of a class declaration is the binding of a class to the class name.

11

instance variables
I

) ! ?

create super new

Figure 4: The store during object creation

The store remains unchanged when a class is declared. The wrapper w takes a “fixed” for
self reference, a “fixed” for reference to the superclass, and a store as parameters. The store
parameter is fed at object creation time, z,.i4 is fed at the fixed point operation, and z,ype- is
fed at the wrapper application. The wrapper evaluates the method definitions in an environment
being determined at declaration time — except that the locations for the instance variables have
to be determined at object creation time. The local environment is only visible in the class itself
and not in any subclass. Thus we have encapsulated instance variables.

Let us consider what happens at object creation time during the evaluation of the inner
where-clause above. Figure 4 shows the store with arrows pointing at the first free cell of the
store with the respective index. X,yp.r is applied to the store at object creation time. This
results in the method environment of the superclass; but also the part of the instance variables
defined in the superclass are allocated and the first free cell of the store is indicated by super
in the figure. The new instance variables for the current class are declared in V. V has to be
evaluated in S,yper to put the new instance variables “behind” the inherited ones. Of course it
could have been done the other way round. All instance variables are allocated now and the
resulting store (Spew) is passed on to the remaining program. There is however a third line
where X,.1s is applied to Screate- Xself is the recursive part and r,e;s is the resulting recursive
environment. X,.is has to be applied to screate because its instance variables are the ones that
have just been allocated.

The careful reader may have noticed already that the resulting store is not needed. This
is indicated by an underscore. The reason for this is that the instance variables of the current
class have been allocated already. The method environment is recursive, the instance variable
environment is not.

K[K; Ka]r = K[K1]r * Ar’. r’®(K[K,]r)
K[e]r = result []

V[var I := E]r = R[EJr * Ad. new x AL)s. ([I — 1], [1 — d]®s)
V[V Vq]r = V[Vi]r * Ar’. r'@®(V[V2]r)
V[e]r = result []
L »d
M[meth I(I;,...,I,) CJr = RMI — Md;. ... AMd,. C[C](| ¢ —: ®r)
I, — d,
M[M; M:]r = (M[M:]r) & (M[M]r)

Il

M[e]r (]

Method definitions are not recursive. Recursion and the calling of other methods is possible by
sending messages to self.

12

4.6 Creating Objects of a Class Inside this Class

In Smalltalk it is possible to create a new instance of a class A inside class A, i.e. inside methods
defined in class A, by the expression self class new. Let self class new occur in the definition
of the method m defined in class A. Let B be a subclass of A where m is inherited without
being redefined. Then the expression self class new, sent to an object b of class B, will return
an object of class B. [Coo89] needs an additional level of inheritance to describe the possibilities
of a Smalltalk-expression like self class new, where the class constructor (i.e. the class name) is
referred to “in a relative way”.

For the “relative” reference to the class constructor inside the class we extend O’small by
the pseudo variable current. current denotes the class of the receiver of a message. Thus current
new in O’small has the same effect as self class new in Smalltalk. Note that in O’small neither
current nor new are messages; they have to be defined in the semantics. An additional level
of inheritance can be easily introduced into the semantics. But on the contrary of what might
be expected, an additional level of inheritance is superfluous in O’small. It is sufficient to bind
current to Az.z,e1¢. The class definition clause is thus changed to:

K[I; subclassOf I, def V in M]r
= E[Iz]Jr % Class? x Ag.result[l; — w[p]c]
where
self = Tyelf
w = Axacl_f~/\xnuper-Ascreate- (current — /\x-xself ® Tiocal © (MIIM]]T) ’ snew)
SUPET = Tyyper
where ...

The abstraction of z in the term bound to current makes this term a member of the domain of
classes. The fixed point of this term is of course Xx,.¢.

5 Conclusion

We have started with a semantics of inheritance as presented in [CP89]. This semantics does not
include state, and the question if it is applicable to an object oriented programming language
with state remained open in [Co089]. With our denotational semantics for O’small we hope to
have answered this question in the affirmative. For the description of objects with state the
domains of classes and wrappers had to be adjusted accordingly. The introduction of state was
possible without making the central semantic clauses of class declaration and object creation
complicated, at least at the surface; the complications are limited to the inner where clause of
class declaration. The creation of objects of the current class is possible without an extra level
of inheritance. O’small is executable because the semantics has been translated into Miranda

[Tur85).

5.1 Future Work

One direction of future research with our semantics is the discussion of different known con-
cepts of object oriented programming languages (multiple inheritance, classes as objects, etc.).
Another direction is the development of an efficient and provably correct implementation.

Acknowledgements
Thanks to Gerhard Hense, Christian Neusius, and Mario Wolczko for commenting on drafts of
my paper. I am grateful to Andreas Giindel, Carl Gunter, Reinhold Heckmann, Fritz Miiller,

13

and Reinhard Wilhelm for ideas, constructive criticism, and helpful advice.

