
On the Complexity of
Graph Reconstruction

Dieter Kraiscli
Fakultiit Mathematik

Friedrich-Schiller-Universitii.t
0-6900 Jena, Germany

Lane A. Hemachandra"
Department of Computer Science

University of Rochester
Rochester, NY 14627 USA

March 11, 1991

Abstract

In the wake of the resolution of the four color conjecture, the graph reconstruc­
tion conjecture has emerged as a focal point of graph theory. This paper considers
the computational complexity of decisions problems (DECK CHECKING and LEGITIMATE

DECK), the construction problems (PREIMAGE CONSTRUCTION), and counting problems
(PREIMAGE COUNTING) related to the graph reconstruction conjecture. We show that:

1. DECK CHECKING ~~ GRAPH ISOMORPHISM ~~ LEGITIMATE DECK 1 and

2. if the graph reconstruction conjecture holds, then GRAPH ISOMORPHISM =~.to DECK

CHECKING.

Relatedly, wedisplay the first natural GI-hard NP set lacking obvious padding functions.
Finally, we show that LEGITIMATE DECK, PREIMAGE CONSTRUCTION, and PREIMAGE

COUNTING are solvable in polynomial time on planar graphs, graphs with bounded
genus, and partial e-trees for fixed k.

1 Introduction

Harary's survey of the reconstruction conjecture recounts the origins of the problem [19]:

The author first heard of this fascinating problem when Kelly [23J proved the
theorem for trees in 1957. This result was obtained in Kelly's doctoral disser­
tation which was written under Ulam, who published [37] a statement of the
problem in 1960 (although it was already known to him in 1929, when he assid­
uously collected mathematical problems posed by his fellow graduate students
and professors in Lw6w, Poland.) This has led to some confusion concerning

"Research supported in part by the National Science Foundation under grants CCR-8809174/CCR­
8996198 and CCR-8957604.

I

whose name should be attached to this conjecture. The solution which I rec­
ommend heartily is to refer to this problem henceforth as the Reconstruction
Conjecture.

The reconstruction conjecture states: Any graph with at least three vertices can be
reconstructed from the collection of its one-vertex-deleted subgraphs, It is widely viewed
as one of the most interesting and challenging open problems in graph theory, and has
generated many excellent surveys [15,19,5,33]. As noted above, the first result in this field
was Kelly's proof that the conjecture is true when restricted to trees; i.e., trees are recon­
structible [23]. Since that time, many graph classes have been shown to be reconstructible.
Among such classes are: disconnected graphs [17], regular graphs [33], separable graphs
with no pendant vertex [4], maximal outerplanar graphs [30J, outerplanar graphs [12], uni­
cyclic graphs [29], (nontrivial) Cartesian product graphs [9J, squares of trees [16], bidegreed
graphs [27J, unit interval graphs and threshold graphs [38J (see [17,11,7,6,31,26] for further
discussion of reconstructlbility of graph classes).

In 1964, Harary [17J stated a very useful formulation of the conjecture: Somebody
draws on cards all one-vertex-deleted subgraphs of an unknown graph, one subgraph per
card; can we reconstruct the original graph from this deck of cards, up to isomorphism?
This formulation led naturally to the question of which graph parameters can be computed
from the deck; among the parameters that have been considered are the number of vertices
and edges, the degree sequence, and the sequence of the degrees of the neighborhood vertices
(see [33]).

In the present paper, we are concerned with complexity-theoretic aspects of reconstruc­
tion. This line of inquiry springs from a question of Nash-Williams [33]: If we do not
know that a deck is created from a graph, how difficult is it to find out whether this is the
case-i.e., whether the deck is legitimate?

