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Abstract

Research in knowledge representation has led to the development of
so-called terminological logics, which have the purpose to support the
representation of the conceptual and terminological part of Artificial
Intelligence applications. Independently, in Computational Linguis-
tics so-called feature logics have been developed, which are aimed at
representing the semantic and syntactic information natural language
sentences convey. Since both of these logics rely mainly on attributes
as the primary notational primitives for representing knowledge, they
can be jointly characterized as attributive description formalisms.

Although the intended applications for terminological logics and
feature logics are not identical, and the computational services of sys-
tems based on the respective formalisms are quite different for this
reason, the logical foundations turn out to be very similar — as we
pointed out elsewhere. In this paper, we will show how attributive
description formalisms relate to “the rest of the world.” Recently,
a number of formal results in the area of attributive description for-
malisms have been obtained by exploiting other research fields, such as
formal language theory, automata theory, and modal logics. This con-
nection between different fields of formal research will be highlighted
in the sequel.
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1 Introduction

Terminological logics, which have their roots in the knowledge representa-
tion formalism KL-ONE [Brachman, 1979; Brachman and Schmolze, 1985],
have been developed to support the representation of the conceptual and
terminological part of Artificial Intelligence applications.

Starting with primitive concepts and attributes (in this context usually
called roles), new concepts are defined by employing attributive descrip-
tions. For instance, supposing the concept Human and the atiribute child,
the concept of a Parent can be defined by the description

a Human who has at least one child who in turn is a Human,

or, more formally,
Parent = Human M 3child: Human.

The main computational services provided by terminological representation
systems are the computation of the concept hierarchy according to the sub-
sumption-relation between concepts and the computation of instance rela-
tionships between concepts and objects of the application domain.

Feature logics grew out of research in Computational Linguistics. They
are the constraint logic underlying the family of unification grammars that
originated with Lexical Functional Grammar (LFG) [Kaplan and Bresnan,
1982] and Functional Unification Grammar (FUG) [Kay, 1979; Kay, 1985].
In unification grammars, syntactical and semantical objects are described
by employing attributive descriptions. For instance, the class of linguistic
objects that are

third-person singular noun phrases
can be described formally as follows [Shieber, 1986]:

cat: NP

number: singular
person:  third

agreement:
or, in a linear notation as:

cat: NP M agreement: (number: singular M person: third).

While parsing a sentence, such descriptions are combined by “unifica-
tion,” and, in the end, the combined descriptions provide the syntactic and
semantic structure of the sentence. One main step during this process is



the test whether a newly formed description is satisfiable, i.e., describes any
linguistic structure at all.

As we pointed out in [Nebel and Smolka, 1990], terminological logics and
feature logics are closely related. Although the intended applications are not
identical, and for this reason, the computational services of systems based
on the respective logics are quite different, the logical foundations turn out
to be the same. Both logics employ restrictions on attributes as the primary
notational primitives and are best formalized using a Tarski-style model the-
ory. The main difference between terminological logics and feature logics is
that the former permit set-valued attributes (called roles), while the latter
permit only single-valued attributes (called features). This seemingly minor
difference has drastic consequences as it comes to computational complex-
ity. Nevertheless, for a large range of problems, formal results apply to both
kinds of logics.

In the the LILOG project, there two applications of attributive descrip-
tions. The STUF formalism [Bouma et al., 1988; Dérre and Seiffert, 1991] is
based on feature logic and is employed in the linguistic components. The
knowledge representation language L-LILOG [Pletat and von Luck, 1989;
Pletat, 1991] is a hybrid formalism combining predicate logic and attributive
descriptions.

