
Extended Horn Clauses:
the Framework and some Semantics1

Jean-Marie Jacquet2 and Lufs Monteiro3

Abstract

The purpoee of this paper is twofold: to introduce a new extension of concurrent logic programming languages
aiming at handling synchronicity and to present and compare several semantics for it. The extended framework
-ntially rests on an extension of Horn clauses, including multiple atoms in their head.a and a guard construct,
u well u. a new operator between goals. The semantics discUlllled conaiat of four semantics. They range in the
operational, declarative and denotational types and are issued both from the logic programming tradition and the
imperative tradition. They are compos8d of an operational semantics, describing the (claasical) success set a.nd failure
set, of two declarative semantics, extending the Herbrand interpretation and the immediate consequence operator
to the extended framework, and of a denotational semantics, defined compositionally and on the basis of histories
pouibly involving hypothetical statements. The mathematical tools mainly used are complete lattices a.nd complete
metric spaces.

1 Introduction

~called or-parallelism and and-parallelism are the two main ways of introducing parallel executions in logic
programming. Basically, the former consists of reducing an atom by using all unifiable clauses in parallel
and by reducing concurrently the induced instances of the clause bodies. The latter consists of reducing
a conjunction of atoms by reducing all atoms in parallel. In that framework, co=unication between
concurrent reductions is achieved by means of the sharing of variables between several conjoined atoms. It
is often further ruled by suspension mechanisms that force the reduction of some subgoals to wait until the
reduction of other subgoals has sufficiently instantiated the shared variables. Examples of such mechanisms
are Concurrent Prolog read-only annotations ([20]), Parlog mode declarations ([12]) and GHC suspension
rules ((21]). As pointed out in [7], a form of asynchronous co=unication results. In most classical logic
programming languages (e.g. Concurrent Prolog, Parlog, GHC, cc languages ([19]), ...), there is however
no other means to tackle synchronous communication than that of coding it by means of auxiliary manager
procedures and of asynchronous communication. This paper investigates a way of introducing synchronous
communication directly. For that purpose, Hom clauses are extended in so-called extended Hom clauses
and the SLD-resolution principle is extended accordingly. The aim of this paper is to sketch the resulting
framework as well as to present and compare varipus semantics for it.

As a snapshot, the extended Hom clauses take the form

H1 <> ••• <> Hm +- G I G1 0 .•• 0 Gm

where H1, ••• , H,,. are atoms and G, G1, ••• , Gm are conjunctions of atoms combined with the operators
" ; ", " II " and " & ". All atoms may share variables. Compared with classical Hom clauses, the main
innovations are thus

i) the presence of multiple atoms in the head of a clause,
ii) the presence of a special goal G,
iii) the possibility to combine atoms with several operators to form goals.

1Pan of ihill work wu cazried out in the context of ESPRIT Buie Research Action (3020) Iniegra.tion.
~Cent:re for Ma.thematica and Computer Science, P.O. Bm 4079, 1009 AB Amaterda.m, The Netherla.nda
1Departa.mentc:i de Inform&tica, Univenidade NOY& de Lisboa., 2825 Monie da Capuica., Portupl

282

--~--
Gy

--~---
G 9 v,

Figure 1: Synchronized reductions with extended Hom clauses

Particularly notice that the number of hea.d a.toms Rt equals the number of conjunctions Gi.
These extensions induce an extension of the SLD-resolution rule. Basically, the conjunction G a.cts as an

additional test to the usual unification one: in order to use a. clause for reduction, the instantiation of its G
part by the corresponding mgu should in fa.et be completely reduced and this in isolation i.e. independently
of concurrent processes.

The operators " ; " and " II " a.re used for sequential and parallel compositions, respectively. The oper­
ators " & " and " <> " a.re employed, in a. dual way, to specify synchronization. The opera.tor " & " a.cts a.t
the goal level a.nd forces the reduction of conjuncts to be performed simultaneously. In a. dual manner, the
opera.tor " <> " a.cts a.t the clause level and forces the reduction of an a.tom A to wait for the presence of other
(concurrent) a.toms A1, ... , Am-1 such tha.t the m-tuple < A, Ai,·· · , Am-1 > unifies with one permutation
of the m-tuple < H1,···,Hm >,say< H,,,,,···,H11m >. In tha.t case, assuming the induced instance of
G can be reduced successfully, sa.y with the computed answer substitution 9, all atoms a.re simultaneously
reduced to the instances by 9 of the corresponding Gv, 's. This is schematized in figure 1.

Actually, the reduction possibilities are even richer in that it is allowed to group several clauses, previously
renamed to avoid variable clashes, say

(L1 <> ••• <> Lp +-A I 81 <> ••• <> Sp), •.. ' (M1 <> ••• <> Mq +- B I T1 <> ••• <> Tq),

to form a clause

L1 <> ••• <> Lp <> ••• <> M1 <> ... <> Mq +- (A II ... II B) I 81 <> ••• <> Sp <> ... <>Ti <> ... <> Tq

to consider in the same right as the one above.
Though simple, this extension to the classical logic programming framework is quite suited for handling

synchronicity in logic programming. This fa.et is advocated in section 2. It is also shown that, as a. side
effect, extended Hom clauses provide a nice way of describing communication between objects and, hence,
constitutes a means towards the integration of logic programming and object-oriented programming.

This paper also describes several semantics of extended Horn clauses, precisely of the concurrent language
induced by the and-parallelism, the or-parallelism and the above operators. Four semantics are presented.
They are composed of one operational semantics Oa, two declarative semantics, Declm and Deel,, and one
denotational semantics Den. The three first ones take pla.ce in the logic programming tradition. The latter
is issued from the imperative tradition, especially from its metric branch.

The operational semantics Oa rests on a derivation relation. It describes the derivations in a top-down
manner and associates a. computed answer substitution with each of them. It thus corresponds to the
classical success set and failure set chara.cteriza.tions of programs.

The two declarative semantics Declm and Deel/ are based on model and fixed-point theory, respectively.
They generalize the notions of Herbrand interpretation and consequence operator for classical Hom clause
logic in order to take into account the conjoined dependency of the truth of formulae. As suggested, an
effort has been ma.de to keep these semantics as simple as possible as well as in the main streams of logic

283

programming semantics. However, extended. Hom clauses and synchronized executions raise new problems,
for which fresh solutions are proposed.

The denotational semantics Den, defined as usual compositionally, completes the previous semantics
by describing the behavior of compound goals in a closer way, including the modelling of parallelism just
exposed, and by distinguishing various sources of failure: failure induced by the absence of suitable clauses
(real failure}, failure induced by infinite computations and failure induced by the absence of suitable con­
current goals that would allow synchronization to take place (suspension). In particular, the latter point is
tackled by handling suitable hypotheses about the environment of goals.

Extended. Horn clauses have already been presented. in similar forms in [2], (3], (4], (8), (10), (16), (17) and
(19). The work reported. here differs from them both from the language point of view and from the semantic
point of view.

From the language point of view, our language differs in three main respects.
Firstly, it allows arbitrary sequential and parallel compositions inside goals as well as an unrestricted

form of variable sharing. In particular, the duality of the expression of the synchronization in the goals and
in the clause is peculiar to our work. In contrast with (2), we do not allow a forking primitive to take place
in the body of clauses. However, this can be achieved easily in our model through or-parallelism.

Secondly, a notion of guard has been introduced; it is not present in any other work.
Thirdly, clauses always have the same number of heads and bodies. The reason for this requirement

is that the reduction of a head by the corresponding body is seen as one step in the execution of the
process corresponding to the head. As each process must have a continuation, even if to terminate, the
continuation is represented by the corresponding body. It should be noted that this requirement, besides
allowing to deal with unrestricted sequential composition, does not represent a real limitation as compared
to the aforementioned languages. For example, the clauses Ai + A2 +- Aa and Ai + A2 +- Aa + A., +As of
Rose ((3)) may be rewritten respectively as Ai o A2 +- D.. I As o D.. and Ai o A2 +-b.. I Aa o ~ II As, with
b.. denoting the empty conjunction of atoms.

