Skip to main content

Use of a causal model to learn diagnostic knowledge in a real domain

  • Conference paper
  • First Online:
Trends in Artificial Intelligence (AI*IA 1991)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 549))

Included in the following conference series:

  • 128 Accesses

Abstract

This paper presents a system which learns a diagnostic knowledge base using a-priori knowledge and a set of examples. The a-priori knowledge consists of a causal model of the domain and a body of phenomenological theory, describing the links between abstract concepts and their possible manifestations in the world. The phenomenological knowledge is used deductively, the causal model is used abductively and the examples are used inductively. The system has been applied to learn the knowledge base of a diagnostic expert system for mechanical trouble-shooting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. Bergadano, A. Giordana, L. Saitta (1990), “Automated versus Manual Knowledge Acquisition: A Comparison in a Real Domain”, Proc. First Japanese Knowledge Acquisition for Knowledge-Based Systems Workshop (Tokyo, Japan), pp. 301–314.

    Google Scholar 

  • F. Bergadano, A. Giordana, L. Saitta (1988a), “Automated Concept Acquisition in Noisy Environment”, IEEE Trans. PAMI, PAMI-10, 555–575.

    Google Scholar 

  • F. Bergadano, A. Giordana (1988b), “A Knowledge Intensive Approach to Concept Induction”, Proc. Machine Learning Conference (Ann Arbor, MI), pp. 305–317.

    Google Scholar 

  • M. Botta, L. Saitta (1988), “Improving Knowledge Base System Performances by Experience”, Proc. EWSL-88 (Glasgow, UK), pp. 15–23.

    Google Scholar 

  • M. Botta, A, Giordana, L. Saitta (1990), “Knowledge Base Refinement using a Causal Model”, Intelligent Systems: State of the Art and Future Trends, Z. Ras & M. Zemankova (Eds.), Ellis-Horwood Publ. Co.

    Google Scholar 

  • M. Botta, S. Ravotto, L. Saitta (in press), “Use of Causal Models and Abduction in Learning Diagnostic Knowledge”, Int. J. of Man-Machine Studies, in press.

    Google Scholar 

  • L. Console, P. Torasso, D. Theseider Dupré (1990), “A Completion Semantics for Object-Level Abduction”, Proc. AAAI Symposium on Automated Abduction (Stanford, CA), pp. 72–75.

    Google Scholar 

  • R. Davis (1984), “Diagnostic Reasoning based on Structure and Behavior”, Artificial Intelligence, 24, 347–410.

    Google Scholar 

  • G. DeJong, R. Mooney (1986), “Explanation based learning: An alternative view”, Machine Learning, 1, 47–80.

    Google Scholar 

  • G. DeJong (1990), “Plausible inference vs. abduction”, Proc. AAAI Symposium on Automated Abduction (Stanford, CA), pp. 48–51.

    Google Scholar 

  • K. Eshghi, R. Kowalski (1989), “Abduction Compared with Negation by Failure”, Proc. 6th Int. Conf. on Logic Programming (Lisbon, Portugal), pp. 234–254.

    Google Scholar 

  • H. Geffner (1990), “Causal theories for default and abductive reasoning”, Proc. AAAI Symposium on Automated Abduction (Stanford, CA), pp. 150–154.

    Google Scholar 

  • M. Genesereth (1984), “The use of design descriptions in automated diagnosis”, Artificial Intelligence, 24, 411–436.

    Google Scholar 

  • R. Hartley, M. Coombs (1990), “Abduction in model generative reasoning”, Proc. AAAI Symposium on Automated Abduction (Stanford, CA), pp. 130–134.

    Google Scholar 

  • R. Keller (1988), “Defining operationality for EBL”, Artificial Intelligence, 35, 227–242.

    Google Scholar 

  • J. de Kleer, J. Seely Brown (1986), “Theories of causal ordering”, Artificial Intelligence, 29, 33–61.

    Google Scholar 

  • H. Levesque (1987), “A knowledge-level account of abduction”, Proc. IJCAI (Detroit, MI), pp. 1061–1067.

    Google Scholar 

  • T. Mitchell, R. Keller, S. Kedar-Cabelli (1986), “Explanation based generalization”, Machine Learning, 1, 47–80.

    Google Scholar 

  • S. Morris, P. O'Rorke (1990), “An approach to theory revision using abduction”, Proc. AAAI Symposium on Automated Abduction (Stanford, CA), pp. 33–37.

    Google Scholar 

  • C. Peirce (1931–1958), Collected Papers of Charles Sanders Peirce, C. Hartchorne, P. Weiss and A. Burks (Eds.), Harvard University Press (Cambridge, MA).

    Google Scholar 

  • D. Poole (1988), “Representing knowledge for logic-based diagnosis”, Proc. Int. Conf. on Fifth Generation Computer Systems (Tokyo, Japan), pp. 1282–1290.

    Google Scholar 

  • R. Reiter (1984), “A theory of diagnosis from first principles”, Artificial Intelligence, 32, 57–95.

    Google Scholar 

  • P. Torasso, L. Console (1989), Diagnostic problem solving, Van Nostrand Reinhold.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edoardo Ardizzone Salvatore Gaglio Filippo Sorbello

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Botta, M., Brancadori, F., Ravotto, S., Saitta, L., Sperotto, S. (1991). Use of a causal model to learn diagnostic knowledge in a real domain. In: Ardizzone, E., Gaglio, S., Sorbello, F. (eds) Trends in Artificial Intelligence. AI*IA 1991. Lecture Notes in Computer Science, vol 549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54712-6_235

Download citation

  • DOI: https://doi.org/10.1007/3-540-54712-6_235

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54712-9

  • Online ISBN: 978-3-540-46443-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics