
Formalizing Design Spaces:
Implicit Invocation Mechanisms

David Gar lan
School of C o m p u t e r Science
Carnegie Mellon Universi ty
P i t t sburgh , PA 15213 USA

David Notkin
Dept . of C o m p u t e r Science & Engineer ing

Universi ty of Washington
Seatt le , WA 98195 USA

Abst rac t

An important goal of software engineering is to exploit commonalities in system
design in order to reduce the complexity of building new systems, support large-
scale reuse, and provide automated assistance for system development. A significant
roadblock to accomplishing this goal is that common properties of systems are
poorly understood. In this paper we argue that formal specification can help solve
this problem. A formal definition of a design framework can identify the common
properties of a family of systems and make clear the dimensions of specialization.
New designs can then be built out of old ones in a principled way, at reduced cost
to designers and implementors.

To illustrate these points, we present a formalization of a system integration
technique called implicit invocation. We show how many previously unrelated sys-
tems can be viewed as instances of the same underlying framework. Then we briefly
indicate how the formalization allows us to reason about certain properties of those
systems as well as the relationships between different systems.

1 I n t r o d u c t i o n

Software systems are rarely conceived in isolation. Instead, most systems represent a
new instance of a product in some family of related systems, be they accounting systems,
database products, or compilers. Each system typically shares with other applications in
its family a common "framework" of behavioral and structural properties. An important
goal of software engineering is to improve software productivity by exploiting these
frameworks to reduce the complexity of building systems, support large-scale reuse, and
provide automated assistance for system development.

Broadly speaking, we have not been very successful in doing this. With the exception
of certain specialized domains (eg., spreadsheets, report generation, compiler construc-
tion), most systems are treated as an innovative development effort. Commonalities
in design, if exploited at all, influence development primarily through past experience
of builders who apply their knowledge in ad hoc and unstructured ways. As a result
there is a proliferation of system designs and implementation mechanisms, even when
the resulting products have many features in common.

There are two fundamental reasons for our failure to exploit commonalities in design.
First, differences in system design often reflect important differences in system require-
ments. As an example, consider the diversity of tool integration mechanisms found in
programming environments. Even though most modern environments share a common

32

goal of integrating a set of program development tools, an environment that is required
to incorporate existing tools may well lead to a different design for tool integration than
one in which all tools are hand-crafted for the environment.

The second reason for the proliferation of designs, however, is that the common
properties of those designs are poorly understood. Consequently it is hard to take
advantage of previous experiences when designing a system, even though the new system
may have much in common with existing systems. (Approaches such as object-oriented
design, JSP/JSD, etc., do not directly address this problem, since they give guidance
for how to construct specific designs rather than for understanding or relating families
of designs.)

In this paper we argue that formal specification can help solve this problem. First, a
formal definition of a design framework can identify the common properties of a family
of systems. This makes it possible to see how previously unrelated systems can be
treated as instances of the same underlying design. Second, if carried out properly, the
formalization can make clear the dimensions of specialization that can be used to turn
an abstract design framework into a design for a particular application. In this way, new
designs can be built out of old ones in a principled way, at reduced cost to designers
and implementors.

To illustrate these points, we present a formalization of a system integration tech-
nique, called implicit invocation. We show how many previously unrelated systems can
be viewed as instances of the same underlying framework. Then we briefly indicate how
the formalization allows us to reason about certain properties of those systems as well
as the relationships between different systems.

2 Implicit Invocation Mechanisms

Complex systems are typically composed out of many components, such as data types,
objects, tools, knowledge sources, etc. A fundamental issue in the development of these
systems is the choice of mechanism for integrating those components. Certainly the most
common integration mechanism is explicit invocation: components interact directly by
calling routines in other components. These "routines" may be interface routines of
abstract data types, invocation commands of tools, methods of objects, explicit queries
of databases, etc.

However, there is another mechanism - - implicit invocation q that is also becoming
a widespread technique for organizing systems. The idea behind implicit invocation
is that actions performed by one component in a system may cause the invocation of
routines in other components in the system, without the original component having
explicit static references to those other components. (We will make the definitions of
the terms "action" and "component" precise later.)

For example, in the Field system [Relss 90], tools such as editors and variable mon-
itors can register interest in a debugger's actions related to breakpoints. Then, when
the debugger stops at a breakpoint, it announces an event that allows the system to
automatically invoke methods in those registered tools. 1 These methods might scroll an
editor to the appropriate source line or redisplay the value of monitored variables. In
this scheme, the debugger simply announces an event, but does not know what other
tools (if any) are concerned with that event, or what they will do when that event is

1In the remainder of this paper we will refer to the interface routines of a component a s i t s ~methods ~.

