
\~" Reihe Informatikrrl
~ 4/1990 ;;

' .. The consistency of a noninterleaving an~,an
~\ interleaving model for full TCSP!p'

'~~'l\.. ".:\~ /

'~"i Christel Baier i;i
~ .~.~ Mila E. Majster-Cederballffi

~, (/.
'" L"~~"'. (.;/, .~

'\1 J..i>t\.. I.'(~
\ .~

'fJ::' -
'::-,.',

Extended abstract
November 1990

I

1. Introduction

Various formalisms have been proposed in the past for thedescription of nondeterministic
concurrent systems, the most well- known ofwhich are CCS [14,15] ,ACP [2] and TCSP
[6,13,17] . These languages or calculi have been given a variety of semantical descriptions
[1,2,3,4,5,6,7,8,10,11,12,18,19,20,21]. A first c1assification of this semantics distinguishes
between interleaving and noninterleaving models.
In noninterleaving models as [3,4,8,10,11,12,18,21,23] an attempt is made to capture ' true
parallelism ' where as interleaving models as [1,2,5,6,7,19] somehow reduce concurrency to
nondeterministic sequential behaviour by arbitrary interleaving of atomic actions,
e.g. the process Cl.stop 11 ß.stop 'behaves' like Cl.ß.stop 0 ß.Cl.stOP ,if Cl,ß # T.

In this paper we compare an interleaving semantics offull TCSP based on a transition system
with a noninterleaving model based on labelIed event structures [16,22,23,24] .
In an earlier paper [11]have shown for finite TCSP processes without recursion and div
that the interleaving transition system based description and the respective event structure
semantics are consistent . As recursion is a very powerful tool to build concurrent
systems, it is an interesting question if this result carries over to fuH TCSP. We show here
that this question has a positivanswer. The result is in particular interesting, as it not only
relates an interleaving specification with a noninterleaving but also relates at the same time
an operational specification with a compositional one, that provides semantic operators for
all syntactical constructs inc1uding fix.

2. The syntax of guarded TCSP

Let Comm be the set of possible communications. A special action T, as in CCS, is intro-
duced to describe internal actions which may not communicate. For notational convenience,
we allow T to occur syntactially in expressions denoting processes.
So let the set Act of actions be defined as

Act := Comm U { T }.

Let Idf be a set of identifiers which will serve as variables for programs. The set TCSP of
TCSP terms is defined by the following production system:

P .- stop I Cl.P I div I P or Q I P 0 Q I
P IIA Q I P \ ß I x I fix x.P,

where ClE Act, ß E Comm, A ~ Comm, :z:E Idf .

2.1 Definition:
An occurence of an identifier xis called free in a term P E TCSP iff it does not occur within
a subterm of the form fi:z: x.Q. A TCSP term P is said to be closed iff it does not contain
identifiers which occur free in P.

An identifier x is guarded in a term P E TC S P iff each free occurence of x in P is in the
scope of aprefixing operation Q 1-+ Cl.Q .

A term P E TCSP is called guarded iff in each subterm fi:z: x.Q of P the identifier :z:is
guarded in Q.
Let aTCSP be the set of all guarded TCSP terms.

1

/

A aTCSP process is a closed, guarded TCSP term.

2.2 Definition:
Let P, Al, ... ,An E GTC S P and Xl," . ,Xn E Idf pairwise distinguished identifiers. The
GTCSP term

P[AlfX1,"', An/xn] or shortly prÄ/x]
arises from P by substituting each free occurrenee of the identifiers Xl, .• ~,Xn in P simulta-
neously by the GTCSP terms Al>"', An'

3. Transition systems

3.1 Definition:
A = (S, L, -, qo) is ealled a (labelIed) transition system iff

(a) S is a set of states.
(b) L is a set of labels.

(c) - ~ S X Lx S, where we will write p ~ q instead of (p, c¥, q) E-.
(d) qo ES, qo is ealled the initial state of A.

3.2 Definition:
Two equally labelIed transition systems Ai = (Si,L, -i, q.), i = 1,2, are bisimular
(Al ~ A2) if there exists abisimulation R between Al and A2, i.e. a relation R ~ SI X S2
with (ql,q2) E Rand, for all (p,q) E R:

1. Whenever p ~1 p' for some p' E SI then there exists some q' E S2 with
(p', 1/) ER and q ~2 q'

and symmetrieally
2. whenever q ~2 q' for some q' E S2 then there exists some p' E SI with

(P', 1/) E R and p ~1 p'.

