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1. Introduction

Various formalisms have been proposed in the past for the description of nondeterministic
concurrent systems, the most well- known of which are CCS [14,15] ,ACP [2]) and TCSP
[6,13,17) . These languages or calculi have been given a variety of semantical descriptions
(1,2,3,4,5,6,7,8,10,11,12,18,19,20,21]. A first classification of this semantics distinguishes
between interleaving and noninterleaving models .

In noninterleaving models as [3,4,8,10,11,12,18,21,23] an attempt is made to capture ’ true
parallelism ’ where as interleaving models as [1,2,5,6,7,19) somehow reduce concurrency to
nondeterministic sequential behaviour by arbitrary interleaving of atomic actions,

e.g. the process a.stop || f.stop 'behaves’ like «.B.stop O B.a.stop ,if a,F# 7.

In this paper we compare an interleaving semantics of full TCSP based on a transition system
with a noninterleaving model based on labelled event structures [16,22,23,24] .

In an earlier paper [11] have shown for finite TCSP processes without recursion and div
that the interleaving transition system based description and the respective event structure
semantics are consistent . As recursion is a very powerful tool to build concurrent

systems , it is an interesting question if this result carries over to full TCSP. We show here
that this question has a positiv answer. The result is in particular interesting, as it not only
relates an interleaving specification with a noninterleaving but also relates at the same time
an operational specification with a compositional one, that provides semantic operators for
all syntactical constructs including fiz.

. The syntax of guarded TCSP

Let Comm be the set of possible communications. A special action 7, as in CCS, is intro-
duced to describe internal actions which may not communicate. For notational convenience,
we allow 7 to occur syntactially in expressions denotmg processes.

So let the set Act of actions be deﬁned as

Act .= Comm U {7 }.

Let Idf be a set of identifiers which will serve as variables for programs. The set TCSP of
TCSP terms is defined by the following production system :

P := stop|a.P|div|Por@|POQ|
PlaQ|P\B|z| fizz.P,

where a € Act, 8 € Comm, AC Comm, z € Idf .

2.1 Definition : :

An occurence of an identifier z is called freein a term P € TCSP iff it does not occur within
a subterm of the form fiz z.Q. A TCSP term P is said to be closed iff it does not contain
identifiers which occur free in P.

An identifier x is guarded in a term P € TCSP iff each free occurence of x in P is in the
scope of a prefixing operation @ — «.Q .

A term P € TCSP is called guarded iff in each subterm fiz z.Q of P the identifier z is
guarded in Q.
Let GTCSP be the set of all guarded TCSP terms.




A GTCSP process is a closed, guarded TCSP term.

2.2 Definition :
Let P, Ay,...,An € GTCSP and z,,...,z, € Idf pairwise distinguished identifiers. The
GTCSP term

P[Ay/z;,...,Ap/z,) or shortly P[A/3]
arises from P by substituting each free occurrence of the identifiers z,, ..., z, in P simulta-
neously by the GTCSP terms A;,..., A,.

. Transition systems

3.1 Definition :
A =(S,L,—,qo) is called a (labelled) transition system iff

(a) S is a set of states.
{(b) L is a set of labels.

(¢) = € SxLxS, where we will write p = ¢ instead of (p, @, q) € —.
(d) g0 € S, qo is called the initial state of A.

3.2 Definition :
Two equally labelled transition systems A; = (S;,L,—,¢), i = 1,2, are bisimular
(A; = Aj) if there exists a bisimulation R between A; and Az, i.e. arelation RC S) x S,
with (¢1,¢2) € R and, for all (p, g)ER:

1. Whenever p -3, p' for some p’ € S; then there exists some ¢’ € Sy with

(r,¢)€Rand gy ¢
and symmetrically
2. whenever g -3, q’ for some ¢’ € S, then there exists some p’ € Sy with

(V.¢)€Randp 3, p'.

