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A BRIEF OVERVIEW OF POSSIBILISTIC LOGIC 

Didier Dubois - J6r6me Lang - Henri Prade 
Institut de Recherche en Informatique de Toulouse 

Universit6 Paul Sabatier - C.N.R.S. 
118 route de Narborme, 31062 Toulouse Cedex, France 

The intended purpose of this research 1 is i) to show the specificity of possibilistic 
logic with respect to other logics with weighted statements, in particular its ability to 
deal both with uncertainty and vagueness, ii) to develop proof methods for possibilistic 
logic, and iii) to relate its ability to cope with partial inconsistency to belief revision and 
non-monotonic reasoning issues. See L6a Somb6 (1990) for an introduction to 
possibilistic logic among other non-classical logics. 

Several approaches have been proposed for dealing with uncertainty and/or 
vagueness in theorem proving ; see Dubois et al. (1991a) for an overview. However a 
large part of them are based on fuzzy logic, which completely departs from possibilistic 
logic. Fuzzy logic deals with propositions involving vague predicates (or properties 
whose satisfaction can be a matter of degree) and manipulates truth degrees which are 
truth-functional with respect to each connective, whereas possibilistic logic involves 
certainty and possibility degrees which are not compositional for all connectives and 
which are attached to classical formulae, i.e. containing only non-vague propositions or 
predicates (in the simplest case). The lack of complete certainty about the truth of a 
considered formula is to be understood as a consequence of a lack of complete 
information. 

A possibilistic logic formula is a first order logic formula with a numerical weight 
between 0 and 1 which is a lower bound on a possibility measure I-I or on a necessity 
measure N. Thus this lower bound should obey the characteristic axioms governing these 
measures, i.e. Vp, Vq, N(p ^ q) = min(N(p),N(q)) and l-I(p v q) = max(I-I(p),l'I(q)) 
respectively for necessity and possibility measures (Zadeh, 1978 ; Dubois and Prade, 
1988), with the duality relation N(p) = 1 - l-l(~p). However we only have N(p v q) > 
max(N(p),N(q)) and l-I(p A q) < min(1-I(p),l-I(q)). Moreover we have the usual limit 
conditions [l(_l_) = N(_I_) = 0, I-[(T) = N(T) = 1, where / and T stand for the 

1 Supported by the European Esprit-II Basic Research Action number 3085 entitled "Defeasible Reasoning 
and Uncertainty Management Systems" (DRUMS). 
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contradiction and the tautology respectively. The weight attached to a formula represents 
to what extent it is possible or it is certain that the formula holds for true given the 
available information. A semantics has been proposed first when only lower bounds on a 
necessity measure are used (Dubois et al., 1989) and then extended to the general case 
where lower bounds of both possibility and necessity are allowed (Lang et al., 1991). 
For the sake of brevity let us only indicate the semantics attached to a set ~ of 
(classical) formulas Pi, i = 1,n weighted by lower bounds tx i of the necessity type, i.e. Vi, 
N(pi)  > t~ i. The fuzzy set M(Pi,txi) of interpretations of (pi,oq) is defined by the 
characteristic function 

Vto, ktM(pi,cti)(to ) = max(l.tM(pi)(to), 1 - txi) 

where l.tM(pi)(to) = 1 if to is a model of Pi and I.tM(pi)(o) ) = 0 if to is not a model of Pi. 
The lack of certainty in Pi, estimated by 1 - oq, is committed to the interpretations which 
are not models of Pi- By performing the conjunction of the M(pi,t~i)'s, we associate each 
interpretation to with a weight equal to it(to) = mini=l,n t-tM(pi;oti)(to). Thus the weights 
attached to formulas in the knowledge base ffcv = { (pi,oq)} induce an ordering among the 
interpretations (according to their level of possibility re(to)). It is very similar to Shoham 
(1988)'s preferential model semantics ; see (Dubois and Prade, 1991b) on this point. It 
can be checked that Vi, N(pi) = 1 - I'l(~Pi) > txi, with I-[(Pi) -- sup{Tt(to), to E M(pi) }, 
which is the definition (Zadeh, 1978) of a possibility measure l-I from a possibility 
distribution re, in this setting. 

The following deduction rules (Dubois and Prade, 1987, 1990a) have been proved 
sound and complete for the above-mentioned semantics, see (Dubois et al., 1989, Lang et 
al., 1991) 

N(p) > ~x, N(q) > ~ N(p) > o~, 1-I(q) >- 13 

N(Res(p,q)) > min(ot,~) II(Res(p,q)) > 113 if cx + 13 > 1 
Io otherwise. 

where Res(p,q) is the resolvent of p and q. If we want to compute the certainty degree 
which can be attached to a formula, we add to the knowledge base the negation of the 
formula to evaluate with a necessity degree equal to 1. Then it can be shown that any 
lower bound obtained on 1 ,  by resolution, is a lower bound of the necessity of the 
formula to evaluate. First order logic automatic deduction methods can be extended to 
possibilistic logic. Various strategies for applying the above extended resolution 
principles, which make use of ordered search methods (Dubois et al., 1987), as well as, 
the generalization of  semantic evaluation techniques like the Davis and Putnam' 
procedure (Lang, 1990) have been carried out. Also preliminary results on possibilistic 
logic programming have been obtained (Dubois et al., 1991b). 