4. An interleaving transition system based description for guarded
TCSP .

4.1 Definition:

Let - be the binary relation on TCSP that is defined as folIows:

(a) Prefixing
C¥.P .~ P

(b) Internal nondeterminism
PorQ.!...P, PorQ.!...Q

(c) External nondeterminism
P~P'External choice : ~=---'--=--

POQ~P' ,
Q~Q'--"'---""--- , where Q:/; T.

P 0 Q~Q'

2

P.!.. p'Internal choke: -~-~~--
P 0 Q .!.. p' 0 Q '

(cl) Parallel composition

Q.!.. Q'
P 0 Q .!.. P 0 Q'

Synchronisation ease : P~P', Q~Q'
P IIA Q ~ p' IIA Q' , where 01 E A.

P~P'
P \ ß ~ P' \ ß ' where 01 =I ß.

Independent execution (modeUed by interleaving):
er , Q er Q'P -+ P -+ where 01 d A.

P IIA Q ~ p' IIA Q' P IIA Q ~ P IIA Q' ' 'F

. (e) Hiding
P!... p'

P\ß'!"P'\ß'

(f) Recursion
P(fix x.Pjx) ~ Q
fix x.P ~ Q

(g) Divergence
div .!.. div.

An interleaving model of a closed GTCSP term P is the transition system

A(P) = (GTCSP, Act, -+, P).

4.2 Definition:
For P,Q E GTCSP and w E Comm*, we define:
P ~ Q , iff there exists a sequence

P = P1 ~ P2 ~ . .. ~ Pn+1 = Q

where n ~ 0 and w results from 011 ••• 00n E Act* by skipping all occurrences of T.
We caU Q a derivative of P .

Let P be a closed GTCSP term. Then, the transition system

O(P) = (GTCSP,Comm*,=},P)

gives an operational semantics for P that specifies only the observable behaviour of the pro-
cess P.

5. LabelIed event structures

5.1 Definition:
E = (E,~, #, I) is called a (labelled) event structure iff

(a) Eis a set (of events),
(b) ~ is a partial order on E,
(c) # is an irreflexive, symmetrie relation on E , called conflict relation, with :

Vel,e2,e3EE: (el~e2.andel#e3) ==} e2#e3,

(d) I: E -+ Act, where Act is the alphabet of actions (Iabelling functions).

3

/

5.2 Definition:
Let g = (E, 5,#, l) be an event structure, E' C E, e E E .

(a) #(e) := {e' E E : e'#e }.

(b) #(E') := UeeE,#(e).

(c) ! e := {e' E E : e' 5 e and e' # e} is called the preset 01 e .

5.3 Definition:
Let g = (E, 5,#, I) be an event structure, e E E.

d'plh(,) ~ { :,aX{d'plh(o')'" EI 'l
if! e = 0

+ 1: if! e is finite
otherwise

5.4 Definition:
An event structure g = (E, 5,#, l) is called (finitely) approximable iff

(a) for each e E E, depth(e) is finite and

(b) for each n E N, {e E E: depth(e)= n} is finite.

Ev denotes the set of all finetely approximable event structures where we abstract from the
names of the events, i.e. we will not distinguish isomorphie event structures. Two event
structures gi = (Ei, 5i, #i, li), i = 1,2 are isomorphie if there exists a bijective mapping
1 :EI -+ E2 so that

1. el 51 e2 <=> I(ed 52 l(e2) 'leI, e2 E EI
2. el #1 e2 {:::::::> f(ed #2 f(e2) 'leI, e2 E EI and
3. 12(f(e» = ll(e) 'v'e E EI.

Event structures can be depicted graphically by representing events as boxes (inscribed with
the event label) and connecting them with their direct predecessors and successors.
A conflict between two events is a direct conflict if no predecessors of the events are in
conflict. Direct conflicts are depicted graphically by a broken line .

Example:
The event structure g = (E, 5,#, l) with
E = {el,e2,eS}, el 5 e2, el#eS, e2#eS and
l(el) = a, l(e2) = ß, l(es) ="y is shown aB

I

I

W

4

/

6. Composition operations for event structures

The event structure semantics for GTCSP to be defined is compositional, which means that
composition operators corresponding to the syntactical operators prefix, or , 0 , IIA , \ß
and fix have to be defined . This has been done in [11]' we will here explain examples only
and refer for the precise definitions to the appendix.