From the semantic point of view, our work differs both from related work issued from the logic program­
ming tradition and from the metric imperative tradition. To our best knowledge, semantics for extended
Horn clauses have only been proposed in [2], (3), [10) and [16].

The semantics presented in [2) essentially refers to a new logic, called linear logic ([11]}. It thus differs
from our declarative and metric-based semantics.

In [3) and [10], the study of the declarative semantics is also conducted in terms of an extension of the
Herbrand base containing parallel goals. Those goals, in the absence of a sequential composition operator,
are parallel compositions of atomic formulae. By contrast, the extended. Herbrand base appropriate to
our language must consider parallel compositions of arbitrary goals. Another technical difference with our
approach is our systematic use of t-contexts as an auxiliary tool in the definitions of both the operational
and the declarative semantics. The main reason for introducing t-contexts was the need to find a concise
way to specify the selection of atomic formulae in goals and their replacement by other goals. As can be
appreciated from our semantic study, the use oft-contexts greatly simplifies the presentation of the semantic
concepts of derivability and satisfiability. The declarative semantics presented here is also a clarified version
of that presented in (16).

The operational semantics Oc1 differs from that of (3) and (10) by the use of the notion of t-context. It
differs from [16) by the use of a semantic variant of the considered program P that allows several independent
reductions to occur at the same time. The denotational semantics Den has no counterpart in (3), (10) and
[16). Although it is of classical metric inspiration, it still presents some originality with related work ((6),
[5), [14), ...) which arises essentially from the two following points :

i} our concern with extended. Horn clauses, which has not been done before and which requires new
solutions; in particular, it should be noticed that the form of communication provided by the "o"
and " & " operators is different from the monotonic asynchronous one of concurrent logic programming
languages and from the synchronous one of CCS and CSP;

ii) our use of local states and of reconciliation to combine them.

Finally, the comparative study of semantics for extended Horn clauses issued both from the logic pro­
gramming and from the imperative programming traditions is peculiar to our work.

The semantic tools mainly used in this paper are of two types: complete lattices and complete metric

284

spaces. Despite this variety, the semantics have been related throughout the pa.per.
The remainder of this paper is organized into 9 sections. Section 2 suggests the interest of extended Horn

clauses through the coding of various producer/consumer schemes and of several examples integrating the
logic and object-oriented styles of programming. Section 3 describes the basic constructs of the language and
explains our terminology. Section 4 recalls the basic semantic tools used in the paper. Section 5 introduces a
semantic translation simplifying the presentation of the semantics. Section 6 defines the auxiliary concepts of
t-context and program completion. Section 7 presents the operational semantics 011. Section 8 discusses the
declarative models Deel,,, and Deel / and connects them with the operational semantics Od. Section 9 specifies
the denotational semantics Den and compares it with the operational semantics Od and, consequently, in
view of previous results, to the other semantics. Finally, section 10 sums up the relationships established in
the paper and gives our conclusions.

2 Examples

2.1 Producer-consumer schemes

As first examples of the expressiveness power of extended Horn clauses, let us code, by using them, syn­
chronous communication in various producer/consumer schemes. Assume we are given a producer, say prod,
and a consumer, say cons, behaving successively as follows:

i) execute some internal actions, say int.prodCM,X) and int.conaCY), respectively; the former producing
some message M;

ii) communicate synchronously the message Mand treat it;
iii) apply some (undefined) resumption actions, say prod.res (M, U) and cona.res CM, V), respectively.

As ca.n be deduced from our sketchy description of section 1, this behavior can be simulated by the evaluation
of the query prod II cons for the progra.m4

prod+- int.prod.CM,l) ; pexchCM)
cons+- int.consCY) ; cexch(M)
pexch(M) o cexch(M) ,_ treat(M) I prod..rea(M,U) o cons.red.CM, V)

Indeed, the parallel composition " II " makes the a.toms prod and cons reduce concurrently. This is achieved
by means of the first and the second clauses, respectively. As a result, the two a.toms are reduced to the
sequential compositions int.prad(Mi.X1) ; pexch(K1) and int.consCY2) ; cexch(M2), respectively, with M1,
M2, 11, Y 2 renamings of the variables K, X and Y. The reduction of the first conjunction consists of reducing
int.prod(M1 ,11), which is not defined by the above program segment but is assumed to instantiate M1,
and then of reducing the induced instance of pexch (K1). Similarly, the reduction of the second conjunction
consists of reducing int.cons(Y2), which is undefined here too, and then of reducing cexc:h(M2). Because
of the para.lie! composition of prod and cons, the reductions of int.prod(K1 ,11) and of int.cons(Y2) can
be performed in any order. However, because of the extended form of the third clause, the reduction of
pexch(H1) can only start in the presence of an atom cexch(H*), with M1 and.K* unifiable, i.e. when the
reduction of cons has reached the point of the reduction of cexch(M2). And vice-versa for the reduction
of cexch(K2) with respect to the atom pexch(K1). Furthermore, this synchronization in the reductions
involves the common reduction of the (induced instance of) the atom treat (M) simulating the treatment of
the message M. When this is done, and only then, the reduction of the induced instances of prod.res (Ka, U3)

and cona..res <Ms, Vs), with Ka, Us and V3 renamings of the variables M, U, V, are launched concurrently as
the continuation of the reductions of pexch(M1) and ce:r.ch(M2), that is of prod and cons, respectively.

The reader will appreciate the ease of coding in this example, as opposed to that obtained by using the
asynchronous communication of usual concurrent logic programming languages. It is also worth noting that
the synchronization between the producer and the consumer takes place from the communication of the
message H to the end of the treatment of this message through treat (M) . As limit cases, one could think
of an empty treatment of M or of empty continuations prod.res (M) and cons.res (K) . The first limit case

. ~Although aey Hom da.uae H +- B ca.n be rewritten in a.n equi'llal.ent extended form H +- t:.. I B, we will stick, for the time
being, to the claeaical Horn da.uae 11ota.tio11 a.nd ruerve the extended form for cla.uaes involving strictly more tha.n one atom in
their head.

285

corresponds to the situation where synchronization just acts on the communication of M. The second limit
case is more in the philosophy of work such as [2), [3), [8], [10]; the synchronization then consists of the
synchronous communication and the achievement of a common ending task.

One could be tempted to rewrite the above program as

prod+- int_prod(M,X) ; pexch(M) ; prod_res(M)
cons+- int_cons(Y) ; cexch(M) ; cons_red(M)
pexch(M) o cexch(M) +- treat(M) I !:::.. o !:::..

and to infer therefrom that it is possible, in general, to rewrite extended Hom clauses in the format of the
latter limit case. This is however not always feasible from a practical point of view, as suggested by the
airline reservation system described below.

As final remarks, let us note that it is, of course, possible to refine the above basic scheme in several
ways. For instance, one could add extra arguments to the predicates and complicate the definition of the
predicates prod_res and cons..res at will.

2.2 Towards an integration of logic and object-oriented programming

Another interesting application of extended Horn clauses concerns the integration of logic and object-oriented
programming. The behavior of objects is classically represented in logic programming by the evaluation of
a call to a procedure defined recursively, the successive values of the arguments representing the successive
states of the object. Following this line, the treatment of a message mess(M) by an object obj (S) by means
of a method method (M) can be schematized by one of the two following clauses:

obj (S) o mess(M) +- method(M) I obj (NewS) o !:::..
obj (S) o mess(M) +- method(M) I obj (NewS) o mess(M)

according as the message mess (M) is consumed or not. In that framework, the object conceptually moves
from the state S to the new state News.