33

announced.
The widespread interest in implicit invocation mechanisms arises for at least two

reasons. First, implicit invocation mechanisms make it easier to build systems that
relieve users from having to explicitly invoke related components. For example, a user
interface might use implicit invocation to automatically update multiple views of the
same data when the user changes that data. Implicit invocation makes systems like these
easier to build because complex interactions between components need not be directly
encoded in the components themselves. In this way, components can be built largely
independently, but stlU work together in supporting a user's goals. Second, implicit
invocation mechanisms reduce the cost of system evolution [Sullivan ~ Notkln 90]. In
particular, because components are loosely coupled, it is possible to integrate new com-
ponents without affecting the components that implicitly invoke the new components.
This makes it possible to evolve an environment more easily over time, as well as to
configure an environment dynamically.

Examples of systems with implicit invocation mechanisms abound. They are used in
programming environments to integrate tools [Reiss 90, Gerety 89], in database manage-
ment systems to ensure consistency constraints [Hewitt 69, Balzer 86], in user interfaces
to separate presentation of data from applications that manage the data [Krasner ~ Pope
88], and by syntax-directed editors to support incremental semantic checking [Haber-
mann ~ Notkin 86, Habermann et al. 91]. They also appear in spreadsheets, blackboard
systems, attribute grammar systems, constraint-based systems, as well as many other
kinds of systems.

Typically each such implicit invocation mechanism has been produced as a sepa-
rate and innovative design, at significant intellectual and developmental cost. As we
mentioned earlier, one of the reasons for this duplication of effort is that those mech-
anisms have rather different goals. However, a perhaps more significant reason is that
commonalities between the mechanisms have not been understood, or, until recently,
even recognized [Garlan et al. 90]. In the remainder of this paper we show how formal
specification can help make these relationships clear. We present an abstract model of
implicit invocation, based on the notion of event announcement. Then we illustrate how
specific designs are obtained by elaborating this abstract model.

3 A Formal Model for Implic i t Invocation

Abstractly, a~l implicit invocation mechanism can be modelled as a collection of compo-
nents, each of which has an interface that specifies a set of methods and a set of events.
As is traditionally the case, the methods define operations that other components can
explicitly invoke. The events, however, define actions that the component promises to
announce to other components in the system. The implicit invocation mechanism must
also provide a way to associate events with methods that are to be invoked when those
events are announced.

We now formalize these ideas in three steps using the Z specification language. First,
we define the state space of the basic model. Next we define an abstract run-time model
that explains how events are announced and handled by an implicit invocation system.
Finally, we show how the model can be used to define existing systems, additionally
illustrating how it allows us to reason about relationships between some of these systems.

34

3.1 T h e B a s i c M o d e l

We begin by assuming there exist sets of events, methods, and component names, which,
for the time being, we will simply treat as primitive types.

[EVENT, M E T t I O D , CNAME]

A component is modelled as an entity that has a name and an interface consisting
of a set of methods and a set of events.

_ Component

name : C N A M E

methods : P M E T I I O D
events : P E V E N T

A particular event (or method) is identified by a pair consisting of the name of a
component and the event (or method) itself. In this way we can talk about the same
event or method appearing in different components. We use the type abbreviations
Event and Method to refer to these pairs (respectively).

Event == C N A M E x E V E N T
Method == C N A M E x M E T H O D

For convenience we define the functions Events and Methods, which extract the set
of components and methods fl'om a collection of components.

Events : P Component ~ P Event
Methods : P Component ---+ P Method

Events cs = {c : cs; e : E V E N T I e E c.events �9 (e .name, e)}
Methods cs = {c : cs; m : M E T I I O D I m E c.methods �9 (c .name, m)}

An event system, EventSystem, consists of a set of components and an event man-
ager. The event manager, EM, is a binary relation associating events and methods that
should be invoked when that event is announced. Thus, as we will see later, when an
event e is announced, all methods related to it by E M are invoked in the corresponding
components.

_ EventSystem

components : P Component
E M : Event ~ Method

V ci, c2 : components �9 (e l .name = c2.name) ~ (el = c~)
dom E M C_ Events components
ran E M C_ Methods components

The state invariant of EventSystem asserts that the components in the system have
unique names, and that the event manager contains only events and methods that
actually exist in the system.

This characterization of E M is an extremely general one. In particular, this model
allows the same event to be associated with many different methods, and even with
many methods in the same component. It also permits some events to be associated
with no methods. Further, it leaves open the issue of what components can announce
events, and whether there are any restrictions on the methods that can be associated
with those events

35

3.2 R u n - T i m e M o d e l .

To give meaning to EventSgstem it is necessary to say how it behaves. There are two
basic operations to consider. The first operation allows a component to "announce" an
event, and the second abstractly allows the system to choose an event and then invoke
the methods associated with it.