6.1 Example: Prefixing
Q.e describes a process that first performs Q and then behaves like e. If e IS

then Q.e IS

6.2 Example: 0 - choice

Let el be EJ -- @ and e2 be Im .Then el 0 e2 is given by

which describes that el may perform its T-actions independently and that adecision has to
take place as soon as communications are involved.

6.3 Example: 0 - choice

describing external choice.

5

I

6.4 Example: or-choice
The or-choice reflects interna! nondeterminism .

Let Cl be EI- ~ and C2 be [lI .
Then cl or C2 is given by

~ - [TI - @]
I
I
I
I
I

8- [l]
The interna! character of the or -choice is modelIed by prefixing the respective event struc-
tures with interna! actions and by imposing a conflict between these intern al actions .

6.5 Example: Paralle! composition IIA

Let Cl be ([] - ~ - [LI and C2 be [[[- ~ - [LI, then
cl lI{o} C2 is given by

6.6 Example : Hiding

Let C be

then e \ ß is

0-@]
I

I
I
I
I
I

1lI,
@]-El
I
I
I
I
I

0,
Le. hiding transforms actions !abelled by ß into actions labelIed by T •

6

/

I

7. The metric space of finite approximable event structures

In this section we will define a metric d on finite approximable event stuctures. [15] have
shown that (Eu, d) is a complete ultametric space. Thus, every Banach-contractive mapping
~ : Eu -+ Eu has a unique fixpoint in Eu.

7.1 Definition:
Let e, e' E Eu, nE N, e = (E, $,#, I).

(a) The truncation of e (of the depth n) is defined as folIows:
en := (En,$IE",#IE",IIE")

where En := {e E E: depth(e) $ n}.

(b) The distance between the event structures e, e' is defined by
d(e,e') = 0 : <==> e = e'
d(e,e/) = 2~ : <==> e::/: e' and n = max{i: ei = e/i}.

We recall that we 'deal with isomorphism dass of event structures, i.e. we abstract of
the names of the events e E E. It is dear that the distance d(e, e') is independent of
chosen representatives.

7.2 Definition:
Let Enu:= {u: u: I df -+ Eu} the set of environments. These are mappings which assign
a meaning to free identifiers of a term.

For el, ... , en E Eu, we define u[edxl"'" en/xn] : Idf -+ Eu byx, ei. i=1 •... ,n,
y •.....•u(y) ifY~{Xl, ... ,Xn}'

Let ~: GTCSP x Enu x Id -+ (Eu -+ Eu) be given by

~(P,u, x)(e) .- M[Pju[./",],

where M is the meaning function

M GTCSP x Enu -+ Eu

given by :

Let erE Enu, a E Act, ß E Comm, A s:;; Comm, P, Pli P2 E GTCSP.

(a) M[xJu:= u(x) where x E Idf.
(b) M[a.P]u := a.M[P]u.
(c) M[P \ ß]u := M[P]O' \ ß.
(d) M[P10P2]U:= M[Pdu 0 M[P2]u.
(e) M[PlorP2]u:= M[Pdu or M[P2]u.
(f) M[P1HAP2]U:= M[Pl]er HA M[P2]u.
(g) M[fix x.P]u := fix ~(P, u, x)

where fix ~(P, u. x) denotes the unique fixpoint of the Banach - contractive mapping
~(P,O',x). See [ll],where it has been shown that ~(P,u,x) is Banach -contractive.

7

/

Lemma 1 :
Let z E ldf be guarded in PE GTCSP.

(a) 0'1,0'2 E Env,O'l(Y) = 0'2(Y)'rIYE ldf\ {z} ::::} fiz<'P(P, 0'1,z) = fiz<'P(P, 0'2,z).
(b) Ir P is closed then fiz<'P(P, 0',z) is independent of the environment 0'.
(c) Let Z1, ... ,Zn be pairwise different identifiers, Al> ... ,An E GTC S P,

then : .
M(P(Adz ••...• A"/z,,I]O' = M(P]O'(M(A,)a/z ••...• M(A"la/z"].

Proof:

(a) follows immediately from the definition of <'P.
(b) is clear .

(c) By structural induction on the syntax of P.