We study that question here and we also study the complexity of the following problems:

1. Given a graph and a deck, check whether that deck results from the graph.

2. Given a deck, construct a graph with this deck.

3. Given a deck, compute the number of (distinct) graphs with this deck.

We will see that there is a strong relationship between the problems above and the well­
known problem GRAPH ISOMORPHISM (abbreviated GI), which is the set: {(G

"
G2) IG I is

isomorphic to G2 } . GI is one of the few problems known to be in NP, yet neither known to
be in P nor known to be NP-complete.

Goldwasser and Sipser [13J and Schiining [35J have proven that the GI belongs to the
class coAM; that is, there is an interactive proof protocol for graph nonisomorphism. Since
NPncoAM is included in the second level of the low hierarchy [34], it follows that graph
isomorphism is low [35]. Consequently, if GI were NP-complete, then the polynomial-time
hierarchy would collapse to its second level. However, it remains quite possible that GI is
in P, even if the polynomial hierarchy is infinite.

Much effort has been devoted to determining the computational complexity of GI when
restricted to special classes of graphs, and there have been some striking successes. Many

2

graph classes have polynomial-time isomorphism algorithms, including such classes as di­
rected path graphs 1:8], graphs of bounded genus, permutation, series-parallel, and grid
graphs (see [21]), and partial k-trees for fixed k [3].

On the other hand, for some graph classes GI has been shown to be as difficult as for
general graphs (within the flexibility of $~ reductions). In such cases, the restriction is
called isomorphism-complete. Among the isomorphism-complete restrictions are claw-free,
perfect, and line graphs [21).

2 Preliminaries

We consider only finite, undirected, simple graphs with at least three vertices. V(G) and
E(G) denotes the set of vertices and edges, respectively, of graph G. We use V and E
when there is no ambiguity. Furthermore, we use n to denote IV(G)j, the cardinality of
V(G). The degree of v E V(G) in G, denoted dega(v), is the number of edges incident to
v. 6(G) = min{dega(v) 1 v E V(G)} denotes the minimum degree of G. For graphs, G U H
denotes the disjoint union of the graphs.' The one-vertex-deleted subgraph G - v, with
v E V(G), has vertex set V(G) - {v} and edge set E(G) - {{v,x} 1 {v,x} E E(G)}; we
delete the vertex v and all incident edges from G to get G - v. () indicates a multi set. For
a labeling of V, V = {VloV2,""Vn} we call (G - Vt,G - V2, ... ,G - vn) the deck of G,
denoted deck(G). If deck(G) = (G t , G2 •• .. , Gn) we call G a preimage of (G t • G2, ... , Gn).
We are now able to define the problems we study:

DECK CHECKING (abbreviated DC)

instance: Graph G, collection of graphs Gt, G2, . . . , Gn

question: deck(G) = (G lo G2, ... ,Gn) ?

LEGITIMATE DECK (abbreviated LD)

instance: Collection of graphs G lo G2 , • • • , Gn

question: Is that deck legitimate-Le., does there exist a preimage G of (G t , G2, ... ,Gn)?

PREIMAGE CONSTRUCTION (abbreviated PCon)

instance: Collection of graphs G l , G2 , ••• ,Gn

task: Construct a preimage of the deck (G l , G2 , ••• , Gn) , or output "NO" if there is none.

lYor sets, U denotes set union; for multisets, U denotes mul tieet union (0,0) U (0,1,2) = (0,0,0,1,2),
etc.).

3

PREIMAGE COUNTING (abbreviated PCou)

instance: Collection of graphs GI, G2 , • • • , Gn

task: Count the number of (nonisomorphic) preimages of the deck (G t , G2 , • • • , Gn) .

Clearly, these problems are connected to the reconstruction conjecture. We have:
(Gt,G2 , ••• ,Gn) E LD iff (Gt,G2 , ••• ,Gn) produces a graph G as output for PCon. If
the reconstruction conjecture holds, (GI, G2 , ••• , Gn) E LD iff (G t , G2, • • • , Gn) produces
output "1" for PCou. For standard graph-theoretic notions not defined here we refer to [18,
14,2]. For definitions of graph classes we refer to [14,21]. We mention only the standard
definition of partial k-trees.