An instance of this scheme is given by the following description5 of the class of stacks:

stack(Id,S) opush(Id,X) +-!:::..I stack(Id, [XIS]) o !:::..
stack(Id,[XIS]) opop(Id,X) +-1:::..l stack(Id,S) o!:::..
stack(Id, [XIS]) otop(Id,X) +-!:::..I stack(Id, [XIS]) o!:::..

Stacks are identified there by the Id argument of the stack predicate and their state, implemented as a list,
moves respectively from S, [X IS], [X IS] to [X IS], S, [X IS] according as a push, pop or top message is
received. The treatment of these messages is quite straightforward so that all the guards are reduced to !:::.. •
Nevertheless, it is easy to slightly complicate the problem in order to end up with more elaborated guards.
For instance, one could require that the treatment of a push message includes, in addition, the check that
the argument X is of some type t. In that case, the first clause of the stack procedure becomes

stack(Id,S) o push(Id,X) .- t(X) I stack(Id, [XI S]) o !:::...

The classical airline reservation system provides another interesting instance of the above scheme. The
task consists here of simulating an airline reservation system composed of n agencies communicating with a
global database about m fiights. Using extended Hom clauses, this can be achieved by evaluating the query

agency(Id1) II · · · II agency(!dn) II airline_syst(DB_init)

where agency(Idj) represents the j 1h agency, identified by Idj, and where DB_init represents the initial
information about the m fiights. The exact description of the agencies is out of the scope of this paper. For
our illustrative purposes, it is sufficient to assume that some internal actions successively generates queries
for the database arrd behaves correctly according to the answers. We will consider two kinds of messages:
reserve(Flight_id,Nb_seats,Ans) and ask_seats(Flight_id,Free_seats). Their goals are respectively

"This description ha.s actually been inspired by that of [4].

286

i) to ask for the reservation of Nb_seats in the flight Flight_id, which yields the answer Ans;
ii) to ask the number of free seats in the flight Flight_id.

According to the above scheme and using the auxiliary predicates make..reservation and free_seats, with
obvious meanings, the treatment of these messages can be coded as follows.

airline_syst (DB) <>reserve (Flight_id,Nb_seats ,Ans) <­

make..reservation(Flight_id,Nb_seats ,DB ,New_DB,Ans) I airline_syst (New..DB) <> .6.
airline_syst(DB) <> ask_seats(Flight_id,Free_seats) <-

free_seats(Flight_id,Free_seats) I airline_syst(DB) <> .6.

The following points are worth noting. Firstly, accessing the database is achieved without explicitly
handling lists of messages and without using merge processes, as usual in concurrent logic programming
languages. Secondly, mutual exclusive access to the database is ensured by the synchronous mechanism.
In that, our solution also contrasts with the classical concurrent logic one which involves commitment
and merge processes. Finally, in opposition to the functional languages, answers are back communicated
implicitly thanks to the unification mechanism and this without the use of identifiers.

2.3 More examples

Other examples, including semaphores, the seminal dining philosophers problem, generative communication
in a Linda style, can be programmed with similar ease in the extended Horn clause framework. We refer
the interested reader to [3], [8], [10], [16], [17], [19] for such or similar programming.

3 The language

As usual in logic programming, the extended language, subsequently referred to as ELP, comprises denu­
merably infinite sets of variables, functions and predicates. They are referred to as Svar, Sjunct and Spred,
respectively. The notions of term, atom, substitution, unification, ... are defined therefrom as usual. We
assume the reader to be familiar with them and will not recall them here. Rather, we now specify the
extensions of goals and Horn clauses sketched in Section 1.

Definition 1
1} The extended goals are defined inductively as follows:

i) .6. is an extended goal (representing the empty goal},
ii) any atom is an extended goal,

iii) ifrJ1 and G2 are extended goals, then (rJ1 ; G2), (G1 II G2) and (G1 & G2) are extended goals.
Extended goals are typically denoted by the G letter, possibly subscripted. Their set is subsequently
referred to as Segoal.

2) The extended Horn clauses are defined as clauses of the form

H1 <> · · · <> Hm <- G I G1 <> · · · <> (Jm

where the H; 's are atoms and the G and G; 's are extended goals. By extension, these atoms and goals
are still called the heads and bodies of the extended clause, respectively.

S) The extended programs or programs, for short, are sets of extended Horn clauses. Their set is
subsequently referred to as Sprog. •

Particularly notice from the above definition that clauses are considered, from now on, in their extended
form only. This is justified by uniformity purposes in subsequent treatments. As a consequence, any Horn
clause H.,_ Bis now rewritten in its equivalent form H <- .6. I B.

4 Mathematical preliminaries

4.1 Sets and multi-sets

Executions may result in computing a same answer or a same computation path several times. Multi-sets,
allowing an element to be repeated, are used subsequently to capture this repetition. To clearly distinguish

287

them from sets, they are denoted by bold brackets, as in {a, a, b }, whereas sets are denoted by simple
brackets, as in {a, b}. The union symbol is kept unchanged but its use is disambiguated by the nature of its
operands. To avoid any ambiguity, let us further precise that, given two multi-sets Sand T, we denote by
S U T the collection of all elements of S and T repeated as many times as they occur in S and T.

The usual notations 'P(E) and M(E) are used to denote, respectively, the set of sets and multi-sets,
with elements from E. The notations 'P,..(E) and M,..(E) are moreover employed to denote those sets and
multi-sets verifying the property 71". For instance, 'Pnc1(E) denotes the set of the non-empty and closed sets
with elements from E.

4.2 Reconciliation of substitutions

Full use of and-parallelism requires a way of combining substitutions issued from the concurrent reductions
of subgoals of an extended goal in order to form answer substitutions for the whole extended goal. It has
been provided under the name of reconciliation . of substitutions in [13] and has been extensively studied
there. Concurrently, an equivalent notion, named parallel composition of substitutions, has been developed
in [18]. We brie:B.y recall this notion here for the sake of completeness. The reader is referred to the above
two references for more details.

The reconciliation of substitutions is based on the interpretation of substitutions in equational terms.
Precisely, any substitution 8 = {X1/ti. ... ,Xm/tm} is associated with the system of the equations X1 = ti,
. · ., Xm = tm, subsequently referred to as syst(fJ). Reconciling substitutions then consists of solving the
system composed of the associated equations.

Concepts of unifiers and mgus can be defined for these systems in a straightforward way. It is furthermore
possible to relate the unification of systems of equations with that of terms in such a way that all the
properties of the unification of terms transpose to the unification of systems of equations. In particular,
mgus of systems can be proved to be equal modulo renaming. We consequently use, in the following, the
classical abuse of language and speak of the mgu of a unifiable system. It is referred to as mgu_syst(S),
where S is the system under consideration.

We are now in a. position to define the notion of reconciliation of substitutions.

Definition 2 The substitutions 81, ... , 8m (m ~ 1} are reconcilable iffthe system composed of the equationa
of syst(f)i}, ... , syst(8m} is unifiable. When so, its mgu is called the reconciliation of the substitutions. It
is denoted by p(81, ... , 8m)· •

The equa.tional interpretation of substitutions requires, at some point, the idempotence of the substitu­
tions. This is not a. real restriction since any unifiable terms or systems of equations admit an idempotent
mgu. It is furthermore to our point of view the natural one. For ease of the discussion, we will take the
convention of using, from now on, idempotent substitutions only. Their set is referred to as Ssubst.