The remainder of the paper is organized as follows. In the next section,
we will briefly introduce the logical foundations of terminological and feature
logics. Section 3 shows the applicability of results from automata theory
to attributive description languages in terms of computational complexity
results and algorithms. Section 4 summarizes a number of undecidability
results which have been obtained by reductions of the word problem for Thue
systems. In fact, for some proofs a slightly stronger condition is necessary,
namely, that the semigroup generated by the Thue system is a group. In
particular, we consider the problem of determining satisfiability for feature
terms containing functional uncertainty in the case that the feature logic is
propositionally complete. In Section 5, a correspondence between a certain
terminological logic and the propositional polymodal logic K () is considered,
which leads to quite a number of interesting applications of results from
modal and dynamic logic to attributive description formalisms. Finally, in
the conclusion we will sketch some applications of results achieved in the area
of attribute descriptions to other research fields. A summary of the relations
discussed in the paper is shown in Figure 1.
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Figure 1: Attributive Description Formalisms and the Relation to the Rest
of the World

2 Logical Foundations

While terminological logics were introduced originally with an informal se-
mantics only, 1t became quickly obvious that a formal semantics is necessary
to describe the intended meaning - and the obvious candidate, first-order
predicate calculus and its associated model theory, was used for this purpose
[Schmolze and Israel, 1983; Brachman and Levesque, 1984]. A similar process
took place in the area of unification grammars [Kasper and Rounds, 1986;
Johnson, 1987; Smolka, 1988].

This logical reconstruction revealed in both cases that the formalisms
correspond to subsets of ordinary first-order predicate logic. Although this
correspondence is very helpful for understanding the meaning of the formal-
ism and yields a firm base for extensions, it does not help much in deter-
mining the computational properties. Nevertheless, a logical foundation is



a necessary prerequisite for an analysis of computational properties. In the
following, the logical foundations of attributive description formalisms are
briefly recalled.

In terminological logics, we start with an alphabet C of concept sym-
bols (denoted by C) and an alphabet R of role symbols (denoted by R),
which are disjoint. Concept symbols are intended to denote some subset of a
domain, and role symbols are intended to denote unary, set-valued functions
or, equivalently, two-place relations on the domain.? From concept and role
symbols, complex concept descriptions (denoted by D) are composed us-
ing a variety of description-forming operations. In order to give an example,
the language ALC will be specified, originally introduced in [Schmidt-Schauf}
and Smolka, 1991]:

D — C|T|L|DND|DUD |~D|VR:D|3R:D.

The formal meaning of concept descriptions built according to the above
rule is given by an interpretation 7 = (D?,-7), where D? (the domain) is an
arbitrary nonempty set and - (the interpretation function) is a function
such that:

DI
DT x BT.

CI
RI

N 1N

The denotation of complex concept descriptions is inductively given by:

7! = DI
1F =9
(DND) = D'nD?

)

)I — DIUDII
(-Dyf = Df-Dp?

! = {de D’ R¥(d)C D}
(3R: DY = {d e DI RI(d)n DT +0).

Based on this semantics, the notion of subsumption mentioned above is
defined as set-inclusion. A concept D is subsumed by another concept D’,
written D < D', iff (D)X C (D')T for every interpretation Z. From this
relation, a concept hierarchy can be computed. If the logic is extended to
describe single objects by using role and concept symbols, then the notion of
instance relationship can be formalized as set-membership in concepts.
Note that one can think of quite different terminological logics employing,
for instance, role-forming operators, cardinality restrictions on roles, and so

'We will use both notations interchangeably.



on. Indeed, quite a number of different representation systems have been
built using a variety of terminological logics (for a survey, see [Nebel, 1990a]).

Turning now to feature logic, we notice that the formalization of so-called
feature terms resembles the formalization of concept descriptions. In feature
logics, we start with three pairwise disoint alphabets, namely, a set S of sort
symbols (denoted by S), a set F of feature symbols (denoted by f), and
a set A of atoms (denoted by a). Based on that, the following rule (see,

e.g., [Smolka, 1988]) specifies how to built complex feature terms (denoted
by F):

r— G|S|T|J_|FHF/|FUFI|_‘F|(f1fn)Fi(flylflym) l (fg,l ...fg,n).

The formal meaning is provided by interpretations Z = (DZ,.), also
called feature algebras in this context, where D7 is a nonempty set and -*
is a function such that:

o e D
ST g DI
ff ¢ DI xDI

Additionally, the restrictions

(de),(d,e') € ff = e=¢
a#b = ol £
a€ A, feF,deD! = (d,d)¢ f7,
have to be satisfied formalizing that features are functional, that different
atoms denote different elements in the domain, and that atoms are never in
the domain of a feature.