Definition 2.1 1. (a) A complete graph on k vertices is a k-tree.

(b) If G = (V, E) is a k-tree and V' <; V is a set of k vertices that induces a complete
subgraph in G, then the graph obtained by adding a new vertex v to V together
with an edge from v to every vertex in V' is also a k-tree.

(c) Only graphs that are k-trees via (possibly repeated) application of the above
rules are k-trees.

2. A graph G is a partial k-tree if and only if there is some k-tree G' of which it is a
subgraph-e-i.e., we get G by deleting vertices and edges of G'.

We refer the reader to standard texts for general complexity-theoretic background [39,
1], and for definitions of complexity theoretic notions such as NP and NP-completeness [IOJ,
reductions [25,24], and isomorphism [411. In particular, we use :S~ to denote polynomial­
time many-one reductions, :s~ to denote logspace many-one reductions, =l;. to denote
polynomial-time many-one equivalence, and =1'0 to denote logspace isomorphism,

We tacitly assume that encoding details (of multisets, pairs, graphs, etc.) are handled
in the standard fashion.

3 The Complexity of DECK CHECKING

First, we consider the relative complexity of GI and DC.

Lemma 3.1 DC :Sl;. GI.

Proof: Let (G; (Gt , G2, • • • , Gn }) be an input to DC. We construct an input (G', Gil) to GI
such that (G; (GI, Gn }) E DC iff (G',G") E GI. We have W(G;)I = n - 1 for every
i E {1,2, ... ,n}; otherwise deck (G) # (GI,G2, ••• ,Gn) , so we output any nonisomorphic
G' and Gil and we are done.

G' is built up from (GI, G2 , • • • , Gn) and Gil is built up from deck (G) = (HI, H 2 , • .. , Hn)

in a tree-like manner. We assume that the vertex sets of Gt , G2 , ••• , Gn and H t , H 2, ... , Hn

are pairwise disjoint. Then we define:

4

n

V(G') = U V(Gil u {" , '}Cl,C2l' ",Cn_I,Cn
i=l

U {" , }U1,U2l··"Un
n

V(G") = U V(Hil u {" II II II}C1,C2" .• ,en_IlCn
i:::;:1

U {"" "}til' 'U2'" '1 Un
n n

E(G') = UE(Gi) u UHlli,v} \V E V(Gi)}
i=1 i=1

n

U U({{ci, cj} Ii < j s n} U {{c~, II:} })
i=1

n n

E(G") = U E(H;) U U{M,v} Iv E V(Hi)}
i=1 i=1

n

U U({{ci',cj} Ii < j} U {{ c~, IIi'} })
i=1

(1)

Clearly, the transformation is polynomial. Thus we must show: (G; (G1 , G2, . .. , Gn))

E DC <==> (G',G") E GI. Suppose (G;(G1,G2, ... ,Gn)) E DC. Then deck(G) =
(G1 , G2, . . . , Gn) = (HI. H 2, ... , Hn) . Hence (G', G") E GI. Suppose (G', G") E GI and let I
be an isomorphism mapping V(G') onto V(G"). Since only cl and cq have the maximum de­
gree 2n-l, we have I(cD = c~. Since {u~, u~, ... , u~} and {u~, u~, . . . ,u~} are, respectively,
the only neighbors of cl and cq with degree n, we have I({ul , u~, ... , II~}) = {uq, uq, ... , u~}.
Therefore the graphs hung on ui and I(uD = uJ, namely G, and Hj, must be isomorphic
for every i E {1,2, ... ,n}. Therefore (GI.G 2,... ,Gn) = (H1,H2, ... ,Hn) = deck(G) and
(G;(GI.G 2, ... ,Gn)) E DC. I
Lemma 3.2 GI $~ DC, if the graph reconstruction conjecture holds.