4.3 Complete lattices and metric spaces

Complete lattices and metric spaces will be used as important semantic tools. The reader is assumed to be
familiar with them a.s well as with their related notions of convergent sequences, directed and closed subsets,
completeness, continuous and contracting functions, He is also assumed to be familiar with Ta.rski's
lemma, describing the set of prefixed points of continuous functions of complete lattices, and Bana.ch's
theorem, stating the existence of a. unique fixed point of contractions in complete metric spaces. He is
referred to [15] and [9], when need be. Furthermore, la.ck of space prevents us from describing all the metrics
used in this pa.per. We will however employ the classical ones and refer to [5] for such a. description.

5 Semantic translation

As pointed out in section 1, synchronization can be specified in two places: in goals, by means of the
operator " & ", and in clauses, by means of the opera.tor " <> ". These two operators thus a.et in a. dual way.
It turns out, however, that it is possible to simulate the former by the latter, of a. more dynamic nature.
For instance, assuming that the predicates a(X) and b(X) are defined by the only two clauses

288

a.(Y) +- 6 I r(Y)

b(Z) +- 6 I s(Z) ,

the reduction of the conjunction a. (X) & b (X) may be simulated by the reduction of p,. (X) 11 Pb (X) with p,.
and Pb two new predicates defined by the only clause

p .. (X) <> Pb (X) +- 6 I r(X) <> s (X)

Note that, with this device, we still have the possibility of using a(Y) and b(Z) separately.
The operator " & " is thus in some sense redundant with respect to the operator "<> ". However, we

believe that, from a language point of view, specifying synchronization in both goals and clauses is desirable
and, therefore, we provide both constructs in the language. Nevertheless, this redundancy allows us to
design semantics in two ways. One consists of translating the programs in the sublanguage of ELP without
the operator " & " and of designing semantics for this sublanguage. The other one consists of designing
semantics directly for the whole language. We have adopted here the first approach because it allows us
to expose the semantics in a simpler framework - and thus in a clearer way - and because the semantics
developed using the second approach can be obtained therefrom by simple extensions.

6 Auxiliary concepts

6.1 The t-contexts

Forcing atoms to synchronize introduces a need for a means to express which atoms in an extended goal
are allowed to synchronize and for a means to create the goals resulting from the synchronized reductions.
These means are provided by the notion of t-context. Basically, a t-context consists of a partially ordered
structure where the place holder D has been inserted in some top-level places i.e. places not constrained by
the previous execution of other atoms. Atoms that can synchronize are then those that can be substituted by
a place holder D in a t-context. Furthermore, the extended goals resulting from the synchronized reductions
are obtained by substituting the place holder by the corresponding bodies G,'s of the extended Horn clause
used.

The precise definition of the t-contexts is as follows.

Definition 3 The t-contexts are the functions inductively defined on the extended goal8 by the following
rules.

i) A· nullary t-context is associated with any extended goal. It is represented by the extended goal and is
defined as the constant mapping from Segoal0 to this goal with the goal as value.

ii) D is a unary t-conte:z:t that maps any extended goal to itself. For any extended goal ?1, this application
is subsequently referred to as D(Ci].

iii) If c is an n-ary t-context and if G is an extended goal, then (c ; V") is an n-ary t-conte:z:t. Its application
is defined as follows : for any extended goal8 ?11, ... , Gn,

(c; (J)[G1,. ··,?Jn] = (c[Gi, ···,CJ,.] ; G)

iv) If c1 and c2 are m-ary and n-ary t-contexts and if n + m > 0, then c1 II c2 is an (m+n)-ary t-context.
Its application is defined as follows: for any extended goals G1, ... , ?1m+n•

(c1 II C2)[G1, · · · 1 V"m+n] = (c1[G1, · · · 1 ?Jm]) II (c2[Gm+l1 · · ·, ?1m+n])
In the above rules, we further state that the structure (Segoal, ; , II ,6) is a bimonoid. Moreover, in the
following, we will simplify the extended goals resulting from the application oft-contexts accordingly. •

The following points in the above definition are worth noting.

• Rule iii) forces the place holder D to occur only in a position corresponding to atoms that can be
reduced in the first reduction step of an associated extended goal.

• Rule iv) forces a composed t-context c1 II C2 to include one place holder in at least one ct although
both can contain one. This corresponds to the fact that, to allow a composed goal ?:1 II ?12 to perform
one reduction step, at least one of the conjunct CJ; must perform one reduction step although both
can do so simultaneously.

289

6.2 Program expansion

The extended clauses to consider to reduce extended goals are those obtained from the clauses of the (written)
program by permuting them and by grouping them. To avoid handling this permutation and groupment
explicitly, we now associate to any program P the program p• that performs this task implicitly.

Definition 4 For any program P, the expansion of P, denoted p•, is defined as the following program:

i} any clause of P is a cla!J8e of p•;
ii} if (L1 <> • • • <> Lp +- A I S1 <> • .. <> Sp) and (M1 <> .. • <> Mq +- 1i I T1 <> .. • <> Tq) are clauses of p•,

renamed to avoid variable clashes, then

is a clause of P*;
iii) if (H1 <> • • • <> Hm +- lJ I ?J1 <> • • • <> ?Jm) is a clalJ8e of p• and if (111, ... , vm) is a permutation of

(1, · .. , m), then (H,,1 <> • • • <>H...,,. <- lJ I ?i,,1 <> • • • <> ?J,,,,.) is a clause of p•. •
7 Operational semantics

A first semantics of ELP may be expressed operationally in terms of a derivation relation, written as
P 1- lJ with (} that, basically, expresses the property that, given the program P, the extended goal CJ has
a successful derivation producing the substitution 9. It is defined by means of rules of the form

Assumptions
Conclusion

if Conditions,

asserting the Conclusion whenever the Assumptions and Conditions hold; Note that Assumptions and
Conditions may be absent from some rules. Precisely, the derivation relation is defined as the smallest
relation of Sprog x Segoal x Ssubst satisfying the following rules (N-I) and (E-I). As usual, the above
notation is used instead of the relational one with the aim of suggestiveness.

Definition 5 (The derivation relation)

Null formula

(N-l} P F LS with e

Extended formula

(E-1) P 1- (}9 with u

if {(Hi<>"' <>Hm +-CJ I ?Jl <>"'<>er,;;} E p• 6

< A1,- .. , Am > and < Hi.···, Hm > unify with mgu 9
•

The derivation operational semantics can be derived therefrom as follows.

Definition 6 (The derivation operational semantics) Define the derivation operational semantics as
the following junction Od : Sprog-+ Segoal -+ 'P(Ssubst): for any P E Sprog, (J E Segoal, Oa(P)(CJ) =
{9 : P I- ?J with 9}. •

8 As usual, a suitable renaming of the clau. is 1181umed.

290

8 The declarative semantics

One of the distinctive features of a logic programming language is that its semantics can be understood in
at least two complementary ways, inherited from logic. The operational semantics, based on proof theory,
describes the method for executing programs. The declarative semantics, based on model theory, explains
the meaning of programs in terms of the set of their logical consequences. Any claim to the effect that a
given language is a logic programming language must be substantiated by providing suitable logic-based
semantic characterizations. The operational serqantics of the language ELP under consideration in this
paper has been studied in the previous section. The present section is devoted to the discussion of the
declarative semantics.

One might at first think that the usual notion of (Herbrand) interpretation for Horn clause logic carries
through to ELP. Thus an interpretation would be a set of ground atomic formulae, with the intended
meaning that the formulae in the set a.re true under the interpretation. The truth of compound formulae
would then be derived in a compositional manner. The problem with this is that the parallel composition
is not a propositional operation in that its truth or falsity can not be derived from that of its arguments.
More precisely, if both arguments a.re true then their parallel composition is also true, but if one or both
a.re false then the parallel composition may be true or false. For example, A and B a.re false both for the
empty program and for the program consisting of the clause A o B +- !::,. I !::,. o !::,. alone. However, A II B is
false for the first program and true for the second one.