Lemma 2 :
Let P, B, Al, ... ,An E GTCSP and let Zl, ... , Zn, Y E Idf be pairwise different identifiers,so
that y does not occur free in Al, ... ,An' Then,

P(AdX1>" .,An/xn.B(Ä/x]/y] = P(B/y][Ä/x].
Proof:
By induction on the syntax of P .

Lemma 3 :
Let P E GTCSP. Then, for all X1,"',Xn E Idf pairwise different identifiers, which are
guarded in P , and for all Al,'''' An E GTCSP :
If P(Adx1 •... , An/xn] ~ Q, then there exists P' E GTCSP with

1. P ~ P' and
2. P'(Adz1,"" An/Zn] = Q.

Proof:
By induction on the syntax of P .

Remark:
Let P, Q,Al, ... ,An E GTC S P and Xl, ...• Xn E I df be pairwise different identifiers which
are guarded in P so that prÄ/xl ~ Q.
Then, there exists P' E GTCSP with

1. P 2. P' and
2. PI(Ä/x] = Q .

It is easy to see that for all terms BI,"" Bn E GTCSP :

P(B/x] ~ pl(B/x].

Remark:
Ir A E GTCSP is closed then

8

/

So, we can define

M[A] .- M [A] 0"_ where 0" E Env.

1.3 Definition:
For w = al ... an E Act. , we define w to be the word in Comm. which arises from w by
eliminating all actions labelIed by T.

Le., w = ai, ... ai. where 1 $ il < ... < i" $ n are the indices i E {1, ... ,n} with
ai E Comm.

1.4 Definition:

(a) Let JJ E Act, e, el E Ev, e = (E, $,#, I). The transition relation
.....•~ Ev x Act x Ev on event structures is defined by :
e ~ e; iff there exists some event e E E with depth(e) = 1 , I(e) = JJ

and e'=(E',$IE"#IE,,IIE,)where E'=E\({e} U #(e)).
(b) When we abstract from T-events we get the transition relation

~ C Ev x Comm* x Ev :
e ~-el iff there exists a sequence

where n ~ 0, JJI, ••. , J1.nE Act and w E Comm* results from J1.1J1.2 •.. J1.nby removing
all J1.i = T.

(c) The (observable) interleaving semantics of e E Ev is defined as the transition system

O(e) = (Ev.Comm*,~,e).
1.5 Definition:
The event structures el,e2 are called T-equivalent ,written el ~T e2 , iff there exists
event structures e, Intl, Int2, where all events in Intl, Int2 are labelIed by T , with
ei = elle Inti, i= 1,2.

It is easy to see that T-equivalence is an equivalence relation on Ev. [11] have shown that if
el ~T e2 and el ~ e~ then there exists e~ E Ev with e~ ~T e~ and e2 ~ e~.

Lemma 4 :
Let P E GTCSP, a E Act, 0" E Env.

(a) If P ~ pi then M[P]O" :! M[P/]O".
(b) If Zl>"', Zn be the pairwise different identifiers that occur free in P and if O"(z;) =

M[Ai] where Ai is a closed GTCSP term, i = 1, ... , n ,then, for all event structures
el E Ev with M[P]O" ~ el , there exists a term pi E GTCSP with

1. P[AI/Zl>"', An/zn] :! pi and
2. M[P']O" ~T el•

Proof: We will prove the statements by induction on the structure of P .

(a) We assurne that P ~ Pi. Basis of induction :
1. P = stop has no derivatives.
2. P = div ,then a = T and pi = div , M[P]O" = M[P/]O".
3. P = z E I df ,then P has na derivatives.

9

/

Induction step :

The most interesting operator is the fix- operator.
P = fix x.Q, then Q[fix x.Q/x] ~ P'.
By Lemma 3, there exists Q' E GTCSP with Q ~ Q' and Q'[fix x.Q/x] = P'.
By induction hypothesis :

M[Q]u[M(P),,/,,] ~ M[Q']u[M(PJu/"]

On the other side, we have :

M[P]u = fix~(Q,u,x) = M[Q]U[M(P)u/,,]

and

M[P']u = M[Q'[fix x.Q/x]]u = M[Q'[P/x]]u = M[Q']u[M(P)u/,,]

(Lemma lc). Then, M[P]u ~ M[P']u.