. AnC Smterleavmg transition system based description for guarded
TCSP

4.1 Definition :

Let — be the binary relation on TCSP that is defined as follows :

(a) Prefixing
aP S P
(b) Internal nondeterminism
PorQLP,PorQlQ
(c) External nondeterminism

a L ’
External choice : P — f d , Q- 9 , Where a # 7.
POQEP’' POQA(Q




T T 7
Internal choice : P = il , Q = Q .
POQLPOQ’ PoQlPOQ
(d) Parallel composition

PSP, Q5Q

Synchronisation case :
PlaQ3P 4@’

where o € A.

Independent execution ( modelled by interleaving ):
P2 p Q=g

= , , where a ¢ A.
PlaQ-PllaQ PlaQ=Pla@
(e) Hiding
B . a
PSP P~ P where o # 8.

P\BLP\B’ P\BSP\p’
(f) Recursion
P[fiz z.P/z] = Q
fizzP3Q

. (g) Divergence
div 5 div.

An interleaving model of a closed GTCSP term P is the transition system

A(P) = (GTCSP, Act, —, P).

4.2 Definition :
For P,Q € GTCSP and w € Comm*, we define :
P = Q , iff there exists a sequence

P=P3P3... 3P,,=Q

where n > 0 and w results from a; ...a, € Act* by skipping all occurrences of 7.
We call Q a derivative of P .

Let P be a closed GTCSP term. Then, the transition system

O(P) = ( GTCSP,Comm*,=,P)

gives an operational semantics for P that specifies only the observable behaviour of the pro-
cess P.

. Labelled event structures

5.1 Definition :
e = (E,&,#,1) is called a (labelled) event structure iff

(a) E is aset (of events ),
(b) < is a partial order on E,

(c) # is an irreflexive, symmetric relation on E , called conflict relation , with :

Vey,e3,e3 € E: (e1 S ez and e ffes ) => eqfhes,
(d) 1: E — Act, where Act is the alphabet of actions (labelling functions).




5.2 Definition :
Let € = (E, <, #,1) be an event structure, &' C E,e € E .

(a) #(e) := { ' €E:e'fe}.
(b) #(E) = Uep #(o)
(c)le == {€E :e¢/<eande’#e} iscalled the preset of e .

5.3 Definition :
Let € = (E, <, #,1) be an event structure, e € E.

1 D ifle=0
depth(e) = { maz{depth(e’): e’ €l e} + 1: if| e is finite
00 : otherwise

5.4 Definition :
An event structure ¢ = (E, <, #,1) is called (finitely) approzrimable iff

(a) for each e € E, depth(e) is finite and
(b) for each n € N, {e € E : depth(e) = n} is finite.

Ev denotes the set of all finetely approximable event structures where we abstract from the
names of the events, i.e. we will not distinguish isomorphic event structures. Two event
structures &; = (E;, <;,#:,k), i = 1,2 are isomorphic if there exists a bijective mapping
f : E1 — E2 SO tha.t

loer <1 ez <= fle1) <o flez) Ver,e2€ Ey

2. €1 #1 ey f(el) #2 f(eg) Vel,ez € El and

3. Ig(f(e)) = Il(e) VC € El.

Event structures can be depicted graphically by representing events as boxes (inscribed with
the event label) and connecting them with their direct predecessors and successors.

A conflict between two events is a direct conflict if no predecessors of the events are in
conflict. Direct conflicts are depicted graphically by a broken line .

Example :

The event structure ¢ = (E, <, #,1) with

E = {ej1,e3,e3}, e <e;, erf#tes, esftes and
l(ey) = &, I{e3) = B, I(e3) = v is shown as

Cel — [£]

R




6. Composition operations for event structures

The event structure semantics for GTCSP to be defined is compositional, which means that
composition operators corresponding to the syntactical operators prefix, or , O, [la, \8
and fiz have to be defined . This has been done in [11], we will here explain examples only
and refer for the precise definitions to the appendix.

6.1 Example : Prefixing
a.c describes a process that first performs @ and then behaves like €. If ¢ is

o — @
ki
] — Bl
then a.c is
AP
o — o
N T
6.2 Example : O - choice
Let €, bé 7] — [alande; be [B] . Then ¢ Oy isgiven by
[ — &
B

which describes that £; may perform its 7-actions independently and that a decision has to
take place as soon as communications are involved.