Note that the sequential composition is not affected by a similar problem. Indeed, a sequential com­
position of goals is true if and only if the component goals are true, so that declaratively the sequential
composition is just the logical conjunction. In any case we can not hope to be able to specify which formulae
a.re true by giving only the true atomic formulae. We a.re thus led to consider an extended Herbrand base
containing parallel compositions of ground extended goals, and take its subsets as our interpretations.

Definition 7 The extended Herbrand base EB is the set of all ground atomic formulae A together with all
parallel compositions ?11 II G2 of nonempty ground extended goals G1 and G2. An interpretation is a subset
I of EB. •

Definition 8 Given a formula F, its truth in I, written l=1 F, is defined inductively by the following rules:

i} If Fis a clause or an extended goal, l=1Fif1=1 Fo for every ground instance Fo of F.
ii} For a ground clause, 1=1 (Ai o · · · o An+- G I ?11 o · · · o Gn) if, for every n-ary ground t-context c,

FI c[A1, ... ,An] whenever FI (GI c(Gl, ... ,G;J).
iii} FI !::,..
iv) If G and H are ground goals, FI (G; 1l) if FIG and FI H.
v) If G and Hare ground goals, FI (li I H) if FIG and !=I H.

vi} If G and H are ground goals, l=r (G 11 H) if (G II H) EI or FIG and FI H.
vii} If A is a ground atomic formula, l=1 A if A EI. •

Definition 9 An interpretation I is a model of a program P if l=r C for every clause C E P. An extended
goal G is said to be a consequence of P, written PI= ?J, if FIG for every model I of P. The success set of
?J with respect to P is the set SSD(G) ={II: PI= Cill} of all substitutions 6 such that 06 is a consequence
of P. •

We a.re now in a position to define the model declarative semantics.

Definition 10 (Model declarative semantics) Define the model declarative semantics as the following
junction Deel,,.: Sprog-+ Segoal-+ 'P(Ssubst): for any PE Sprog, GE Segoal, Decl,,.(P)(71) = SSD(?J) .

•
If I and J are interpretations and F is a formula, it is easy to see by induction on the structure of F that

FinJ F if and only if FI F and FJ F. If we take for F the clauses of P, we conclude that the intersection
of two models of P is again a model. This statement can obviously be generalized to the intersection of an
arbitrary number of models. Since EB is a model, it follows that any program has a least model.

Proposition 11 Every program P has a least model Mp. •

291

The importance of Mp is that it allows to simplify the definition of success set: instead of requiring that
Ge be true in all models of P it is enough that it is true in Mp. Indeed, this is a consequence of the easy
fact that if I and J are interpretations such that I~ J then FIG implies FJ G.

Proposition 12 SSv(G) = {B :FMP GB}. II

The least model Mp can also be characterized as the least fixed point of a continuous transformation
Tp : 'P(EB) -+ P(EB), called as usual the immediate consequence operator. For every interpretation
I, Tp(I) is the set of all ground extended goals of the form c[Ai, ... , An] E EB such that PIG and
FI c[Gl, ... , G;J, for an n-ary ground t-context c and a ground instance Ai o · · · o An+- G I Gl o · · · o (T,.
of a clause in p•.

Proposition 13 The operator Tp is continuous and Mp is the least fixed point ofTp. II

The fixed-point semantics of P associates with each G the set of all B such that GB is true in the least
fixed point lfp(Tp) of Tp.

Definition 14 (Fixed-point declarative semantics) Define the fixed-point declarative semantics as the
following function Decl1: Sprog Segoal-> 'P(Ssubst): for any PE Sprog, GE Segoal, Decl1(P)(G) =
{B =FIJp(Tp) GB}. II

Proposition 13 establishes the equivalence between the declarative and the fixed-point semantics of P.

Proposition 15 Deel,.,.= Decl1. II

Finally, the equivalence between the operational and the declarative semantics can be stated as follows.

Proposition 16 For every program P and every extended goal G,

i) if P I- G with B, for some substitution e, then P F Ga for every ground instance Ga of GB;
ii) if P F= Gr for some substitution r, then P 1- G with B, for some substitution 9 such that ?:Jr;:::: GB.

In particular, let et1 : 'P(Ssubst) 'P(Ssubst) be the following function: for any e E P(Ssubst),

et1(0) = {B'YIS: BE 0,-y E Ssubst,dom(B) ~ S}

where B-Y1s is the restriction of 81 to the variables of S and dom(B) denotes the domain of B. Then, the
equality

Decl,.,.(P)(G) = Decl1(P)(G) = a1 (Od(P)(G))

holds for any P E Sprog, GE Segoal.

9 The denotational semantics

II

This section introduces our last semantics. It is defined compositionally and makes no use of transition
systems as well as no reference to any declarative paradigm. It is called denotational in view of these
properties.

Compositionality of the semantics requires to determine the semantics of a compound goal in terms of
the semantics of its components. However, as pointed out in section 8, this is not straightforward to realize
for ELP. The problem is essentially that the failure or the suspension of a compound goal cannot be inferred
directly from the failure or the suspension of its components considered individually. One way of solving
this problem consists of taking into account environments composed of concurrent atoms (if any) that would
unsuspend the suspended derivations of the components. To be more specific, with respect to the one clause
program A <> B +- D. I D. o D. our idea is to deliver as semantics for A not failure nor a simple suspension
but a suspension mark together with the derivation obtained by assuming the presence of B in concurrence
with A. Giving a similar semantics for B, it is not difficult to imagine that it is possible to combine the
semantics of A and of B to obtain that of A II B. In general, the denotational semantics, to ·be presented
subsequently, makes hypotheses about the environment of the reduction of a goal in order to unsuspend

292

suspended derivations. Technically speaking, these hypotheses are inserted as members of the histories; they
ta.lee the form hyp[(A, E), (B, T)J with the reading that given that A is composed of the atoms that can be
reduced in the treated goal and given that E is composed of the associated substitutions in the derivation
(representing the results computed sofar by the parallel components of the considered goal), the presence of
concurrent atoms of B associated with the substitutions of T allows the considered suspended reduction to
resume. As extended goals and the head of extended clauses may contain multiple occurrences of an atom,
the A, B, E and T are designed as multi-sets.

The above example might lead to think that the presence of hypotheses in the histories suppress the
grounds for existence of suspension marks. This is not true as shown by the program composed of the two
clauses A <> B +- 6. I 6. <> /::,. and A <> B <> C +- !:::. I !:::. <> /::,. <> 6. . The hypothetical way of reasoning includes
an hypothetical derivation assuming the existence of C in the semantics of A II B. Nevertheless, despite it,
the reduction of A II B does not suspend. Hence, any suspended reduction needs still to be associated with
one reduction ending with one suspension mark. It ta.lees the form st1sp[{(A1,u1), ... , (Am, um)}, BJ where
the (At,ui) 's are the top-level atoms of the considered goal with their associated substitutions and where B
is the set of the heads of the clauses that would allow the reduction to resume in case suitable atoms would
be placed in concurrence with the treated goal.

A final technicality is involved in the denotational semantics. Treating in a compositional way a sequen­
tially composed goal requires to be able to give the semantics of the second component of the goal in view
of the results (i.e. substitutions) computed by the first component of the goal. Hence, the denotational
semantics should deliver, for any given program and any given extended goal, not some set of histories but
some function that maps any substitution to such a set. In order to ease the determination of the results,
the termination mark in success is furthermore enriched by the set of substitutions computed during the
considered derivation.

The following definition precises the concepts just introduced.