The meaning of chains of features f ... f,, also called feature paths, is
the composition of functional relations:

(de)€ fr...ff &> do,...,dn:do=dNdn=en N\(di-1,d) € fF
=1

Feature paths will also be denoted by the letters p and ¢. Using these defi-
nitions, the denotation of complex feature terms is given inductively by:

(a)f = {a'}

Tt = Df

1T =9
(FnF)Y = FInF?



(Fur)Y = FTuF?
(—'F)I — DI_FI
) {d € DT 0 # p’(d) C FT}
¥ = {deD¥p'(d) = ¢ (d) # 0}

A feature term F' is satisfiable iff there exists an interpretation such that
FT 440,

If attributive descriptions formalisms contain intersection M and com-
plement —, they are called propositionally complete. In such formalisms,
the notions of satisfiability and subsumption are obviously closely related.
More precisely, subsumption and unsatisfiability are linear time reducible to

each other (see, e.g., [Nebel and Smolka, 1990]).

£
3
=

I

3 Regular Languages and Finite State Au-
tomata

As mentioned in the previous section, the logical semantics for attributive
description formalisms proved to be quite useful in understanding the ex-
pressive power of these formalisms. Terminological logics as well as fea-
ture logics are obviously subsets of ordinary first-order logic. These sub-
sets, however, were unexplored previously with respect to their computa-
tional properties. For instance, it was not known until 1988 whether there
are undecidable terminological logics [Schild, 1988] and only in 1989, it
was shown that subsumption in KL-ONE [Brachman and Schmolze, 1985;
Schmidt-SchauB, 1989] and NIKL [Moser, 1983; Patel-Schneider, 1989b] is
undecidable — a point, we will return to in the next section.

Since in knowledge representation and computational linguistics, effi-
ciency 1s an important issue, decidability of a formalism is not the only
concern. Tractability, i.e, solvability in polynomial time, is also relevant. As
a matter of fact, Brachman and Levesque [1984] requested that knowledge
representation formalisms should always permit polynomial time computa-
tions. They started an inquiry concerning the tradeoff between expressiveness
and tractability of representation formalisms, which led to a number of anal-
yses of different terminological logics [Nebel, 1988; Patel-Schneider, 1989a;
Schmidt-Schau8 and Smolka, 1991]. However, only recently, terminologi-
cal logics that are maximally expressive and still tractable were identified
[Donini et al., 1991a] using the constraint solving technique introduced in
[Schmidt-SchauBl and Smolka, 1991].

Another open problem was whether the computational complexity of sub-
sumption for tractable terminological logics is preserved under the introduc-



tion of terminological axioms. This problem was solved by discovering a cor-
respondence between nondeterministic fintte state automata and a particular,
simple terminological logic. Exploiting complexity results from the theory of
finite state automata, it was possible to show that the addition of termino-
logical axioms increases the computational complexity considerably [Nebel,
1990b]. Further, the mentioned correspondence proved to be useful for char-
acterizing the semantics of so-called terminological cycles [Baader, 1990;

Nebel, 1991].

3.1 Terminological Axioms and the Lexicon

Investigations of the computational complexity of terminological logics are
usually based on the semantics given in Section 2. It is analyzed, how much
resources are necessary for checking subsumption between two concept de-
scriptions. In particular, it is assumed that all concept symbols appearing
in the descriptions are undefined. In existing systems, however, it is possi-
ble to assign a name to a concept description and to use this new name in
other expressions instead of the original description. This aspect of the use
of terminological logics can be straightforwardly formalized by the notion of
terminological axioms, which have the following form:

C = D

Usually, it is assumed that sets of such axioms, also called terminologies
(denoted by T'), satisfy two restrictions, namely,

1. a concept symbol C appears at most once on a left hand side of a
terminological axiom, and

2. the terminology is cycle-free, i.e., there is a partial order on the set
of concepts C such that for every terminological axiom C' = D, every
concept symbol in D is strictly less than C.