6.3 Example : O - choice

Let &; be [a] — and &3 be [y | — [§],then ¢ O¢, is
&l — @
ol — [

describing external choice.



6.4 Example : or-choice
The or-choice reflects internal nondeterminism .

Let & be [T ]— [a]and & be [F] .
Then &; or g, is given by
[A—mD— @
]
E
A—@ .

The internal character of the or -choice is modelled by prefixing the respective event struc-
tures with internal actions and by imposing a conflict between these internal actions .

6.5 Example : Parallel composition la

Let & be [f] — [a] — [Y]and €3 be [§] — [a] — [2] ,then

€1 |l{a} €2 is given by

o _ M
IZI/ S

6.6 Example : Hiding

Let € be

(el — (2]

then ¢ \ 8 is

[ .
c

,

~ i.e. hiding transforms actions labelled by 8 into actions labelled by r .



7. The metric space of finite approximable event structures

In this section we will define a metric d on finite approximable event stuctures. [15] have
shown that (Ev,d) is a complete ultametric space. Thus, every Banach-contractive mapping
®: Fv — Ev has a unique fixpoint in Ev.

7.1 Definition :
Let €,¢' € Ev,n€ N,e = (E, <, #,D).

(a) The truncation of ¢ {of the depth n ) is defined as follows :

e = (E",S IE")#'E";”E")
where E” := {e € E : depth(e) < n}.

(b) The distance between the event structures ¢, ¢’ is defined by
d(es)—O = e=¢ :
d(e,e') =5k 4= c#¢ and n=maz{i:c =¢).
We recall that we deal w1th isomorphism class of event structures, i.e. we abstract of
the names of the events e € E. It is clear that the distance d(g,e’) is independent of
chosen representatives.

7.2 Definition :
Let Env:={o: o:Idf — Ev} the set of environments. These are mappings which assign
a meaning to free identifiers of a term.

Forey,...,eq € Ev, we define ole;/zy,...,6n/2,] : Idf — Ev by
Iy +— &, i:l,...,n, -
y — o(y) ifyé¢{z,...,za}

Let ®: GTCSP x Envx Id — (Ev— Ev) be given by
®(P,o,z)(¢) := M[Plo[e/d,
where M is the meaning function
M : GTCSP x Env — Ev
given by :

Let o € Env, a € Act, B € Comm, AC Comm, P,P,,P, € GTCSP.

(a) Mizlo := o(z) where z € Idf.
(b) Mla.Ple := a.M[Pls.

() M[P\fle = M[Plo \B.

(d) M[PDPR))e := M[P)o O M[P;)o.
(e) M[PorPjo := M[Pi]o or M[P;]o.
(f) M[P|laPy)o = M[Pyo |lx M[P)]o.
(8) M[fiz z.Plo := fiz &(P,o,z2)

where fiz ®(P,o,z) denotes the unique fixpoint of the Banach - contractive mapping
®(P,0,z). See [11],where it has been shown that ®(P,c,z) is Banach - contractive .




Lemmal :

Let £ € Idf be guarded in P € GTCSP.
(a) 01,02 € Env,01(y) = 02(y)Vy € Idf \ {z} = fiz®(P,o1,2) = fiz®(P, 09, 2).
(b) If P is closed then fiz®(P,o,z) is independent of the énvironment o.

(c) Let zy,...,z, be pairwise different identifiers, A,,..., 4, € GTCSP,
then : ’

M[P[A,/zl,...,A,./x,,]]a' = M[P]O‘[ M{A)o/zy,...M{A,)o [z ]

Proof:

(a) follows immediately from the definition of ®.
(b) is clear .
(c) By structural induction on the syntax of P.

Lemma 2 : :
Let P,B,Ay,...,A, € GTCSP and let zy,...,z,,y € Idf be pairwise different identifiers,so
that y does not occur free in A,,...,A,. Then,

P(As/a1,..., An/2n, BIA/31/5) = P(B/YIA/3).

Proof :
By induction on the syntax of P .