Proof: Let (G1,G2) be an input for Gl. Then we have (G1;deck(G2)) as input for DC.
Let (G1,G2) E GI. Then deck(GJl = deck(G2) and therefore (G1;deck(G2)) E DC. Let
(Gl; deck(G2)) E DC. By the graph reconstruction conjecture, deck(G2) hall only one preim-
age up to isomorphism, namely G2. Hence (G1 , G2) E GI. I

As a consequence of the above lemmas:

Theorem 3.3 DC =~ GI, if the graph reconstruction conjecture holds.

4 The Complexity of LEGITIMATE DECK

This sections relates the complexity of LD to the complexity GI and that of DC.

5

G' G"

,,-,,) (

Figure 1: The Graphs G' and G"

6

Theorem 4.1 GI :5l;, LD.

mill: Wi thout loss of generali ty we may restrict graph isomorphism to graphs without
isolated vertices. Let (G, H) be the input to GI. Without loss of generality, let G and H be
without isolated vertices, have the same number of vertices and edges, and have the same
degree sequence. We use the following notation: G + i is the graph G with i additional
isolated vertices. We show that (G, H) E GI iff (G + I) U (H + I) U (G;+ 21 G; E deck(G)}
is a legitimate deck.

Suppose G and H are isomorphic. Then the preimage of (G + I) U (H + I) U
(G; + 21 G; E deck(G)} is G + 2 and the deck is legitimate. Suppose (G + I) U (H +
I) U (G; + 21 G; E deck(G)} E LD. Let the preimage be the graph G'. Then we
have IE(G')I = Wt'Gll . (Ei=l IE(G;)I + IE(G}I + IE(H)I} = ~. (Ei=lIE(G;}1 +2 ·IE(G}I)
= ~. ((n - 2) 'IE(G)I + 2 'IE(G)I) = IE(G)I.

Since the degree of vi E V(G'}, with G' - vi = G;, is IE(G')I-IE(GDI, G' has exactly
two isolates, namely v; and v~, since IE(G'}I-IE(G)I = IE(G')I- IE(H)I = O. If one of
the vertices vi, i E {3, ... , n + 2}, with G' - v; = G;-2 + 2 would be an isolate then G
would have an isolate, contradicting the choice of G. Suppose G' is isomorphic to K + 2,
and K has no isolate. Then exactly two cards in the deck are isomorphic to K + 1. The
only possible cards are those with G +1 and H +1. Hence G and H are isomorphic. Since
the deck (G + I) U (H + I) U (G; +21 G; E deck(G)} can be computed in polynomial time,
the theorem follows. I

Combining Theorem 4.1 and Lemma 3.1 we have:

Corollary 4.2 DC :5:;' LD.

5 Padding and Logspace Isomorphism

The reductions of Sections 3 and 4 are clearly computable not only in polynomial time, but
indeed in logarithmic space. Thus we may strengthen the statements of Sections 3 and 4
to:

Theorem 5.1 1. DC :5;" GI.

2. If the graph reconstruction conjecture holds, then GI :5;" DC.

3. GI:5~ LD.

4. DC :5~ LD.

We wish to strengthen parts 1 and 2 above, by proving that if the graph reconstruction
conjecture holds, then DC and GI are logspace isomorphic. This will show that DC and
GI-under the assumption that the graph reconstruction conjecture holds-are essentially
the same problem under different naming schemes.

We will first show that DC and GI have certain paddability properties. Then we will
use the following results of Hartmanis to conclude that isomorphism holds.

7

Lemma 5.2 ([20]) Let A be a set for which two loqspace-computable junctions SA(,) and
DA() exist such that:

1. ('v'x, y)[SA(X, y) E A iff x E A], and

2. ('v'X,y)[DA(SA(X,y}) = yJ.
If f is any logspace reduction of C to A, the map /,(x) = SA(f(X),X} is a one-to-one

loqspace reduction of C to A and /,-1 is logspace computable.