Definition 17
1) An hypothetical statement is a construct of the form hyp[(A, E), (B, T)J where A and B are multi-sets

of atomic formulae and where E and T are multi-sets of substitutions. In the following, hypothetical
statements are typically denoted by the hh symbol and their set is referred to as Shyp.

2) A suspension statement is a construct of the form susp[{(A1, u1), ... , (Am, um)}, BJ where the A; 's
are atomic formulae, the u; 's are substitutions and B is a set of multi-sets of atomic formulae. In the
following, suspension statements are typically denoted by the ss symbol and their set is referred to as
Ssusp.

3) Let Sterm be the set composed of the element fail and constructs of the form succ(e) where e is a set
of substitutions. The set of denotational histories, Sdhist is defined as the solution of the following
recursive equation:

Sdhist = Sterm U Ssusp U (Ssttbst x Sdhist) U (Shyp x Ssttbst x Sdhist) x Sdhist

{see {6] or [1} for the resolution of this equation). Histories are thus streams written as (e1, (e2, (ea,···)))
thanks to the cartesian products. They are often rewritten in the simpler form e1.e2.e3. · · · to avoid
the intricate use of brackets. However, the structure of hypotheses followed by substitutions followed
by guard evaluations will be conserved and written as triplets.
Histories are typically denoted by the h letter. Histories of the form < hh, (}, g > .h with hh E Shyp,
(} E Ssubst and g, h E Shist are subsequently called hypothetical histories. Histories containing no
hypothetical statement are called real histories. Their set is referred to as Srhist. Histories containing
no suspension statements are called unsuspended histories. Their set is referred to as Suhist.

4) A set oi histories Sis coherent iff for any suspended history of S of the form

hp.susp[{(A1,u1), ···,(A,,., um)}, CJ

there is in San history of the form hp. < hyp[(A,E),(B,r)],6,g > .hs such that A= {A,,,.··· ,Avp}
and E = {uv11 • • ·, uvp}, for some subsequence (v1, · · ·, vp) of (1, · · ·, m).

5) The semantic domain Sem is defined as the (complete metric) space Pn<:d{Sdhist) of non-empty,
coherent and closed subsets of Sdhist. •

293

Semantic counterparts for the operators " ; " and " I " can be defined quite directly. The recursive
na.tur~ of streams might suggest recursive definitions. However, their possible infinite nature makes direct
definitions incorrectly stated. This problem is circumvented by using a. higher-order function 'ii ••q of the
same recursive nature but that turns out to be a. well-defined contraction.

Definition 18 Define the operator w •• 9 : [(Sdhist x (Ssv.bst-+ Sem)) Sem] -+ [(Sdhist x (Ssubst
Sem)) -+ Sem] as follows : for any F E [(Sdhist x (Ssv.bst -+ Sem)) -+ Sem), f E (Ssubst -+ Sem),
0 ~ Ssubst, ss E Ssusp, e E M(Ssv.bst) U Shyp, h E Shist,

i) 'ii •• 9 (F)(f ail,!) = {fail}

{ f(fJ) if 0 is reconcilable with reconciliation 6
ii) W,eq (F)(succ(0), !) = {fail} otherwise

iii) W••q (F)(ss,f) = {ss}
iv) W,09 (F)(e.h, J) = {e.h' : h* E F(h, J)}. •

Proposition 19 The function 'ii ,09 is well-defined and is a contraction. •

Definition 20
1) Define the operator T,tr : (Sdhiat x (Ssubst-+ Sem))-+ Semas the fi:&ed point of 'il,09 •

2} Define the operator T : ((Ssubst-+ Sem) x (Ssv.bst-+ Sem))-+ (Sau.bat--+ Sem) as follows: for any
Ii : (88'1.1.bst-+ Sem), h : (Ssubst __. Sem) and for any <T E Ssubst,

(/1 T h)(u) = {h: hi E fi(u),h E h1 ;,1, '2} •
Definition 21 The counterpart of the operator "T.ir " on Sdhist x Sdhist __. Sdhiat is defined similarly to
definitions 18 and 20 and is denoted by "0" •

The opera.tor " I " has the sequential nature of the operator " ; " but further constraints its left-hand
side argument to be evaluated on its own. This latter feature is semantically modeled by preventing the
argument evaluation to make hypotheses a.bout its (non-existing) environment and by prohibiting suspended
executions (of this evaluation) to be resumed thanks to the environment. Technically speaking, these two
points are respectively achieved by eliminating hypothetical histories from the denotational semantics of the
argument and by emptying the second argument of suspension marks of histories of this semantics. These
are essentially the goals attached to the following function guard. For ease of subsequent use, it is defined
a.t the level of functions of Sau.bat-+ 'P(Sdhist) rather than at the level of sets of 'P(Sdhiat).

Definition 22 Define the function gUllrd: [Saubst __. 'P(Sdhiat)] -+ (88'1.1.bst __. 'P(Sdhist)] as follows: for
any f E [Sau.bat-+ P(Sdhist)), any u E Sau.bat,

gUllrd(f)(u) = (f(u) n Srhiat n Suhist) U {h.awp(A,0): h.susp(A, B} E f(u)}. •
It is possible to prove that the function guard conserves the non-empty, closed a.nd coherent features of

the elements of Sem. The opera.tor "T" ca.n thus be defined in terms of the operator "T" and the function
guard.

Definition 23 Define T : ((§au.bat - Sem) x (Ssv.bst -+ Sem)) -+ (Ssv.bat --+ Sem) as follows: for any
fi, '2 E (Ssubat-+ Sem), Ii I '2 = guard(f1)T f2. •

The construction of hypothetical histories requires a.n operator like the " I " operator but that conserves
the marks of the guards. It is defined as the following operator " => ".

Definition 24 Define the function => : (Shyp x Ssv.bst x (Ssubst -+ Sem) x (Ssvbst -+ Sem)) -
(Ssv.bst-+ Sem) as follows: for any hh E Shyp, Ji, h : (88'1.1.bst--+ Sem), <T, () E Ssubat,

(/1 =>M,6 h)(u) = {< hh,6,g >.fail: g E guard(f1)(u),g is infinite}
U { < hh,fJ,g.ss >.fail: g.as E guard(f1)(u)}
U { < hh, (), g.f ail > .fail : g.f ail E gua.rd(f1)(u)}
u {< hh,fJ,g.st1CC(f!) > .h: g.aucc(f!) E guard(/1){u),

n is reconcilable with reconciliation w, h E '2 (w)}
u { < hh, 8, g.st1CC(f!) > .fail : g.succ(n) e guard(f1)(u),

n is not reconcilable } •

294

In order to define the semantic counterpart " W " of the parallel composition operator, let us first introduce
two auxiliary operators. The first one, the operator " If ,P " determines how the ending suspension marks
of derivations should be combined in parallel.