Lemma 3 :
Let P € GTCSP. Then, for all z,,...,2, € Idf pairwise different identifiers, which are
guarded in P | and for all A,,...,A, € GTCSP :
If P[A;/21,...,An/2a] = Q, then there exists P’ € GTCSP with
1. P3P and '
2. P'[A)]zy,..., Anfz,]) = Q.

Proof :
By induction on the syntax of P .

Remark : _
Let P,Q,A;,...,A, € GTCSP and z,,...,r, € Idf be pairwise different identifiers which
are guarded in P so that P[A/Z] S Q.
Then, there exists P’ € GTCSP with
1.P3 P and
2. P'{AJZ) = Q .

It is easy to see that for all terms By,..., B, € GTCSP ’:

P[B/z) & P'[B/3).

Remark :
If A€ GTCSP is closed then

M[A]O’l = M[A]O’z v 01,02 € Env.



So, we can define

M[A] = M[A]e. where o € Env.

7.3 Definition :

Forw =a)...a, € Act* , we define © to be the word in Comm* which arises from w by
eliminating all actions labelled by 7.

le.,, w = o4, ...a;, wherel < i; < ... < i < n are the indices 1 € {1,...,n} with
a; € Comm.

7.4 Definition :

(a) Let p€ Act, €, ¢’ € Ev, ¢ = (E, <, #,[). The transition relation
— C Ev x Act x Ev on event structures is defined by :
et &’ iff there exists some event e € E with depth(e) =1, l(e) = p
and €' = (E',< |g, #le, |gr) where E' = E\ ({e} U #(e)).
(b) When we abstract from r-events we get the transition relation
= C Evx Comm* x Ev:
€= ¢’ iff there exists a sequence

e= 88 . . Beg=¢
where n > 0,py,...,p, € Act and w € Comm* results from py s ... p, by removing
all y; = 7.

(c) The (observable) interleaving semantics of ¢ € Ev is defined as the transition system

O(¢e) = (Bv,Comm*,=¢).

7.5 Definition :

The event structures e;,e, are called 7-equivalent , written ¢, =, &5 , iff there exists
event structures ¢, Int;, Int, , where all events in Int;, Int, are labelled by 7 , with
€& = €llp Int;, i=1,2.

It is easy to see that r-equivalence is an equivalence relation on Ev. [11] have shown that if
€1 %, €2 and €; 2 ¢} then there exists €} € Ev with &} =, e, and &, = €.

Lemma 4 :
Let P€ GTCSP, a € Act, o € Env.

(a3) If PS5 P' then M[Plo 3 M[P]eo.

(b) If z,,...,2, be the pairwise different identifiers that occur free in P and if o(z;) =
M[A;] where A; is a closed GTCSP term, i = 1,...,n , then, for all event structures
¢’ € Ev with M[P]o 5 ¢, there exists a term P’ € GTCSP with

1. P[ Ay/zy,...,Ap/zn ] 4 P and
2. M[P)o =, €.

Proof : We will prove the statements by induction on the structure of P .

(a) We assume that P = P’. Basis of induction :
1. P = stop has no derivatives.
2. P=div ,then a=71 and P’ =div, M[Ple = M[P]o.
3. P=z € Idf , then P has no derivatives.




(b)

Induction step :

The most interesting operator is the fiz- operator.
P = fiz z.Q), then Q[fiz z.Q/z] > P'.
By Lemma 3, there exists Q' € GTCSP with Q = @’ and Q’[fiz z.Q/z]) = P'.
By induction hypothesis :
M(Qle| miploss] S M(Q o[ Miplo/s ]
On the other side, we have :
M[Plo = fiz®(Q,0,z) = M[Q]o[ M{Plo/z]

and

M[Plo = MQfiz 2.Q/slle = M[Q'[P/a]le = MIQ)o] MiPlose ]

(Lemma 1c). Then, M[Ploc 2 M[Po.

