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Abstract. Cayley graph techniques are introduced for the problem of constructing

networks having the maximum possible number of nodes, among networks that satisfy

prescribed bounds on the parameters maximum node degree and broadcast diameter.

The broadcast diameter of a network is the maximum time required for a message orig-

inating at a node of the network to be relayed to all other nodes, under the restriction

that in a single time step any node can communicate with only one neighboring node.

For many parameter values these algebraic methods yield the largest known construc-

tions, improving on previous graph-theoretic approaches. It has previously been shown

that hypercubes are optimal for degree k and broadcast diameter k. A construction

employing dihedral groups is shown to be optimal for degree k and broadcast diameter

k + 1.

1. Introduction.

The problem of designing e�cient networks arises in many di�erent contexts, includ-

ing parallel processing, communication networks and security systems. Several design

constraints arise in practice, such as bounds on the maximum degree of network ver-

tices, planarity and symmetry properties. A variety of resource e�ciencies may be the

design objective, such as the numbers of vertices and edges, communication times, and

fault tolerance. Good constructions for small parameter values are important, because

of engineering applications for network designs of small and moderate size.

An instance of this general research program is the extensively studied problem

of �nding constructions of graphs having the maximum possible number of vertices for

given bounds on maximumvertex degree and diameter. For example, the Petersen graph

of order 10 is the unique largest possible graph of maximum degree 3 and diameter 2.

See �gure 1(a) below. The Petersen graph is vertex symmetric. The labeling in the

�gure indicates the distance to the vertex labeled 0. For recent surveys concerning this

degree/diameter problem see [BDQ,Ch].

Previous work of the authors (and others) has shown that algebraic techniques can

be applied powerfully to the degree/diameter problem [BDV,CCD,CCDFFLMMS,CCSW].

Cayley graphs now yield most of the largest known constructions for small parameter val-

ues, surpassing many earlier results based on graph composition operators (see [BDQ]).

In this paper we introduce algebraic techniques for the analogous network design problem

concerning broadcasting. Speci�cally, we address the problem of �nding constructions of
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Figure 1. Petersen graph showing (a) diameter 2 (b) broadcast time 4.

graphs having the maximum possible number of vertices for given bounds on maximum

vertex degree and broadcast time.

Broadcasting concerns the dissemination of a message originating at one node of a

network to all other nodes. This task is accomplished by placing a series of calls over the

communication lines of the network between neighboring nodes, where each call requires

a unit of time and a call can involve only two nodes. A node can participate in only one

call per unit of time. Thus at time t it is possible for at most 2

t

nodes to have received

the message, in any network.

Figure 1(b) shows that the broadcast time of the Petersen graph is 4. The edges

belonging to the tree of calls of a time 4 broadcast are indicated; the label of a node shows

the time at which the message is received. Figure 1 invites the following simile. The

diameter is the time required to disseminate a message by shouting, while the broadcast

time measures the time required if dissemination is by telephoning.

For bibliographic surveys of the extensive literature on broadcasting in networks

and closely related problems see [HHL,LS].

In section 2 we introduce terminology and notation, and describe our algebraic ap-

proach to broadcast network construction. In section 3 we prove, using dihedral groups,

a new in�nite optimal family.

2. Preliminaries and An Algebraic Approach.

Graphs in this paper are simple and undirected. We use the terms network and

graph interchangeably, and similarly node and vertex. Let G = (V;E) be a connected

graph and let u be a vertex of G. The broadcast time of vertex u, b(u), is the minimum

number of time units required to complete broadcasting of a message originating at

vertex u. The broadcast time of G is the maximum broadcast time of any vertex u in G,

b(G) = maxfb(u) j u 2 V g.



We study the function B(�; t) de�ned to be the maximumpossible order of a graph

G of maximum degree � and broadcast time at most t. A graph of maximum degree

� and broadcast time t is termed an optimal (�; t)-broadcast network if it has order

B(�; t).

It is straightforward to derive a recurrence relation for a function M (�; t) that

is an analogue of the Moore bound for the degree/diameter problem. We record this

well-known bound in the following proposition.

Proposition 1. B(�; t) �M (�; t) where

(1) f(�; 0) = 1 for all �;

(2) f(�; t) = 1 + �

min (�;t)

i=1

f(�; t� i) and

(3) M (�; t) = 2 � f(� � 1; t� 1) 2

It is easy to observe that if G is a graph with broadcast time t then the Cartesian

product of G and K

2

has broadcast time at most t + 1. This has the following useful

and well-known consequence.

Proposition 2. B(� + 1; t+ 1) � 2 �B(�; t) 2

The r-dimensional hypercube Q

r

is isomorphic to the Cartesian product of r copies

ofK

2

. Since any graph with broadcast time t has at most 2

t

vertices, repeated application

of Prop. 2 yields the following well-known fact.

Proposition 3. Q

�

is an optimal (�;�)-broadcast network. 2

The hypercubes provide a simple example of a general method of network construc-

tion based on groups. Let A be a group and let S � A be a set of generators of A that is

closed under taking of inverses (if a 2 A then also a

�1

2 A). The Cayley graph (A; S) is

the graph with vertex set the elements of A, having an edge between the pair of elements

a; b of A if and only if as = b for some s 2 S. The hypercubes are thus Cayley graphs

on the Z

2

vector spaces, with generator sets consisting of the standard basis elements.

Cayley graphs are vertex symmetric. That is, there is an automorphismof the graph

taking any vertex to any other. Symmetry may be an important property of networks in

applications such as parallel processing [ABR]. One of the advantages of a Cayley graph

is that it su�ces to �nd a broadcast scheme requiring time t for the identity node of the

network. This can then be translated by group multiplication to provide a broadcast

schedule for any other node originating a message.