If C" appears on the left hand side of a terminological axiom, it is also
called a defined concept. If it never appears on the left hand side, it is
said to be a primitive concept.

Supposing such a terminology 7', subsumption is relativized to this ter-
minology, written as D <7 D’, by considering set-inclusion of concept de-
notations only in interpretations that are models of the terminology. An
interpretation 7 is a model of a set of terminological axioms iff for all ax-
ioms C' = D the interpretation satisfies CT = D7,

Given the above restrictions, subsumption relative to a terminology can
be easily reduced to subsumption over concept descriptions relative to “the



empty terminology” by ezpanding all defined concepts by their definitions.
However, in the worst case, this can lead to an exponential increase of the
size of a concept description [Nebel, 1990b]. Thus, even when subsumption
determination for a particular terminological logic is tractable, this does not
mean that subsumption determination relative to terminologies is tractable,
as well. On the other hand, all results on the complexity of subsumption
seemed to have assumed that the reduction from <7 to < can be done in
polynomial time — and indeed, in applications this reduction did not seem to
be a source of computational problems, provided some caching is performed
[Lipkis, 1982].

Finally, it turned out that there is indeed a “hidden computational cliff.”
The minimal terminological language abstract syntax rule

D — C|DND |VR:D

is closely related to nondeterministic finite state automata and, by this, to
regular expressions — provided terminological axioms are permitted.

Suppose two nondeterministic finite state automata A,, A, with
A = (8,94, 8,4, F*), where T is the alphabet, Q' are the sets of states,
where we assume without loss of generality that Q' N Q% = (0, §' C Q' x
(XU {e}) x Q' are the transition functions, o' € Q' are the initial states, and
F' C Q' are the sets of accepting states. The language accepted by these
automata is denoted by L£(.A;). If such automata are cycle-free, a cycle-free
terminology can be specified such that language inclusion corresponds to
subsumption relative to the terminology [Nebel, 1990b]:

Automata | Terminology

Ar, Ag T

b R

(Q'U Q) w {F} C

g€ FlUF? g=..NFM...
e-transition from gto ¢’ | ¢g=...Mqg' M ...
s-transition from g to ¢’ | ¢ = ... Vs:¢'M. ..
L(A) D L(4) 9 21 ¢¢

Since inclusion of languages accepted by cycle-free automata is known to be
co-NP-complete [Garey and Johnson, 1979], it follows that <7 is co-NP-hard.

Interestingly, this correspondence also works the other way around. Given
a terminology and two concepts, we can construct two automata such that
subsumption coincides with language inclusion, which gives us co-NP-com-
pleteness for <7 in the language considered.

Note that for the proof of this correspondence the set-valued nature of
attributes in terminological logics is unessential. The same arguments are

8



valid for functional attributes, which gives us an interesting corollary in the
area of unification grammars. Satisfiability of feature terms relative to a
lexicon — which is nothing else than a cycle-free terminology for a feature
logic [Nebel and Smolka, 1990] - is also NP-hard, even if satisfiability for
the underlying feature logic is polynomial. For instance, supposing -terms
introduced in [Ait-Kaci, 1984], for which satisfiability can be decided in quasi-
linear time leads to a NP-complete satisfiability problem if a lexicon is added.

This intractability result does not seem to show up in practical applica-
tions very often, however. As a matter of fact, it is not easy to construct
a terminology that exhibits exponential time behavior when an eflicient al-
gorithm is used that resembles the language inclusion algorithm for finite
automata, such as the one described in [Lipkis, 1982]. Nevertheless, it shows
us that provable tractability is hardly achievable in the area of attributive
description formalisms.

3.2 Terminological Cycles

The correspondence between automata and terminologies did not only help
to solve the problem concerning the complexity of subsumption relative to a
terminology, but also provides a good tool to analyze so-called terminologi-
cal cycles. Such cycles appear when the second restriction on terminologies
mentioned above is dropped. In this case, the definition of a concept refers,
either directly or indirectly, to the concept itself. Such constructions present
problems because neither the right semantics nor the computational proper-
ties are obvious.