Induction step :

Again, we only consider the fix - operator: P = fiz z.Q .
The identifiers occuring free in @ are z,,...,2, and z . We get :
M[Ple = fiz(Q,0,z) = ®(Q,0,z)( M[Plo) = M[Q]o[ M(Plo/z ]

and »
M([Plo = M[ P[Ai/z),...,An/2n]]

( by Lemma 1c ).
Hence

o[ M[Ple/= |(2) = MI[Plo
0’[ M({P)o/=z ](z.-) = 0'(2,'

M[ P[A/%]] and
M[A;], i=1,...,n.

Since M|[P]o i €' , we get by Lemma 1c and Lemma 2 :
M[Qlo[ MPlojz] = €.
By induction hypothesis, there exists P/ € GTCSP with
Ql Ai/z1,...,An/za, PlAJE]/z 1 3 P' and M[P)o =, .

Since the terms Ay, ..., A, are closed, we get :

Q[Ii/:E][ P[f‘i/i]/z ] = Q[ Al/zl, . .,A"/zn’P[A‘-/i]/z ]
= Q[A/3][ fiz =.Q[A/F)/z |3 P
= P[A/%] = fiz z.Q[A/7] S P

10




Corollary :
Let R := {(P,e): PE GTCSP,P closed, ¢ € Ev, ¢ &, M[P] }.
Then R is a bisimulation.

Proof :
Let (P,¢) € R.
1. When P 35 P’ | so we have by Lemma 4a :

M[P] & M[P].
Since € =2, M][P], there exists ¢/ € Ev with

e3¢ and ¢ =, M[P).
Then (P',¢’') € R.
2. When ¢ 3 ¢’ , then there exists ¢” € Ev with
M(P] X ¢ and & ~, €
By Lemma 4b, iF is easy to show that there exists P’ € GTCSP, P’ closed, with

PE P MP]w,¢"

Then, M[P'] =, ¢ and (P',¢')€R.

Theorem :
For every closed P € GTCSP(i.e. every guarded process), the transition systems O(P) and
O(M{P]) are bisimular.

. Conclusion

We have shown that an interleaving specification of a GTCSP process P and a nonin-
terleaving meaning of P are ’bisimular’. One difficulty in establishing such a result, in
particular when including recursion via the fiz-operator, is, that a compositional semantics
that provides semantic operators for the syntactical constructs, is compared with an opera-
tional semantics using a transition system . Hence, in order to establish a relation between
the two meanings of a process P we may not simply perform an induction on the structure
of P . In particular, in the case of recursion, we have no operator that determines the
’meaning’ of fiz £.QQ from the 'meaning’ of Q in the transition system case.

Our proof works by obtaining information on the behaviour of a process P from the know-
ledge of the behaviour of P[A/%], see lemma 3 and lemma 4 .

The obtained theorem may be interpreted as a consistency result.

Consistency problems concerning noninterleaving and interleaving models are discussed in
{9,18,20). These investigations differ from the present work in particular in the noninterlea-
ving model (petri nets, prime event structures) and / or in the language studied and in the
proof method .

- 11




Appendix

This section vgivw the operations for finite approximable event structures modelling the operations
of GTCSP as defined in [11] .

A.1 Definition :
Let stop € Ev to be defined as
stop = (0,0,0,0).

A.2 Definition :
Let ¢ = (E,<,#,l) € Ev,a € Act,eq ¢ E. Then , the event structure a.c will describe a process
which first performs o and then behaves like €.

a.e = (Elv S.’y #l) I,)

Leg<'e; &> e =¢ or (e1,e2 EE & e) < e3)
. el#’ez < ¢€1,€ €eF & 81#62 ]
I': E' — Act is defined by l'(e) =1(e) ,ife € E, and I'(eg) = a..

W N

A.3 Definition :
For ¢ = (E, <, #,1) € Ev,we define the set of initial internal events by

In(e) == {e€ E:Ve'€E,e <e:l(e) =7}

A .4 Definition : ’
Let €; = (B, <i, #i, i) € Ev,i=1,2, wlo.g. EyNE; = 0. The conditional composition of £, and
€ is defined by
€1 o €y = (E’Sx#)l)
where
1. E = E, U E
2.8 =5 U%

.er#er < (e1,e2 € Ey & erfiez) or (e1,e2 € By & ey#2e2) or
(el (3 In(€1) & ey € Iﬂ(iz)) or (61 € In(€2) & eg € In(€1))

4. 1:E — Act,l(e) = li(e)  ife€ E;, i=1,2.