Definition 25 Define the au:ciliary operator TI,...,, on suspension statements as follows.

if C holds
otherwise

where C stands for the following condition : there is {(A1, O'i), ... , (Am, O'm)} r; Ti , m > 0,
{(Bi, r1) ' (B,., r,.)} r; T2 ' n > 0 and {Hi, ... ' Hm+n} E 8i n 82 such that {ui, ... 'O'm, T1, ... , r,.} is

reconcilable, say with reconciliation 9, and such that< Ai, ... , Am, Bi. ... , B,. > 9 and < H1, ... , Hm+n >
~~~ . 

The other auxiliary operator "IT.11h11p" specifies how hypothetical histories should be combined in a 
synchronized parallel fashion. 

Definition 26 Define the operator If •11hvp on hypothetical histories and functions of 
(8dhist x Sdhi8t -+ 8em) as follows: 

~F 

< hyp((A, E), (B, r)], 81,9i > .h1 ll,11hvp < hyp[(C, T), (D, \II)], 82, g2 > -~ 

{ 
{ < hyp[(V, !l), (W, ~)], 81,g1 > .h: Desc} if Condi and Conth. holds 

= {8i.g10h} if Condi holds and Conth. does not hold 
0 otherwise 

where Condi, Conti,. and De8c stand for the following conditions: 
• Condi: i) 81 = 82 iv) Er; \II vii) AU B =CUD 

ii) g1 = 92 v) C r; B viii) EU r = TU lJ! 
iii) A ~ D vi) T r; r 

• Oonth.: i) B\C-:/: 0 ii) r\T-:/: 0 
• Desc: i) V =AUG iii) W =B\C v) h E F(hi,~) • 

ii) !l=EUT iv) ~=r\T 

We are now in a position to define the semantic counterpart " W " of the operator " II ". As before, a 
suitable operator is used to provide a correct recursive definition. It is defined on histories rather than on 
sets of histories for the ease of the presentation. 

Definition 27 Define the function IJ!para : (Sdhist x Sdhist -+ 'Pc1(8dhist)) -+ (Sdhist x 8dhist -+ 

'Pc1(8dhist)) as follows: for any FE (8dhist xSdhist-+ 'Pc1(8dhi8t)), for any g,gi,g2,h,hi.h2 E Sdhist, 
ss,ssi,ss2 E Ssusp, hh,hh1,h~ E Shyp, 8,81,82 E 88v.b8t, 0,01102 r; Ssubst, 

i} II' par" (F)(fail, h) = IJ!para (F)(h, fail)= {fail} U {9.h*: 9.hr Eh, h* E F(Jail, hr)} 
U { < hh, 9,g > .h* :< hh, 9, g > .hr Eh, h* E F(fail, hr)} 

ii} II' para (F)(succ(01), succ(92)) = { succ(91 U 92)} 
iii} ll'par" (F)(succ(0),ss) = \Ilpara (F)(ss,succ(0)) = {s8} 
iv) II' para (F)(succ(01), 92.h) = 1Ppara (F)(82.h, succ(0i)) = {82.h* : h* E F(succ(9i), h)} 
v) '1rparG (F)(succ(0), < hh, 8, 9 > .h) = 1PparG (F)(< hh,9,9 > .h, succ(0)) 

= {< hh,9,9 > .h*: h* e F(succ(9),h)} 
vi} '1rpar" (F)(ssi, 882) = 881 TI,"'P 882 

vii) llrpara (F)(ss,8.h) = IJ!para (F)(9.h,ss) = {9.h*: h* E F(ss,h)} 
viii) II' par" (F)(ss, < hh,8,g > .h) = \II par" (F)(< hh,8, g > .h, ss) = { < hh, 8,9 > .h* : h* E F(ss, h)} 

iz) '1rparG (F)(< hh1,81,gi > .h1, < hh2,62,g2 > .h2) =< hhi,91,g1 >.hi TI~hllP < hh2,82,92 > -~ 
U { < hhi. 81, gi > .h* : h* E F(h1, < hh2, 82, 92 > .h2} 
U {< hh2,82,92 > .h*: h* E F(< hh1,8i,9i > .hi,h2} 

:c} '1rpara (F)(< hhi, 81, gi > .hi, 82.h2) = WparG (F)(82.h2, < hh1, 9i, 91 > .h1) 
= {92.h: h E F(< hh1,8i,91 > .hi,h2)} U {< hhi,8i,9i > .h: h E F(hi,82.h2)} 

:ci) '1rpara (F)(9i.hi, 82.~) = {81.h: h E F(hi. 82.~)} U {62.h: h E F(81.h1, h2)} • 



295 

Proposition 28 The function 11i' J>Clr<> is a contraction. • 
Definition 29 

1} Define the operator TI.tr : Sdhist x Sdhist-+ 'Pa(Sdhist) as the unique fized point of the contraction 
11i'J>Clr<> 

2} Define the operator IT : ((Ssubst -+ Sem) x (Ssubst --+ Sem)) -+ (Ssti.bst -+ Sem) as follows: for 
any Ji, f2 E (Ssubst-+ Sem) and any u E Ssubst, 

(11 tl h)(u) = LJ{h1 Hitr h2: hi E fi(u),~ E h(u)} • 
Given the semantical counterparts " IT ", "T" and "T" of the operators " II ", " ; " and " I ", defining 

the denotational semantics essentiany consists of defining the semantics for the basic constructs, namely 
the empty goal and the extended goals composed of one atom. The semantics of the former goal is quite 
obvious: success is returned together with the empty substitution E. The semantics of a goal of the latter 
form, say A placed in the context of the substitution u, is of a fourthfold nature: it contains 

i) derivations started by any clause (H <- G 113) that unifies with Au; the corresponding histories are 
composed of the mgu (J of the corresponding unification (precisely, the set formed of this mgu) followed 
by the histories of the semantics of CJ 113 in the state u9; 

ii) hypothetical histories for any extended Horn clause C and any multiset of atoms and substitutions that 
put in concurrence with the goal would allow C to be used; they are composed of the corresponding 
hypothetical statement followed by the mgu 9 corresponding to the unification with the treated clause, 
an history of the guard evaluation and one execution of the corresponding body part of C 

iii) a suspension mark for such extended Horn clauses, if any; 
iv) a fail mark in case none of the previous histories can be delivered in the semantics 

As before, a suitable higher-order contraction is used to tackle recursivity adequately. 

Definition 30 Define the operator 11i'cJen : [Sprog -+ Segoal-+ Ssubst-+ Sem] -+ [Sprog -+ Segoal-+ 
Ssubst -+ Sem] as follows : for any F : [Sprog -+ Segoal -+ Ssubst -+ Sem], any P E Sprog, any 
u E Ssubst, any atom A, any G1,G2 E Segoal, 

i} 11i'.i.n (F)(P)(A)(u) = 
{ 6.F(P)(G I 71)(u9) : (H <- G I 13) E P, Au and H unify with mgu 9 } 
u U{[ 11i'.i.,. (F)(P)(?J) =*'hh,r8 F(P)(G1)](r9): Condh} 
U { susp[{(A, u)}, C] : Cond, } 
U { fail : Condi } · 

ii} 11i'.i.n (F)(P)(~)(u) = {succ({u})} 
iii} 11i'.i.n (F)(P)(?J1 II ?J2)(u) = [ '11.i.n (F)(P)(?J1) IT 11i'.i.n (F)(P)(G2)](u) 
iv} 11i'.i.n (F)(P)(?J1; G2)(u) = [ '11.i.n (F)(P)(?J1)T F(P)(?J2)](u) 
v) 11i'.i.n (F)(P)(?J1 I ?J2)(u) = [ '11.i.n (F)(P)(G1) T F(P)(?J2)](u) 

where Condh, Cond, and Condi stand for the following conditions1 

• C ondh: i) { u} U e reconcile with reconciliation r, 
ii} (H1 <> • • • <> Hn+l <-CJ I ?Ji <> • • • <> ?Jn+l) E P*, 

iii) < A, Bi.···, B,. > 7' and < H1, · · ·, Hn+l > unify with mgu 9 
iv) n ~ 1 
v) hh = hyp[({A}, {u} ), ( {B1, ... , Bn}, 0)] 

• Cond,: i) there are B1, ... , B,. with n ~ 1 
and a clause (H1 <> • • • <> Hn+l <-CJ I ?J1 <> • • • <> Gn+1) E P*, such that 
< A,Bi.· · · ,Bn > u and< H1, ·· · ,Hn+l > unify 

ii} C is the set of the multisets of the atoms of the heads of all such general 
Horn clauses 

iii} Au unifies with no clause of P 
• Condi: For any clause (H1 <> • • • <> Hn+1 <-CJ I "G1 <> • • • <> "Gn+l) E P*, and any 

B1, ... , Bn, n 2:'.: 0, <A, Bi.···, Bn > u and< H1, · · ·, Hn+l > do not unifiy. 

7 As usual, a suitable renaming of the clauses is assumed. 
• 



296 

Proposition 31 The function qi' den is well-defined and is a contraction. • 
Definition 32 Define the denotational semantics Den : [Sprog -+ Segoal -+ Ssubst _. Sem] as the unique 
fei;ed point of W den • 

We conclude this section by relating the semantics Den and Od. Obviously, Den contains more informa­
tion than Od so that relating them consists of finding a function a2 such that a20Den = Od. The appropriate 
function a 2 operates essentially by retaining the non-hypothetical and successful histories from Den and by 