(b) Induction step :

Again, we only consider the fix - operator: P = fix x.Q .
The identifiers occuring free in Q are xl, ... , xn and x . We get :

M[P]u = fix(Q, 00, x) = ~(Q, 00, x)(M[P]u) = M[Q]u[M(P)"/,,]
and

(by Lemma 1c).

Hence
u[M(P)u/"](x) = M[P]u = M[P[Ä/x]] and
u[M(P)u/"](x.) = u(x.) = M[A.], i = 1, ... , n.

Since M[P]u ~ c', we get by Lemma 1c and Lemma 2 :

M[Q]u[M(P)u/,,] ~ c.

By induction hypothesis, there exists P' E GTCSP with

Since the terms Al,' .. ,An are closed, we get : .

Q[Ä/xJ[P[Ä/x]/x] = Q[Al/xl>" ., An/xn, prÄ/xl/x].

=> Q[Ä/xJ[fix x.Q[Ä/x]/x] ,g. p'

=> prÄ/x] = fix x.Q[Ä/x] ~ P'

10

/

/

Corollary:
Let R := {(P, e) : PE GTCSP, P closed, e E Ev, e R!T M[P] }.
Then R is abisimulation.

Proof:
Let (P, e) E R.
1. When P ~ P' , so we have by Lemma 4a :

M[P]:! M[Pl

Since e R!T M[P] , there exists e' E Ev with

e ~ e' and e' R!T M[P'].

Then (P',e') E R.

2. When e ~ e' , then there exists eil E Ev with

M[P] :!eil and e' R!T eil.

By Lemma 4b, it is easy to show that there exists P' E GTCSP, P' closed, with

P:! P' , M[P'] R!T eil

Then, M[P'] R!T e' and (P',e') E R.

Theorem:
For every closed PE GTCSP(i.e. every guarded process), the transition systems O(P) and
O(M[P]) are bisimular.

8. Conclusion

We have shown that an interleaving specification of a GTCSP process P and a nonin-
terleaving meaning of P are 'bisimular'.' One difficulty in establishing such a result, in
particular when including recursion via the fiz-operator, is, that a compositional semantics
that provides semantic operators for the syntactical constructs, is compared with an opera-
tional semantics using a transition system . Hence, in order to establish a relation between
the two meanings of a process P we may not simply perform an induction on the structure
of P. In particular, in the case of recursion, we have no operator that determines the
'meaning' of fiz z.Q from the 'meaning' of Q in the transition system case.
Our proof works by obtainin~ information on the behaviour of a process P from the know-
ledge of the behaviour of P[A/i], see lemma 3 and lemma 4 .
The obtained theorem may be interpreted as a consistency result.
Consistency problems concerning noninterleaving and interleaving models are discussed in
[9,18,20]. These investigations differ from the present work in particular in the noninterlea-
ving model (petri nets, prime event structures) and / or in the language studied and in the
proof method .

11

I

Appendix

This section gives the operations for finite approximable event structures modelling the operations
of GTCSP as defined in [11] .

A.l Definition:
Let stop E Ev to be defined as

stop := (0,0,0,0).

A.2 Definition:
Let e: = (E, '5:.,#,/) E Ev,er E Act,ea ~ E. Then ,the event structure er.e: will describe a process
which first performs er and then behaves like e:.

er.e: = (E','5:.',#',I')
where

1. E' = EU{ea},

2. el '5:.' e2 ~ el = ea or (el,e2 E E & el '5:. e2)
3. el#'e2 ~ el, e2 E E & el#e2

4. I' : E' - Act is defined by I'(e) = I(e) ,if e E E, and I'(ea) = er.

A.3 Definition:
For e: = (E, '5:.,#, I) E Ev,we define the set of initial internal events by

In(e:) := {e E E: "Ie' E E, e' '5:. e : I(e') = r}

A.4 Definition:
Let e:i = (Ei, '5:.i, #i, li) E Ev, i= 1,2, w.l.o.g. EI nE2 = 0. The conditional composition of e:1 and
e:2 is defined by

where

1. E = EI U E2

2. < = '5:.1 u '5:.2

3. e1 # e2 ~ (elte2 E EI & e1#1e2) or (el,e2 E E2 & el#2e2) or
(e1 E In(e:d & e2 E In(e:2)) or (eI E In(e:2) & e2 E In(e:l))

4. I: E - Act, I(e) = li(e) if e E Ei, i = 1,2.

e:l 0 e:2 describes the process which behaves like one of the event structures e:l or £'2 where the
decision which alternative is left open as long as only internal actions are being performed.