Definition 5.3 ([20]) Let A C;;; I;*. Then ZA : I;* -+ I;* is a padding function for the set
A if:

1. ZA(X) E A iff x E A, and

2. Z A is one-to-one.

Lemma 5.4 ([20]) Let f be a one-to-one logspace reduction of A to B and let r: be
logspace computable. Assume that either A or B has a padding function Zx (X = A or B)
that satisfies the conditions:

1. Zx and Zx' are logspace computable, and

2. ('v'y)[/Zx(y}1 > lyl2 + IJ.

Then there exists a one-to-one logspace reduction f' of A to B such that:

1. r:' is logspace computable, and

2. ('v'y)[I/'(y)l> lyI2].

Theorem 5.5 ([20]) Let the set A be logspace reducible to Band B be logspace reducible to
A; furthermore let the set A have a padding function ZA satisfying Lemma 5.4 and functions
SA and DA satisfying Lemma 5.2. Then B is logspace isomorphic to A iff B has functions
SE and DE satisfying Lemma 5.2.

We will show that GI and DC fulfill the conditions of Theorem 5.5.

Lemma 5.6 DC has functions SDC and DDC satisfying Lemma 5.2.

Proof: Let (G; (G1 , G2,"" Gn) } be an input to DC. We view y as a string of bits-y =
y,Y2 ... y" Yi E {D, 1}-and construct a graph c, as follows:

V(G y) = {c;llin+5}

U {diI1ir+l}

U {ed Yi = 1, 1 $ i $ r}
E(Gy) = {{Ci,Cj} I1 $i<j $n+5}U{{cl,d,}}

U {{d.,d.H } 11 s i s r}

U {{d., e.} IY' = 1, 1 s i s r}

(2)

8

4

Figure 2: The Graph ay , where y = 1001

We now define SDC and DDC:

SDc((G; (G"G2,' .. ,G,,}),y) =

(G u a y; (GI u a y) U (G2U a y) U ... U (G" U a y) U (G U (ay - v) Iv E V(ay))).

(Recall that U above means (graph) disjoint union when operating on graphs, and multi set
union when operating on multi sets.) For input (H; (HI, H2, . . . , Hm }) , the function DDC is
computed in the following way:

1. Check that H has two connected components, say HI and H2, with jV(Hdl < jV(H2)1.
2. Check that H 2 has the shape of (Hdy (the notation here is analogous to that of the

definition of ay) for some y, and determine the bits of y by scanning the "caterpillar"
added to [{IV(H,)1+5'

(If some step above is unsuccessful then D DC is undefined on that input.) It is not hard
to see that, due to our choice of a y, SDC and DDC are logspace computable and satisfy
Lemma 5.2. •

Lemma 5.7 GI has functions SGI and DGI satisfying Lemma 5.2.

Proof: The construction is basically the same as in Lemma 5.6:

SGI((G,H),y) = (G U ay,H U Hy)

DOl is then computed in the same way as DDC' Both functions are logspace computable
and satisfy Lemma 5.2. •

Lemma 5.8 GI has a padding function Zal satisfying Lemma 5.4.

9

Proof: The padding function ZGr is defined as follows:

ZGr((G, H)) = (G U K IVCGlI" H UKIV(Hll')'

where K; is a complete graph on n vertices. ZGr is a padding function, since it is one-to­
one, and ZGr((G, H)) E GI iff (G, H) E GL Furthermore, ZGr satisfies Lemma 5.4: ZGr
and Zo) are logspace computable and ZGr is quadratically length-increasing as required by
condition (2) of Lemma 5.4. •

Theorem 5.9 If the graph reconstruction conjecture holds, then GI is logspace isomorphic
to DC.

Proof: Follows immediately from Theorem 5.5 and Lemmas 5.6,5.7, and 5.8. I
The question of paddability is of particular interest with respect to LD. Not only

does LD lack any obvious (S,D) functions, but any straightforward attempt at providing a
polynomial-time computable (or logspace computable) (S,D) functions would seem to have
to actually first perform a reconstruction-namely, of the cards in the original deck.