delivering, for each of them, the substitution computed by it, if any. Its precise definition is as follows. 

Definition 33 Define the function a2: 'P(Sdhist)-+ 'P(Sdhist) as follows: for any S E 'P(Sdhist), 

a 2(S) = {p(9) : h.succ(e) e Sn Sr hist, e is reconcilable} • 
Proposition 34 The function a2 o Den: Sprog-+ Segoal-+ 'P(Ssubst) defined as 

(a2 o Den)(P)(C'J) = a[Den(P)(")(e)], 

for any program p and extended goal ""· equals od. • 
10 Conclusion 

The paper has presented an extension of the Hom clause framework as well as four semantics for the extended 
framework, ranging in the operational, declarative and denotational types. Three of these semantics are 
inspired by the traditional logic programming paradigm. They consist of the operational semantics Od, 
based on the derivation relation f-, and of the declarative semantics Deel,,, and Declfl based on model 
theory and fixed-point theory, respectively. The other semantics, namely the denotational semantics Den, is 
issued from the imperative tradition, and, more particularly, from its metric semantic branch ([6], [5], [14], 
... ). It describes computations, in a compositional way, via histories, possibly including hypotheses. 

All these semantics have been related throughout the paper, thanks to propositions, 15, 16 and 34. The 
minimal relations have only been stated. From them, it is possible to deduce other relations, for instance 
to connect Den with Deel,.,. and Deel,. It is furthermore impossible to add nonredundant relations. For 
instance, it is impossible to guess the infinite derivations contained in Den in view of the only computed 
substitutions of Od. It is also impossible to guess the substitutions computed in Od from all substitutions 
pointed out declaratively in Declm or Deel,. However, it is worth noting that although they are associ­
ated with different semantics, it is possible to connect the derivation relation f- and the model theory, as 
established by proposition 16. 

The ELP language introduced in this paper provides a suitable mechanism to introduce synchronicity 
in concurrent logic programming and to combine, to some extend, logic programming and object-oriented 
programming. Our future research, under development, will be concerned with more elaborated versions, 
including, for instance, more object-oriented constructs. Also, we are trying to develop semantics closer 
to real computations in treating and-parallelism in a non-interleaving way and or-parallelism not just as 
non-deterministic choice. 

Acknowledgments 

The research reported herein ha.s been partially supported by Esprit BRA 3020 (Integration). The first 
author likes to thank the members of the C.W.I. concurrency group, J.W. de Bakker, F. de Boer, F. van 
Breugel, A. de Bruin, E. Horita, P. Knijnenburg, J. Kok, E. Marchiori, C. Palamidessi, J. Rutten, D. Turi, 
E. de Vink and J. Warmerdam, for their weekly intensive discussions. The second author wish to thank the 
Institute Nacional de lnvestig~ao Cientifica and the Junta Nacional de Investig~io Cientffica e Tecnol6gica 
for partial support. 



297 

References 

[1] P. America and J.J.M.M. Rutten. Solving reflexive domain equations in a category of complete metric 
spaces. Journal of Computer and System Sciences, 39(3):343-375, 1989. 

[2) J.-M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-in Inheritance. In D.H.D. 
Warren and P. Szeredi, editors, Proc. 'fh Int. Con/. on Logic Programming, pages 495-510, Jerusalem, 
Israel, 1990. The MIT Press. 

[3] A. Brogi. And-Parallelism without Shared Variables. In D.H.D. Warren and P. Szeredi, editors, Proc. 
'fh Int. Con/. on Logic Programming, pages 306-321, Jerusalem, Israel, 1990. The MIT Press. 

[4] J.S. Conery. Logical Objects. In R.A. Kowalski and K.A. Bowen, editors, Proc. sth Int. Con/. and 
Symp. on Logic Programming, pages 420-434, Seattle, USA, 1988. The MIT Press. 

[5] J.W. de Bakker. Comparative Semantics for Flow of Control in Logic Programming without Logic. 
Technical Report CS-R8840, Centre for Mathematics and Computer Science (CWI), Amsterdam, The 
Netherlands, 1988. 

[6] J.W. de Bakker and J.I. Zucker. Processes and the Denotational Semantics of Concurrency. Information 
and Contro~ 54:70-120, 1982. 

[7] F.S. de Boer and C. Pala.midessi. On the Asynchronous Nature of Communication in Concurrent Logic 
Languages: a Fully Abstract Model based on Sequences. In J.C.M. Baeten and J.W. Klop, editors, 
Proc. of Concur go, volume 458 of Lecture Notes in Computer Science, pages 99-114, Amsterdam, The 
Netherlands, 1990. Springer-Verlag. 

[8] P. Degano and S. Diomedi. A First Order Semantics of a Connective Suitable to Express Concurrency. 
In Proc. F Workshop on Logic Programming, pages 506-517, Albufeira, Portugal, 1983. 

[9] R. Engelking. General Topology. Heldermann Verlag, 1989. 
[10] M. Fa!aschi, G. Levi, and C. Palamidessi. A Synchronization Logic: Axiomatics and Formal Semantics 

of Generalized Horn Clauses. Information and Control, 60:36-69, 1984. 
[ll] J.Y. Girard. Linear Logic. Theoretical Computer Science, 50:1-102, 1987. 
[12] S. Gregory. Design, Application and Implementation of a Parallel Logic Programming Language. PhD 

thesis, Department of Computing, Imperial College, London, Great-Britain, 1985. 
[13] J.-M. Jacquet. Conclog: a Methodological Approach to Concurrent Logic Programming. PhD thesis, 

Facultes Universitaires Notre-Dame de la Paix, University of Namur, Belgium, 1989. to appear as 
Lecture Notes in Computer Science, Springer-Verlag. 

[14] J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Concurrency Semantics. Theoretical Com­
puter Science, 76:179-222, 1990. 

[15] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, second edition, 1987. 
[16] L. Monteiro. An Extension to Horn Clause Logic allowing the Definition of Concurrent Processes. 

In Proc. Formalization of Programming Concepts, volume 107 of Lecture Notes in Computer Science, 
pages 401-407. Springer-Verlag, 1981. 

[17] L. Monteiro. A Horn Clause-like Logic for Specifying Concurrency. In Proc. 1°' Int. Con/. on Logic 
Programming, pages 1-8, 1982. 

(18] C. Palamidessi. Algebraic Properties of Idempotent Substitutions. In M.S. Paterson, editor, Proc. of 
the 17th International Collo1Jt1ium on Automata, Languages and Programming, volume 443 of Lecture 
Notes in Computer Science, pages 386-399, Warwick, England, 1990. Springer-Verlag. 

[19] V.A. Sara.swat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon Univer­
sity, 1989. To be published by The MIT Press. 

[20] E.Y. Shapiro. A Subset of Concurrent Prolog and its Interpreter. Technical Report TR-003, Institute 
for New Generation Computer Technology (ICOT), Tokyo, 1983. 

[21] K. Ueda. Guarded Horn Clauses. PhD thesis, Faculty of Engineering, University of Tokyo, Tokyo, 
Japan, 1986. 