Suppose (A; S) is a Cayley graph with generators S = fs

1

; :::; s

k

g. One broadcasting

method is to consider the indexing of the generators as the order in which calls should be

made to neighboring vertices in a broadcast. Given a group with an easily computable

multiplication, it is relatively simple to compute the broadcast time of the Cayley graph

using this scheme by starting with the identity element and proceeding until all elements

of the group have been generated. Experimental computing using this technique led us

to discover the new in�nite family of optimal constructions described in the next section.



Another method is to choose t di�erent permutations �

i

of the generator set S. A

node receiving the message at time i places calls to its neighbors in the order indicated

(by multiplication) by the sequence of generators given by �

i

. Experimental computing

using this method (and further generalizations) has provided many new constructions

that are the largest known for some parameter values. These are indicated by an asterisk

in Table 1 below. Details concerning these constructions can be found in [Di].

Example. The group Z

12

acts on the group Z

13

by multiplication. Thus we may form

the semi-direct product Z

12

�

�

Z

13

where � denotes this action, �

k

(x) = 2

k

� x mod 13.

The generators: (7,1), (5,7) and (6,0) give us a Cayley graph of order 156, degree 3 and

broadcast time 10, which is presently the largest known (3,10)-broadcast network.

Table 1 shows the orders of the largest known broadcast graphs for small parameter

values. Optimal values are displayed in bold. Entries below the diagonal are omitted

as they trivially follow from the diagonal entries. Table 2 shows the best known upper

bounds for these parameter values.

� n t 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 8 14 24 40 60

*

84

*

126

*

156

*

4 16 30 56 90

*

148

*

253

*

272

*

5 32 62 108

*

186

*

336

*

506

6 64 126 220

*

390

*

750

*

7 128 254 440 816

*

8 256 510 880

*

9 512 1022

Table 1. Largest known broadcast networks.

� n t 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 4 8 14 24 40 66 108 176 286

4 4 8 16 30 56 104 192 354 652

5 4 8 16 32 62 120 232 448 864

6 4 8 16 32 64 126 248 488 960

7 4 8 16 32 64 128 254 504 1000

8 4 8 16 32 64 128 256 510 1016

9 4 8 16 32 64 128 256 512 1022

10 4 8 16 32 64 128 256 512 1024

Table 2. Upper bounds on B(�; t).



3. A New In�nite Family of Optimal Networks.

Previously, the hypercubes were the only in�nite family of graphs known to be

optimal. Experimental computing with the Cayley graph techniques described in the

last section led to the formulation of our main theorem. The �rst few graphs in our

in�nite family were discovered independently in [BHLP1, BHLP2] by graph theoretic

methods.

Theorem 1. The Cayley graphs from the dihedral groups D

n

�

(n

�

= 2

�

� 1) with

generators w;wx

1

; wx

3

; : : : ; wx

2

��1

�1

where w

2

= e; wxw

�1

= x

�1

and x

2

�

�1

= e, are

a family of optimal (�;�+ 1)-broadcast networks.

Proof. First note that each of the generators is an involution. We describe a broadcast

scheme for a message originating at the identity element. For the �rst � time steps we

follow the rule that each element v of the group that knows the message, communicates

to the neighboring element v �wx

2

k�1

�1

in the Cayley graph at time step k. Thus, letting

T

i

= fv j vertex v knows the message at time i g, we have

T

0

= fe = w

0

= x

0

g

T

1

= T

0

[ fwg

T

2

= T

1

[ fwx

1

; x

1

g

T

3

= T

2

[ fwx

3

; x

3

; wx

�1+3

; x

�1+3

g

=

S

3

i=0

fwx

i

; x

i

g

.

.

.

T

k

= T

k�1

[ T

k�1

�wx

2

k�1

�1

=

S

2

k�2

�1

i=0

fwx

i

; x

i

g [ fwx

2

k�1

�1�i

; x

2

k�1

�1�i

g

=

S

2

k�1

�1

i=0

fwx

i

; x

i

g

.

.

.

T

�

= T

��1

[ T

��1

�wx

2

��1

�1

=

S

2

��1

�1

i=0

fwx

i

; x

i

g

For the last step, every vertex v in T

�

transmits the message to the neighbor given

by multiplication with w, so that

T

�+1

= T

�

[ T

�

�w

=

S

2

��1

�1

i=0

fwx

i

; x

i

g [

S

2

��1

�1

i=1

fwx

i

w; x

i

wg

=

S

2

��1

�1

i=0

fwx

i

; x

i

g [

S

2

��1

�1

i=1

fwx

n

�

�i

; x

n

�

�i

g

=

S

2

�

�1

i=0

fwx

i

; x

i

g = D

n

�

:

We see that after � + 1 time steps all of the vertices have received the message. The

networks are optimal since

jD

n

�

j = 2(2

�

� 1) = 2

�+1

� 2

is also the upper bound on B(�;�+ 1). 2



4. Conclusions and Open Problems.

Our main contribution in this brief paper is the demonstration that elementary

Cayley graph techniques can be applied to the problem of designing e�cient broadcast

networks, giving improvements over previous graph theoretic methods. Further com-

putational exploration will undoubtedly reveal further record-breaking constructions for

small parameter values, and perhaps suggest additional in�nite families of optimal con-

structions. It would be interesting to see if similar techniques can be fruitfully applied to

related network design problems that are as yet unexplored from an algebraic perspective,

such as broadcasting in directed networks [LP] and gossiping [HHL].
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