We believe this to be the first natural GI-hard NP set that lacks obvious (S,D) functlons.?
Indeed, the only known example of a GI-hard NP set that lacks obvious (S,D)-functions
is a certain interesting but artificial type of NP-complete set constructed by Joseph and
Young [22]. Since GI and all standard NP-complete sets have obvious (S,D)-functions, we
conjecture that LD is isomorphic to neither GI nor SATISFIABILITY.

6 Polynomial-Time Algorithms

We restrict our attention to hereditary graph classes 9-Le., graph classes 9 with the
property that when G E 9, any induced subgraph of G belongs to 9. Let LD, PCon,
and PCou restricted to 9 mean that the input graphs G I, G2 , • • • , Gn and all admissible
preimages of (GJ,G2 , .• • ,Gn) belong to 9.

Theorem 6.1 LEGITIMATE DECK, PREIMAGE CONSTRUCTION, and PREIMAGE COUNTING
are solvable in polynomial time when restricted to any hereditary graph class 9 satisfying
the following conditions:

1. there is a polynomial-time recognition algorithm for 9,

2. GI is solvable in polynomial time when restricted to 9, and

3. the minimum degree of each graph G E 9 is bounded by a constant, k, not depending
on W(G)I; i.e., max{6(G) IG E 9} s k.

]Using the notation now standard (but differing from Herrmeaie's earlier nota.tion mentioned about), LD
is 3. potentially "unpa.d.dable" set.

10

Proof: The polynomial-time algorithm is as follows. For input (G" G2,"" Gn) we (hy­
pothetically) assume (GI,G2 , ••• ,Gn) E LD and let G be a (hypothetical) preimage of
(G" ... , Gn) such that, as guaranteed by (3), at least for one card Gi = G - Vi, it holds
that dega(v;) :5 k, Hence, we get G from G, by adding exactly dega(Vi) edges from Vi to
vertices of Gi. There are at most O(nk) possibilities. For each preimage candidate G we
have to solve "(G; (G" . . . , Gn }) E DC?" Let VI, V2, ... , Vn be a labeling of V(G). Then first
we check whether G E 9 and (Iii: 1 :5 i:5 n)[G - Vi E 9] and (Iii: 1 :5 i :5 n)[Gi E 9]. By
(1) and the definition of restriction for LD, PCon, and PCou, this is possible in polynomial
time. Next, for every pair i,j E {I, 2, ... ,n}, we check whether (G - Vi,Gi) E GI. By (2),
this can be done in polynomial time.

We construct a bipartite graph with bipartition {G-v; 11 ~ i ~ n} and {Gi 11 ~ j ~ n}.
There is an edge between G-v; and Gi iff (G-v;, Gi) E GI. Now (G-v!, G-V2, ... ,G-vn) =
(G I , G2 , • • • , Gn) iff this bipartite graph has a perfect matching. Whether a bipartite graph
G = (V, E) has a perfect matching can easily he checked in time O(lVlt . JEI) [32]. Thus
checking (G; Glo ••• , Gn) E DC for one candidate G can be done in polynomial time. Hence,
checking all O(nk) possible candidates G can be done in polynomial time. Thus, LD, PCon,
and PCou can be solved in polynomial time. •

Corollary 6.2 LEGITIMATE DECK, PREIMAGE CONSTRUCTION, and PREIMAGE COUNTING

are solvable in polynomial time when restricted to planar graphs, to graphs of bounded
genus, and to partial k-trees for fixed k.

~: These classes fulfill the conditions (1) and (2) of Theorem 6.1 (see [3,21]. It is
well-known that any planar graph has a vertex of degree at most 5. This can be extended
to graphs of bounded genus, as [40, p. 21] mentions: If G = (V, E) is a connected graph
embeddable in S.. an orientable surface of genus h, then

lEI s 3· (lV1 +2h - 2).