A.5 Definition:
Let e:i = (Ei, '5:.i , #i, Id E Ev, i = 1,2, w.l.o.g. EI nE2 = 0. The nondeterministic combination of
e:l and e:2 is defined by

where

12

/

2. el ~ e2 <=::} (ell e2 E Ei & el ~i e2, i = 1 or i = 2) or
(ei = fi & e2 E Ei, i = 1 or i = 2) or el = e2

3. # is the symmetrie closure of #1 U #2 U ((EI U {fd) X (E2 U {h}»

4. I: E -. Act , I(e) = li(e) if e E Ei and I(li) = T, i = 1,2.

The nondeterministie eombination Cl or c2 behaves like cl or like c2 where an internal deeision
ehoose the alternative.

A.6 Definition:
Let Ci = (Ei, ~i, #i, li) E Ev, i = 1,2 and A ~ Gomm.

1. The syntactical communication of Cl and C2 on A is defined by

GommA(CI,C2) := {(e,*): e E EI & II(e) r;.A
or e E E2 & 12(e) r;. A }

U {(el,e2) E El X E2: ll(ed = 12(e2) E A}.
There * is an auxiliary symbol, * r;.EI U E2.

2. Two eommunieations (el,e2),(e~,e~) E GommA(cl,c2) are in conflict iff they eontain
eonflicting events, i.e. el #le~ or e2#2e~ ,or one event eommunieates with two distinet
events, Le. (eI = e~ 1\ e2 f:. e~) or (e2 = e~ 1\ el f:. eD.

3. A subset Gof GommA (cl, c2) is conflict-free iff no two eommunieations in G are in eonfliet.

4. Let G ~ GommA(ClIc2) be eonfliet- free, (el,e2),(ll,h) E G.

(a) The relation -< is defined by

(el,e2) -< (ft,h) <=> ((eI ~ ft)I\-,(e2 > 12» or ((e2 ~ h)I\-'(el > ft».

We say (el,e2) precedes (ft,h) if(elle2) -< (ft,h).
(b) G is ealled complete iff

'v'(el,e2) E G,'v'ft E El with ft ~l el there exists (e2,h) EC with

and symmetrieally
'v'(elle2) E G,'v'h E E2 with h ~2 e2 there exists (ft,f2) E G with

(e) Gis ealled cycle-free iff the transitive closure of -< is antisymmetrie.

5. The parallel composition of Cl and C2with eommunieation on A ~ Gomm is given by

where

(a) E = {Ccel,e.) : Ccel,e.) ~ GommA(cl,c2) is eonfliet-free, eycle-free, eomplete
•and (el, e2) E Ccel.e.) is the only maximal element (with respect to -<)}.

(b) ~ = ~
(e) # = {(GI,G2) E E xE: 3(el,e2) E Gl,(ft,h) E G2 with

(el,e2),(ft,h) in eonfliet}

13

/

(d) I: E -+ Act , I(Ccel,e,») = label(el,e2)
where label(ell e2) = 11(ed if el E EI and label(ell e2) = 12(e2) if e2 E E2.

The parallel composition el IIA e2 describes the independent execution of el and e2 where the
actions of A may only be executed as joint actions by both processes together. In particular, 11.
stand for fully independent execution (without synchronisation), and on the other extrem,
Ilcomm only allows actions which are performed in common.

A.7 Definition:
Let e = (E, 5, #,/) E Ev, ß E Comm.

e\ß := (E,~,#,l')

where I' : E -+ Act, I'(e) = l(e) if I(e):f:. ß and l'(e) = T otherwise.

The hiding operator transforms the actions labelIed by ß into internal actions, Le. T-events.

14

I

References

1. J.W. de Bakker, J.LZucker :
Processes and the Denotational Semantics of Concurrency,
Information and Control, Vol.54, No 1/2, pp 70-120, 1982 .

2. J.A. Bergstra, J.W.Klop :
Process Algebra Cor Synchronous Communication,
Information and Control, Vol 60 , No 1-3, pp 109 - 137, 1984 .

3. G. Boudol, LCastel1ani :
On the Semantics of Concurrency : Partial Orders and Transition Systems,
Proc. TAPSOFT 87, Voll, Lecture Notes in Computer Science 249 , Springer - Verlag,
pp 123 - 137, 1987 .