Both operations are accommodated by a run-time model for an event system that
associates a set of announced events with that system. This set contains events that
have been raised but not yet been handled. We will insist, however, that announced
events are in fact ones that the event manager can handle.

_ Run TimeSystem
EventSystem
announced : P Event

announced C_. Events components

Announcing an event is straightforward: an component can only announce one of its
own events, and the effect is simply to add the event to announced.

_ Announce
A Run TimeSystem
announcer? : Component
event? : E V E N T

announcer? E components
event? E announcer?.events
EEventSystem
announced I = announced U { (announeer ?.name, event?)}

The run-time behavior of an event system is determined largely by the run-time
behavior of the components-- that is, by the way they handle method invocations. There
are many possible models for this behavior. However, for the purpose of abstractly
modelling an event system, we simply assume the existence of a run-time operation
InvokeMethods that , given a set of methods, invokes them in some system-specific way
to change the state of the components in the system.

_ InvokeMethods
A Run T imeSystem
methods : P Method

methods C_ Methods components

We assume as a precondition of InvokeMethods that the methods to be invoked are bone
fide methods of the EventSgstem, but say nothing about the result of having invoked
those methods.

This definition naturally leaves open many aspects of InvokeMethods. Any imple-
mentation of such a system would have to make numerous decisions, such as the order in
which the methods are invoked, whether methods can be invoked concurrently, whether
methods can change the set of components in the system, how new events are announced
as a side effect of method invocation, etc.

36

Events are handled in two phases. First, an event is selected and removed from the
set of announced events. No other aspect of the run-time system changes during this
phase. Second, the selected event is "propagated" by invoking the methods associated
with that event.

_ S e l e c t
A Run T imeSys t em

e' : Event

e t E announced
announced t = announced \ {e'}
O Even tSys t em = O Even tSys tem'

We intentionally do not say how the event is chosen, but leave that decision to vary
from system to system.

_ Propagate
A Run T imeSys t em
e : Event

3 methods : P Method I methods = EM~{e}~ �9 InvokeMethods

Finally, we put the two parts together to obtain the operation I IandleEvent .

HandleEvent ~ Select ; Propagate

In these definitions we do not place any restrictions on the computations performed by
the components through explicit (method) invocation as a consequence of HandleEvent .

This definition of a run-time model is so abstract as to be of little direct practical
use, although it is needed to make clear the context in which an event system is used.
In fact, the schemas defining the model caal be thought of as placeholders that would
require specialization to define a given concrete system. However, rather than discuss
these run-time specializations, in the remainder of the paper we focus instead on the
specializations of Even tSys t em itself.

3 .3 S p e c i a l i z a t i o n s

To show how this general framework can be specialized we consider five specific systems.
The first system is the basis for the user interface design of Smalltalk-80. The next two
axe examples associated with databases in programming environments. The last two axe
tool integration mechanisms for systems constructed out of existing Unix-based tools.
For purposes of illustration and comparison we will focus primaxily on programming
environment examples, although the model applies equally well to a much broader class
of systems [Gaxlan et al. 90]. In each case we will refine the definition of Even tSys t em
in one of two ways: by elaborating the elements of E V E N T and M E T I I O D ; and by
constraining the way EM is defined.

Smal l ta lk-80 M V C . Our first specialization is the implicit invocation mechanism
that supports the Smalltalk-80 Model-View-Controller (MVC) paradigm [Goldberg &
Robson 83]. This mechanism is based on the notion that any object can register as a

37

"dependent" of any other object. When an object announces the "changed" event, the
"update" method is implicitly invoked in each of its dependents. Thus the MVC pro-
vides a fixed, predetermined set of events (namely the "changed" event) and associated
methods (namely the "update" method). 2

To model this mechanism formally we first state that the changed event and update
method are elements of types E V E N T and METHOD, respectively.

changed : E V E N T
update : METHOD

Next, we model dependencies between objects as a relation between components.
This dependency relation then precisely determines the EM relation as follows: first,
the events associated with each component is restricted to the set {changed}; and second,
EM simply pairs changed events with the appropriate update methods.

_ST80
EventSystem
dependents : Component ~ Component

dora dependents C components
ran dependents C_ components
V c : components �9 c.events = {changed}
EM = { c1,c2 : components [(el,e2) E dependents �9

((el.name, changed), (c2.name, update))}

Note that a consequence of the invariant of EventSystem is that each dependent in the
system must have update as one its methods. We could formulate this as a lemma--albelt
a simple one-- to be proved about such a system. In its implementation, Smalltalk-80
supports this lemma by providing a default update method in the Object class, at the
top of the class hierarchy.