If G = (V, E) is a connected graph embeddable in Nk, a non-orientable surface of genus
k, then:

lEI :5 3· (!VI + k - 2).

From this we get: If G has orientable genus h, then:

12h - 12
6(G) ~ 6· (IVI+2h - 2)/!V1 =6 + !VI :5 12h +6.

If G has non-orientable genus k, then:

6(G) ~ 6· (!VI + k - 2)/!V1 =6 + 6kl~112 :5 6k +6.

Hence, any graph of bounded genus also has a bounded minimum degree; thus (3) is fulfilled.
For a partial k-tree G, let G' be a k-tree such that G is a subgraph of G'. Then the last

vertex V of G added to G' during the recursive construction of G' has degree at most k in
G', such that dega(v) ~ k. Hence, (3) is fulfilled. •

11

7 Conclusions and Open Problems

We have shown complexity relationships between problems on reconstruction. It is an
interesting open question whether LD is NP-complete. One approach to this question would
be to prove either that LD is in the low hierarchy or that LD is in the high hierarchy [34].
Furthermore, is it possible that LD ~~ GIor at least that LD Turing reduces to GI or that
LD strong-nondeterministically [36,28] reduces to GI?

If a graph class is reconstructible this does not imply that LD, PCon, and PCou are
solvable in polynomial time for that class. Nevertheless, some such proofs are constructive
and yield polynomial-time algorithms, as, for example, for regular graphs [33J. Furthermore,
polynomial-time algorithms for LD, PCon, and PCou, when restricted to g, do not imply
anything about the reconstructibility of g. In fact, this question is still open for planar
graphs, graphs of bounded genus, and partial k-trees.

Acknowledgments

We are grateful to Peggy Meeker for expertly converting this paper to];I..TEX, to Katerina
Chronaki for carefully proofreading an earlier version of this paper, to William Gasarch
and Hans Bodlaender for helpful discussions, and especially to Gerd Wechsung for helpful
discussions and for hosting two workshops in Jena, during which much of this research was
performed.

References

[IJ J.L. Balcazar, J. Diaz, and J. Gabarro. Structural Comple:r:ity. Springer, Berlin, Vol. 1,
1988; Vol. 2, 1990.

[2] C. Berge. Graphs. Amsterdam, 1985.

[3] H.L. Bodlaender. Polynomial algorithms for chromatic index and graph isomorphism
on partial k-trees. Technical report, Rijksuniversitet, June 1987.

[4] J.A. Bondy. On Ulam's conjecture for separable graphs. Pacific J. Math., 31:281-288,
1969.

[5] J.A. Bondy and R.L. Hemminger. Graph reconstruction-a survey. J. Gmph Theory,
1:227-268,1977.

[6] G. Chartrand, V.H. Kronk, and S. Schuster. A technique for reconstructing discon­
nected graphs. Colloq. Math., 27:31-34, 1973.

[7] P.Z. Chinn. A graph with p points and enough distinct (p - 2)-order subgraphs is
reconstructible. In Recent Trends in Gmph Theory, LNM 186, pages 71-73. Springer,
Berlin, 1971.

12

[8] P.F. Dietz. Intersection Graph Algorithms. PhD thesis, Computer Science Dept.,
Cornell University, Ithaca, NY, 1984.

[9] W. Doerfler. Some results on the reconstruction of graphs. In Infinite and Finite Sets,
pages 361-383. North-Holland, Amsterdam, 1975. Colloq. Math. Soc. Janos Bolayi,
Vol. 10.

[10] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, 1979.

[11] D. Geller and B. Manvel. Reconstruction of cacti. Canad. J. Math., 21:1354-1360,
1969.

[12] W.B. Giles. The reconstruction of outerplanar graphs. J. Combinatorial Theory Ser.
B, 16:215-226, 1974.