4. G. Boudol, LCastel1ani :
Permutation of transitions: An event structure semantics for CCS and SCCS,
Proc. School/Workshop on Linear Time, Branching Time and Partial Order in Logics and
Models [or Concurrency ,
Lecture Notes in Computer Science 354 , Springer - Verlag, pp 411-427, 1989 .

5. S.D. Brookes :
A Model [or Communicating Sequential Processes,
report CMU-CS 83-149, Carnegie-Mel1on University, January 1983 .

6. S.D. Brookes, C.A.R. Hoare, A.W. Roseoe:
A Theory of Communicating Sequential Processes,
Journal ACM, Vol. 31, No. 3, July 1984 .

7. S.D. Brookes, A.W. Roscoe :
An improvedFailure Model for Communicating Processes,
Seminar on Concurrency, Lecture Notes in Computer Science 197, Springer - Verlag, 1985 .

8. P.Degano, R.De Nicola, U. Montanari :
A Distributed Operational Semantics for CCS Based on Condition/Event Systems,
Acta Informatica 26 , pp 59 - 91 , 1988 .

9. P.Degano, R.De Nicola, U. Montanari :
On the Consistency of 'Truly Concurrent' Operational and Denotational Semantics,
Proc. Symposium on Logie in Computer Science, Edinburgh, pp 133 - 141 , 1988 .

10. U. Goltz :
On Representing CCS Programs as Finite Petri Nets,
Proe.MFCS 88, Lecture Notes in Computer Science 324, Springer-Verlag, pp 339 - 350, 1988.

11. U. Goltz, R. Loogan :
Modelling Nondeterministic Coneurrent Processes with Event Structures,
to appear in Fundamentae Informaticae ,
see also: Schriften zur Informatik und angewandten Mathematik,
Nr.105, RWTH Aachen , 1985.

12. U. Goltz, A. Mycroft :
On the Relationship of CCS a.nd Petri Nets,
Proc. ICALP 84, Lecture Notes in Computer Scienee 172, Springer - Verlag, 1984.

13. C.A.R. Hoare :
Communication Sequential Processes,
Prentice Hall, 1985 .

14. R. Milner :
A Calculus of Communication Systems,
Lecture Notes in Computer Science 92, Springer - Verlag, 1980 .

15

/

15. R. Milner :
Lectures on a Calculus of Communicating Systems,
Seminar on Concurrency, Lecture Notes in Computer Science 197, Springer - Verlag, 1985 .

16. M. Nielsen, G. Plotkin , G. Winskel :
Petri - Nets, Event Structures and Domains ,
Theoretical Computer Science, Vol. 13, No. 1, pp 85 - 108, 1981 .

17. E.R. Olderog :
TCSP : Theory of Communicating Sequential Processes ,
Advances in Petri - Nets 1986 ,
Lecture Notes in Computer Science 255 , Springer - Verlag, pp 441 - 465, 1987 .

18. E.R. Olderog :
Operational Petri - Net Semantics for CCSP,
Advancesin Petri - Nets 1987 ,
Lecture Notes in Computer Science 266, Springer - Verlag, pp 196 - 223 , 1987 .

19. G.D. Plotkin :
An Operational Semantics for CSP ,
Formal Description ofProgramming Concepts II, North Holland, pp 199 - 225, 1983 .

20. W. Reisig:
Partial Order Semantics versus Interleaving Semantics for CSP - like languages and its Impact
on Fairness,
Proc. ICALP 84, Lecture Notes in Computer Science 172, Springer - Verlag, pp 403 - 413,
1984. .

21. D. Taubner, W. Vogler:
The Step Failure Semantics,
Proc. STACS 87, Lecture Notes in Computer Science 247, Springer - Verlag, pp 348 - 359,
1987.

22. G. Winskel :
Events in Computation ,
Ph.D.Thesis, University of Edinburgh, report CST-10-80, December 1980 .

23. G. Winskel :
Event Structure Semantics for CCS and Related Languages,
Proc. ICALP 82, Lecture Notes in Computer Science 140, Springer - Verlag, pp 561 - 576,
1982 . Theoretical Computer Science, May 1985 .

24. G. Winskel :
Event Structures,
Petri - Nets : Applications and Relationships to Other Models of Concurrency,
Lecture Notes in Computer Science 255, Springer - Verlag, pp 325 - 392, 1987 .

16

I

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017