€1 O g3 describes the process which behaves like one of the event structures ¢, or £, where the
decision which alternative is left open as long as only internal actions are being performed.

A.5 Definition : .
Let ¢; = (E;, <, #i,l;) € Ev,i= 1,2, wlog. Ey N E; = 0. The nondeterministic combination of
€1 and ¢, is defined by

Eyoréegqg (= (E,S,#,l)

where

12




i- E = EyUE U{fi.f2} , i, ¢ELUE,

2.e1<e; < (e1,e2€E;&ey<iep,i=1lori=2)or
(e.'=f,'&82€E,', i=lori=2)ore1=62

3. # is the symmetric closure of #; U #; U ((E1U{fi}) x (E2U{f2}))
4. 1:E— Act, l(e) =k(e)ife € E; and I(f))=T1,i=1,2.

The nondeterministic combination £, or ¢; behaves like €, or like €5 where an internal decision
choose the alternative .

A.6 Definition : o
Let €; = (Ey, <, #i, ;) € Ev, i =1,2 and A C Comm.

1. The syntactical communication of ¢, and €3 on A is defined by

Commy(e1,62) = {(e,%): e€Ey & Li(e)¢g A
or e€Ey & lp(e)g A}
U { (61,62) EE, xE,y: 11(81) = 12(62) €A } .
There * is an auxiliary symbol, x ¢ E; U E,.

2. Two communications (ey,e;), (e},e5) € Commy(ey,e2) are in conflict iff they contain
conflicting events, i.e. e;ft1e] or es#aeh ', or one event communicates with two distinct
events, i.e. (ey =ejAex F#eh) or (ea=ehAey #e)).

3. A subset C of Comm 4(e,,¢,) is conflict-free iff no two communications in C are in conflict.

4. Let C C Commy(e,,¢€2) be conflict- free, (e1,e2),(f1, f2) € C .

(a) The relation < is defined by
(e1,e2) < (fi, o) = ((e2 < fi) A=(ea > f2)) or ((e2 < f2) A=(er > 1)).

We say (e1,e2) precedes (fy, f2) if (e1,e2) < (f1, f).
(b) C is called complete iff
V(e1,e2) € C,Vfy € Ey with f; <; e, there exists (e, f2) € C with

(f1, f2) < (e1, €2)

and éymmetrically
V(el,ez) € C,sz € Eg with f2 Sz € there exists (fl).f2) € C with

(f1, f2) < (e1,€2).
(c) C is called cycle-free iff the transitive closure of < is antisymmetric.
5. The parallel composition of €, and €; with communication on A C Comm is given by
€1lla €2 = (E,<,#,1)
where

(a) E = {Cley,e5) : Cles,en) © Commy(eq,€3) is conflict-free, cycle-free, complete

and (1, e3) € Cy, ,) is the only maximal element (with respect to -‘<) }.
c
{(C1,C2) € E x E : 3(e1,e2) € Cy, (f1, f2) € Cp with

(e1,€2), (f1, f2) in conflict }

(b) <
(c) #




(d) 1: E— Act, I(Cle, ¢,)) = label(ey, e5)
where label(ey,e3) = l1(e1) if e, € Ey and label(ey, e3) = ly(e3) if 3 € Es.

The parallel composition €, ||4 €2 describes the independent execution of ¢, and £, where the
actions of A may only be executed as joint actions by both processes together. In particular, llo
stand for fully independent execution (without synchronisation), and on the other extrem ,
llcomm only allows actions which are performed in common.

A.7 Definition :
Let ¢ = (E, <, #,]) € Ev,8 € Comm.

e\B = (B, L, #.0)
where I : E — Act, I'(e) =l(e) if I(e) # 8 and I'(e) = 7 otherwise.

The hiding operator transforms the actions labelled by 2 into internal actions, i.e. r-events.
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