Based on the correspondence spelled above, Baader [1990] shows that
the three possible styles of semantics, namely, descriptive, least fizpoint, and
greatest fizpoint semantics [Nebel, 1990a; Nebel, 1991] can be characterized
by finite state automata. In particular, the greatest fixed point semantics has
an elegant characterization, because it corresponds to automata isomorphic
to the terminology.

Besides confirming the conjecture in [Nebel, 1990b] that subsumption
becomes PSPACE-complete for least and greatest fixpoint semantics, this
characterization also led directly to sound and complete subsumption algo-
rithms for these cases. In addition, this result gave rise to the idea to extend
the expressive power of terminlogical logics by regular expressions over roles

[Baader, 1991].



4 Thue Systems

For feature logics, the computational complexity was analyzed quite early.
The feature logic described in Section 2 without union U and complement
-, which are essentially the 1-terms mentioned above, was shown to have a
quasi-linear satisfiability problem [Ait-Kaci, 1984]. The addition of union or
complement leads to NP-completeness, as shown in [Kasper, 1987; Johnson,
1987; Smolka, 1988].

The situation in terminological logics was more problematical because of
the variety of possible concept- and role-forming operators. As mentioned
above, for a long time it remained an open problem whether there are termi-
nological logics such that subsumption is undecidable. The first undecidabil-
ity result [Schild, 1988] considered a language containing role complements —
which do not have practical relevance. Subsequently, Schmidt-Schauf [1989]
proved a small subset of KL-ONE to be undecidable using a reduction to
the word problem in invertible Thue systems. Since this result proved to be
quite fruitful for solving other related problems, we will briefly describe the
correspondence.

4.1 Feature Agreement and Role-Value-Maps

In the presentation of the logical foundations of attributive descriptions, we
mentioned already that other terminological logics than ALC are conceivable.
The reader might have noticed already that feature-path agreement p | ¢
has no counter-part in the presented terminological logic. As a matter of fact,
some terminological logics support such an operator, for instance, KL-ONE
and NIKL. Let us consider a subset of those formalisms as specified below:

D — C|Dl_| D, |\V,R:D|(R1’1...R1,m) l (R2,1---R2,n)7

where the denotation of role chains is identical to the denotation of feature
chains, i.e., relational composition, and role chains are denoted by P and ().

The agreement of such role chains, often called role-value-map is defined
by:

(P1Q)Y = {deD’|PHd)=Q"(d)}.

Such a construct could be used, for instance, to define the concept of a father
such that all his children have the same surname as the father:

Father M (surname) | (child surname).

Although a very useful construct, it leads unfortunately to undecidability
of subsumption. This means, as long as our attributes are functional, sub-
sumption stays decidable (NP-complete for the feature logic considered in

10



this paper or even quasi-linear for the more restricted 1-terms). If we allow
for set-valued attributes, subsumption becomes undecidable.

This result follows easily from a reduction to the word problems for a
special class of Thue systems. A Thue system 7 over an alphabet ¥ is a
finite set of pairs of words u;,v; € £*: T = {{u,',v,-}}. Such a Thue system

defines a binary relation & oon T by:
udy = Jwy, wy € T* H{ui, v} € T: u = wiuiw, A v = wWyv;ws.

The symbol Z is used to denote the transitive and reflexive closure of &.
The word problem is the problem to decide u L v for given 7 and words
u,v € N,

An invertible Thue system is a Thue system such that for each s € ¥
there exists r € ¥ such that sr &~ ¢, where € is the empty word. In other
words, the quotient 7/ Lisa group under concatenation. It is known that
there exist invertible Thue systems such that the word problem is undecidable
[Boone, 1959).