[13] S. Goldwasser and M. Sipser. Private coints versus public coints in interactive proof
systems. In Proceedings of the 18th ACM Symposium on Theory of Computing, pages
59-68, 1986.

[14] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[15] D.L. Greenwell and R.L. Hemminger. Reconstructing graphs. In The Many Facets of
Graph Theory, pages 91-114. Springer, Berlin, 1969.

[16] D.K. Gupta. Reconstruction conjecture for square of a tree. In Graph Theory, LNM
1073, pages 268-278. Springer, Berlin, 1984.

{17] F. Harary, On the reconstruction of a graph from a collection of subgraphs. In Theory
of Graphs and its Applications, pages 47-52. Prague, 1964.

[18] F. Harary, Graph Theory. Massachusetts, 1969.

[19] F. Harary. A survey of the reconstruction conjecture. In Graphs and Combinatorics,
LNM 406, pages 18-28. Springer, Berlin, 1974.

[20] J. Hartmanis. On log-tape isomorphisms of complete sets. Theoret. Comput. Sci.,
7:273-286, 1978.

[21] D.S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 6:434­
451, 1985.

[22J D. Joseph and P. Young. Some remarks on witness functions for non-polynomial and
non-complete sets in NP. Theoret. Comput. Sci., 39:225-237, 1985.

[23] P.J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961-968, 1957.

[24] R. Ladner and N. Lynch. Relativization of questions about log space computability.
Mathematical Systems Theory, 10(1):19-32, 1976.

13

[25] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1(2):103-124, 1975.

[26] J. Lauri. Proof of Harary's conjecture on reconstruction of trees. Discrete Math.,
43:79-90, 1983.

[27] J. Lauri, Graph reconstruction-some techniques and new problems. Ars Combin.,
24(B):35-61,1987.

[28] T. Long. Strong nondeterministic polynomial-time reducibilities. Theoretical Computer
Science, 21:1-25, 1982.

[29] B. Manvel. Reconstruction of unicyclic graphs. In Proof Techniques in Graph Theory,
pages 103-107. Academic Press, New York, 1969.

[30] B. Manvel. Reconstruction of maximal outerplanar graphs. Discrete Math., 2:269-278,
1972.

[31] B. Manvel and J.M. Weinstein. Nearly acyclic graphs are reconstructible. J. Graph
Theory, 2:25-39, 1978.

[32] S. Micali and V.V. Vazirani. An O(Y1! 2E) algorithm for finding maximum matching
in general graphs. In 21st Annual Symp. on Found. Compo Sci., pages 17-27, New
York, 1980.

[33] C. St. J.A. Nash-Williams. The reconstruction problem. In Selected Topics in Graph
Theory, pages 205-236. Academic Press, 1978.

[34] U. Sch6ning. A low and high hierarchy in NP. J. Compui. System Sci., 27:14-28,1983.

[35] U. Schoning. Graph isomorphism is in the low hierarchy. J. Comput. System Sci.,
37:312-323, 1988.

[36] A. Selman. Polynomial time enumeration reducibility. SIAM Journal on Computing.
7(4):440-457, 1978.

[37J S.M. Ulam. A Collection of Mathematical Problems. Interscience Publishers, New
York, 1960.

[38] M. von Rimscha. Reconstructibility and perfect graphs. Discrete Math., 47:79-90,
1983.

[39] K. Wagner and G. Wechsung. Computational Complexity. Deutscher Verlag der Wis­
senschaften, Berlin, 1985.

[40] A.T. White and L.W. Beineke. Topological graph theory. In Selected Topics in Graph
Theory, Yolo 1, pages 15-49. New York, 1978.

[41] P. Young. Juris Hartmanis: Fundamental contributions to isomorphism problems.
In A. Selman, editor, Complexity Theory Retrospective, pages 28-58. Springer-Verlag,
1990.

14