The introduced semantics enables us to define the degree of partial inconsistency of 
a knowledge base ffr which is equal, in the case of necessity-weighted formulas, to 
Inc(ffr  = 1 - supro mini=l,n I.tM(pi,oq)(to). Then it can be shown that this degree 
estimates to what extent the lower bounds in the knowledge base violate the characteristic 
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axiom of necessity measures and to what extent the fuzzy set of models of the knowledge 
base is empty. It has been also shown that is it possible to reason with such partially 
inconsistent knowledge bases, still preserving the above-mentioned soundness and 
completeness results (Lang et al., 1991). An important point when reasoning with a 
partially inconsistent possibilistic knowledge base is that the conclusions which can be 
deduced with a degree strictly greater than the degree of inconsistency are still valid. 

Possibilistic logic implements a non-monotonic reasoning in case of partial 
inconsistency. Indeed, it has been shown (Dubois and Prade, 1991b) that the preferential 
entailment (in the sense of Shoham (1988)) ~Tr, def'med by 

p ~ qr  N(q I p) > 0 

I1 if 1-1(p) = l-I(p ^ q) 
with N(q I p) = 1 - rI(-r i p) and l-I(q I p) = II-I(p ^ q) if 1-I(p) > l-l(p ^ q) 

(where 7t is the possibility distribution, associated with the semantics of the knowledge 
base ~ ,  underlying l-I), is in complete agreement with non-monotonic consequence 
relations obeying the axiomatics of system P proposed by Kraus et al. (1990). See also 
G~irdenfors (1991) on the link between non-monotonicity issues and necessity-like 
measures called "expectations". 

Moreover it has been established in (Dubois and Prade, 1991b) that we have 
N(q I p) > 0 if and only if it is possible to deduce (q,[3) from ~v u {(p,1)} with 
l] > Inc(ff(, • {(p,1)}), where N is the necessity measure defined from rc associated with 
~ .  Since N(q I p) > 0 behaves like a non-monotonic consequence relation p ~- q, it 
illustrates the close relation that there exists between non-monotonic reasoning and belief 
revision (Makinson and G~irdenfors, 1991), in the possibilistic framework. The links 
between possibility theory and the theory of revision of symbolic knowledge bases 
developed by G~irdenfors indicate that there is a deep coherence between the reasoning 
methods in possibilistic logic and recent developments in purely symbolic approaches to 
reasoning with incomplete or contradictory knowledge. More specifically it has been 
shown that G~irdenfors (1988)' epistemic entrenchment relations are equivalent to the 
qualitative counterpart of necessity measures (Dubois and Prade, 1990b). This explains 
that the ability of possibilistic logic to deal with partial inconsistency is related to a belief 
revision mechanism in agreement with G~irdenfors' epistemic entrenchment relation. 
Moreover the lack of known updating rules in possibility theory has led us to investigate 
counterparts of updating rules existing in probability theory ; a possibilistic Jeffrey-like 
rule for updating a possibility distribution on the basis of another possibility distribution 
has been proposed (Dubois and Prade, 1990d). The reader is referred to (Dubois and 
Prade, 1991c) for a detailed analysis of belief revision in possibility theory. Besides, the 
problem of recovering consistency in a partially inconsistent knowledge base ~v by 
building maximal consistent sub-bases (obtained by deleting suitable pieces of knowledge 
in fir,) is discussed in (Dubois et al., 1991c). The problem of reasoning with 
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paraconsistent pieces of knowledge which violate the requirement min(N(p),N(~p)) = 0 
(a consequence of the axiomatics of necessity measures) has been recently discussed 
(Dubois et al., 1991e). 

As pointed out in (Dubois et al., 1989), the weighted clause (--,p v q, a ) ,  
understood as N(--,p v q ) >  o~ is semantically equivalent to the weighted clause 
(q, min(~, v(p))) where v(p) is the truth value of p, i.e. v(p) = 1 if p is true and v(p) = 0 
if p is false. This remark is very useful for hypothetical reasoning, since by 
"transferring" a sub-formula from a clause to the weight part of the formula we are 
introducing explicit assumptions. Indeed changing (~p v q, tz) into (q, min(v(p), tz)) 
leads to state the piece of knowledge under the form "q is certain at the degree oc, 
provided that p is true". More generally, the weight or label can be a function of logical 
(universally quantified) variables involved in the clause. The weight is no more just a 
degree but in fact a label which expresses the context in which the piece of knowledge is 
more or less certain. This is to be related to "possibilistic Assumption-based Truth 
Maintenance Systems" (with weighted justifications and/or hypotheses, which have been 
defined (Dubois et al., 1990, 1991d) and exemplified on a diagnosis problem. The 
approach contrasts with other uncertainty handling ATMS in the sense that the symbolic 
processing and the calculus of uncertainty are no longer separated here. Besides, 
applications to discrete optimization and to the handling of prioritized constraints are 
presented in (Lang, 1991). 

Moreover the presence of logical variables in the weight also enables the 
expression of some graduality attached to vague predicates (as in the rule "the younger 
the person, the more certain he/she is single", where "young" is a vague predicate) in a 
simple way, as N(single(x)) > lXyoung(age(x)) in our example. It would then allow for a 
flexible interface between the symbolic knowledge base and numerical inputs. Vague 
predicates can thus be handled by introducing their characteristic functions in the 
weights. This remark together with theoretical results (Dubois and Prade, 1990a) on the 
extension of the resolution rules in possibilistic logic in presence of vague predicates 
enables us to accommodate vague predicates ; see also (Dubois et al., 1991e). 

Lastly, deduction in possibilistic logic has been shown in perfect agreement (see 
Dubois et al., 1991a, e) with Zadeh (1979)'s approach to approximate reasoning which is 
based on the combination and the projection of possibility distributions. Paralleling 
existing results about network inference techniques for reasoning with probability 
measures or belief functions, some preliminary work (Dubois and Prade, 1990c) has 
been done indicating that the framework of possibility theory is also liable of inference 
methods based on hypergraphs (Shafer and Shenoy, 1990). 
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