Undecidability of subsumption in the above mentioned terminological
logic can now be shown by using the following correspondence:

Invertible Thue system ‘ Terminological logic

Y u{R} R
T = {{u;, v:}} D =[T,es(R s) | (R)NTLVR: (u; | v;)
v D <VR:(u | v)

4.2 Arbitrary Axioms

Since, on one hand, agreements of role-chains are a very useful construc-
tion, and on the other hand, they lead to undecidability in case of set-valued
attributes, it seems to be a good 1dea to restrict agreements to chains of func-
tional attributes. Indeed, the terminological logic employed in the CLASSIC
system [Borgida et al., 1989; Brachman et al., 1991] is based on this insight.
Beside ordinary roles also functional attributes are supported and agreements
are only permitted on the latter kind of attributes.

While such a move preserves decidability for the terminological logic [Hol-
lunder and Nutt, 1990], it leads to problems if terminologies containing cycles
are allowed. Using a similar reduction as above, Smolka [1989] shows that
P-terms plus cyclic terminological axioms result in undecidability of satisfia-
bility of feature terms w.r.t. terminological axioms. This result can be easily
reformulated for the corresponding terminological logics, and it turns out
that subsumption for descriptive and greatest fixpoint semantics becomes

11



undecidable [Nebel, 1991]. For this reason, CLASSIC does not support termi-
nological cycles.

Nevertheless, in the CLASSIC system, implicational rules are supported.
These rules are interpreted procedurally, and they act on a database of ob-
jects that are described using concept and role symbols. Given such a rule
of the form

C(z) = C'(z),

any object which the system has been classified to belong to the denotation
of the concept C will be asserted to belong also to the denotation of C’. If
this assertion leads to an inconsistency, i.e., to a situation, where an object
is interpreted to belong to the denotation of L, the system signals this con-
tradiction. Although these rules are not identical to axioms, we have the
following restriction. A CLASSIC database can be consistently “completed,”
1.e., mention explicitly all objects that have to exist because of terminolog-
ical axioms, only if the database plus the terminology have a model. This,
in turn, however, is equivalent to satisfiability of the terminological axioms
plus the implicational rules, which is undecidable in the general case by the
above result. This means it is undecidable whether a cLASSIC database has
a consistent completion.

4.3 Functional Uncertainty

Another interesting application of the undecidability of the word problem in
Thue systems is a reduction from satisfiability of feature terms that contain
functional uncertainty [Kaplan and Maxwell, 1988]. This term-forming
operator was invented for the concise description of so-called long-distance
dependencies in LFG [Kaplan and Bresnan, 1982]. It has the form,

I(L)F

where L is some finitely represented regular set of words over F. It denotes
all individuals d € D? such that there is some feature path p € L and an
element e € FZ, where e € p*(d). One can think of 3(L)F as an infinite
union: '

pr:FlUp: FU.. . Up: FU...

where all p; are elements of L. Formally, the denotation of functional uncer-
tainty is defined as

ALYFY = {deD¥3IpeL: b#p'(d) C F}

Satisfiability of feature terms containing functional uncertainty has been
an open problem. A restricted version of the problem has been addressed in

12



[Kaplan and Maxwell, 1988], where a partial solution involving an acyclicity
condition is given.

Recalling from Section 3.2 the fact that terminological cycles under the
greatest fixpoint semantics are closely related to terminological logics that
permit regular expressions over roles, one would expect that undecidability
would show up again in this case. In fact, if the feature logic specified in
Section 2 is extended by functional uncertainty, then satisfiability of feature
terms is undecidable [Baader et al., 1991].2 An even stronger result can be
shown. Satisfiability of a feature term relative to a set of arbitrary axioms
can be reduced to satisfiability of a feature term without axioms [Baader
et al., 1991].3 However, these results strongly depend on the presence of
the complement operator. Thus, decidability for functional uncertainty in
weaker feature logics — feature logics that are not propositionally complete -
is still an open problem:.

5 Modal Logics

The most surprising connection between attributive description formalisms
and other research areas was recently discovered by Schild [1991]. He showed
that a large number of possible terminological logics are notational variants
of different propositional modal and dynamic logics. Exploiting this corre-
spondence, a number of interesting properties for the latter logics, such as
finite model properties, complexity results, and algorithms, can be straight-
forwardly applied to the corresponding terminological logics.