References

[Car84]

[Coo89]

[CP89)

[Gor79]

[GR89)

[Kam88|

[Mils4]

[Red88]

[StoT7]

[Tur8s)

[Weg87]

[Wol87]

Luca Cardelli. A semantics of multiple inheritance. Lecture Notes in Computer
Science, 173:51-67, 1984. revised in: Information and Computation, Vol. 76, 1988,
pp. 138-164.

William R. Cook. A Denotational Semantics of Inheritance. Technical Report CS-89-
33, Brown University, Dept. of Computer Science, Providence, Rhode Island 02912,
May 1989.

W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness.
In Object-Oriented Programming Systems, Languages and Applications, pages 433-444,
ACM, October 1989.

M.J.C. Gordon. The Denotational Description of Programming Languages: An Intro-
duction. Springer-Verlag, New York/Heidelberg/Berlin, 1979.

Adele Goldberg and David Robson. Smalltalk-80: the Language. Addison-Wesley,
1989.

Samuel Kamin. Inheritance in Smalltalk-80. In Symposium on Principles of Program-
ming Languages, pages 80-87, ACM, January 1988.

Robin Milner. A proposal for standard ML. In Symposium on Lisp and Functional
Programming, pages 184-197, ACM, Austin Texas, 1984.

U. S. Reddy. Objects as closures: abstract semantics of object-oriented languages. In
Symposium on Lisp and Functional Programming, pages 289-297, ACM, 1988.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT press, 1977.

D.A. Turner. Miranda: a non-strict functional language with polymorphic types. Lec-
ture Notes in Computer Science, 201:1-16, 1985. Functional Programming Languages
and Computer Architecture.

Peter Wegner. The object-oriented classification paradigm. In B. Shriver and P.
Wegner, editors, Research Directions in Object Oriented Programming, pages 479-560,
MIT Press, 1987.

Mario Wolczko. Semantics of Smalltalk-80. In ECOOP’87 Furopean Conference on
Object Oriented Programming, pages 119-131, Paris, France, 1987.

A Auxiliary Functions

We need a generic function * for the composition of commands and declarations. This function
stops the execution of the program when an error occurs. Let there be two functions f and g
with the following types:

f < Dy s Store > — [Dy x Store], g:D; — Store — [Dg X Store]
1

14

The lines in braces represent alternatives. The alternatives in the following text are not free
but depend on the choices of the three alternatives above: If above in the braces you choose the
upper alternative, you have to choose the upper alternative in every brace below. If above in
the braces you choose the lower alternative, you have to choose the lower alternative in every
brace below. Then the composition of f and g has type

Store
fxg < D, — Store > — [D3 x Store]
a

and is defined by
_ Asy (L,s2),if 35 err _ s
frg= < Ad;. A8y > { g dy 83, otherwise where (d2,52) = fdisy

* is left associative. The definition of > in section 3 is based on the left-preferential combination
of records (denoted by @). This symbol is also overloaded in the semantic equations. If the
arguments of @ are of the domain Fized then @ stands for:

21 ®zy = As.(r1 Bipr 72, 8') where (r1,8') = 218, (r2,-) = z28

where @j,» stands for the operation on records that is defined in definition 2. This is the only
change of the inheritance function (definition 4). Here are further auxiliary functions. Let D be
any semantic domain:

cond : [D X D] 5 Bool = D .oooiiniiii i Alternative
cond(dl, dz) = Ab.b — dl, d2

cnt : Loc — Store — [[Sv + {L}] x Store]coiiiiiiiiii. Contents of a location
ent = AL)Xs.(s 1, s)

cont : Dv — Store — [Sv x Store] Contents of a location with domain checking
cont = Loc? x cnt % Sv?

D? : D’ — Store — [D’ x Store], with D C D’oooiviiiiiniinn. Domain checking

D? = Ad. { result d, if isD d
seterr , otherwise

deref : Dv — Store — [Dv X Store]ccooviiiiiiiiiiiiiiiiiiiiii Dereferencing
_ cont e , if isLoc e
desel = Je. { result e, otherwise

new : Store — [Loc X Store]coiiiiiiil Getting a new location in the store
new s = (1,s) or = (L, [err > true] @ s)

If new s = (1,s) then s 1 = 1 is guaranteed.

result : D — Store — [D X Store]coiiiiiiiiiiiiiiiinn, Side effect free evaluation
result d = Xs.(d, s)

seterr : Store — [D X Store]cooiiiiiiiiiiiiii Setting the error flag
seterr = As.(.L, [err — true] @ s)

update : Loc — Dv — Store — [DvxStore]ooooiiii.t Updating of a location

update 1 = Sv? x Ae.As.(unit, [l — €] @ s)

15

	fb1990-14-0001
	fb1990-14-0002
	fb1990-14-0003
	fb1990-14-0004
	fb1990-14-0005
	fb1990-14-0006
	fb1990-14-0007
	fb1990-14-0008
	fb1990-14-0009
	fb1990-14-0010
	fb1990-14-0011
	fb1990-14-0012
	fb1990-14-0013
	fb1990-14-0014
	fb1990-14-0015
	fb1990-14-0016