In order to demonstrate the connection between the different fields,
we will focus on the correspondence between the terminological logic AL
[Schmidt-SchauB and Smolka, 1991] introduced in Section 2 and the propo-
sitional polymodal logic K., [Halpern and Moses, 1985).

Given a set of atomic propositions ¥ = {a,b,c,...}, the constants
T and L denoting the truth-values true and false, a set of m operators
Ky, ..., Ky, the set of well-formed K(n)-formulas (denoted by ¢) is defined
by

¢ — a|T|L|dANP|dV |0 Kid.

Satisfiability of such formulas is defined with respect to Kripke struc-
tures

M= (5m,K1,...,&n),

where S is a set of states, 7(s) is a truth-assignment for all atomic proposi-
tions in ¥ at the state s € S, and k; C S x S are the accessibility relations.

ZNote that no terminological axioms are involved here!
3A similar result for terminological logics is shown in [Schild, 1991].
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A formula ¢ is said to be satisfied at a world (M, s), written (M, s) = ¢,
under the following conditions:

(M,s) Ea < 7(s)(a) = true

(M) T

(M) I 1

(M,s) E¢ANd = (M,s) = dand (M,s) = ¢’
(M) Vg = (Ms) b dor(M,s) ¢
(M) s (Ms)lE ¢

(M,s) EKi¢ < Viter(s):(Mt)E¢

A K(m)-formula & is satisfiable, iff there exists a world that satisfies ¢. ¢ is
valid, written = ¢, iff all worlds satisfy ¢.

This notion of satisfiability is obviously closely related to satisfiability
of ALC-concepts. Indeed, there is a one-to-one correspondence between ALC
and K(n), as can be seen from the following table:

Polymodal logic K(n) ‘ Terminological logic AL

4 C

{1,...,m} R={Ry,...,R.}
T T

L 1

oA pn e

¢V ¢ pu

— —¢

K¢ VR;: ¢

ﬁ](,'—'(f) HR,‘: _'¢

¢ satisfiable $ 1s a satisfiable ALC-concept
oV g2

From that PSPACE-completeness of subsumption in ALC follows imme-
diately, because satisfiability in K(,,) is known to be PSPACE-complete
[Halpern and Moses, 1985]. Hence, we have an alternative proof of the com-
plexity of subsumption to the one presented in [Schmidt-Schaufl and Smolka,
1991]. The most interesting aspect of this close correspondence is that it also
works for other variants of propositional modal and dynamic logics [Schild,
1991], giving us a large number of complexity results and algorithms for
free. This correspondence also applies to feature logics. In this context,
deterministic dynamic logics are the right kind of logics to establish the cor-
respondence. However, although these correspondences can be used to solve
a number of open problems, there are aspects which have not been considered
in modal and dynamic logics. For instance, agreements of feature paths do
not have a counter-part in modal or dynamic logics.
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6 Conclusion

We demonstrated that the study of formal properties of attributive descrip-
tion formalisms, which jointly characterize terminological and feature logics,
is quite closely connected to other areas of formal research. In particular, we
showed how the theory of finite state automata helped in solving some open
problems in terminological logics, how the word problem for Thue systems
was applied to a number of problems to prove undecidability, and, finally,
we examined the close correspondence between attributive description for-
malisms on one side and modal and dynamic logics on the other side.
Interestingly, the study of attributive description formalisms is not only
a sink for results in other areas, but also provides insights which can be
applied elsewhere. For instance, complex object data models, such as O,
[Lécluse et al., 1989], are closely related to attributive description formalisms,
so that the techniques are applicable. Such an application revealed that the
subtype-inference algorithm specified in [Lécluse et al., 1989] is incomplete,
and that the subtype-inference problem is PSPACE-complete [Bergamaschi
and Nebel, 1990]. Further, the study of sublanguages of ACC [Donini et al.,
1991b; Donini et al., 1991a] can be directly applied to sublogics of K. For
example, if only negation of propositional atoms is allowed and there is no
disjunction, then satisfiability of a K(n,)-formula is co-NP-complete. Finally,
the undecidability result for subsumption constraints in feature logics yields
the undecidability of semi-unification over rational trees [Dérre and Rounds,

1990].
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