A P P L / A . The next specialization is the implicit invocation mechanism of A P P L/A
[Sutton, Heimbigner & Osterwell 90], an Aria-based language that supports process pro-
gramrning. APPL/A's implicit invocation mechanism was inspired by mechanisms to
support consistency in entity-relation databases [Hewitt 69, Balzer 86]. Its event mecha-
nism has two basic restrictions. First, relations--instances of a special type constructor
in APPL/A- -a re the only components that can announce events. Other components,
such as variables, packages, aald tasks, communicate only through explicit invocation.
Second, a relation can only announce one of the following predefined events: insert,
delete, update, find. 3 These events correspond to the primitive operations that can be
performed on relations.

To model this formally we declare the events specific to this mechanism.

I insert_e, delete_e, update_e,find_e : E V E N T

2Actually, there ~re three versions of the changed event: one with no parameters, one with one
paxameter, and one with two parameters. There are also three corresponding versions of the update
method. Also, it should be pointed out that although Smalltalk-80 is flexible enough to program
alternative implementations of an implicit invocation mechanism, the MVC paradigm does not take
advantage of this flexibility.

aActually, each of these four event types has two flavors: accept and complete.

38

Next, we identify a distinguished set of components, called relations. These are the only
components that can announce events and hence all other components in the system
have an empty set of events. These restrictions are summarized in the schema A P P L _ A .

_ A P P L _ . A
EventSys tem
relations : P Component

relations C_ components
V r : relations �9 r .events = {insert_e, delete_e, update_e, f ind_e}
V e : components \ relations �9 c.events = |

G a n d a l f . The third mechanism is the "daemon" invocation mechanism of the Gandalf
System [Habermann & Notkin 86]. Gandalf uses implicit invocation to provide (among
other things) incremental, static semantic checking for programs. The user creates a
program by incrementally building an abstract syntax tree. As nodes are added to the
tree, daemons associated with those nodes are activated to do type checking, provide
incremental code generation, etc.

Gandalf is similar to A P P L / A insofar as it defines a fixed set of events. (Likewise,
these events correspond to the primitive operations that can be performed on nodes in
the abstract syntax tree.) For the purposes of this exposition, we adopt the same set.
Gandalf also imposes some additional structure. First, as we have said, Gandalf has
two kinds of components: abstract syntax trees (ASTs) and daemons. Second, only the
nodes in an AST can announce events. Third, each node in all AST is paired with at
most one daemon, which is responsible for handling all events announced by its node.
Thus each daemon has a set of methods corresponding precisely to the events that a
node can announce.

To model the Gandalf implicit invocation mechanism we define the names of methods
supported by daemons (insert , de le te , . . .) , and then restrict the event mechanism as
indicated .4

Node, Daemon : P Component
inser t_m, delete_m, update_m, f ind_m : M E T H O D

4In these definitions we assume there exists s generic type constructor TREE and a function nodes
that yields the set of nodes in a tree. These are easily added to the mathematical toolkit, in the style
of the Z Reference Manual ISpivey 89].

39

_ Gandalf
EventSystem
A S T : TREE[Node/
daemons : P Daemon
ND : Node -~ Daemon

dom ND C nodes A S T A ran ND = daemons
daemons n A S T = Q
V n : A S T �9 n.events = {insert_e, delete_e, update_c,find_e}
V d : daemons �9 d.methods = (insert_m, delete_m, update_re,find_m}
EM = {n : dom NO �9 ((n.name, insert_e), ((ND n).name, insert_m))} U

{n : dom NO �9 ((n.name, delete_e), ((ND n).name, delete_m))} t9
. . .

Field. The next system is the tool integration mechanism developed by the Field
System [Reiss 90]. Field was designed to make it relatively easy to incorporate existing
Unix tools into a programming enviromnent. In a Field environment tools communicate
by "broadcasting" interesting events. Other tools can register patterns that indicate
which events should be routed to them and which methods should be called when an
event matches that pattern. When an event is announced, a pattern matcher checks
all registered patterns, invoking the associated method whenever a pattern is matched.
For example, if a program editor announces when it has finished editing a module, a
compiler might register for such announcements and automatically recompile the edited
module.

To describe this behavior in terms of our basic model, we first define a new type of
basic entity, P A T T E R N .

[PATTERN]

Next we associate a pattern matcher (match) with EventSystem, and a register relation
that, for each component, associates patterns with methods of that component. The
register relation then uniquely determines EM.

_ Field
EventSystem
match : E V E N T ,--* P A T T E R N
register : Component ~ (P A T T E R N x METt lOD)

dom register C components
((el.name, e), (c2.name, m)) e EM

(3pat : P A T T E R N * (c2,(pat, m)) e register h (e,pat) e match)

The invariant guarantees that the Event/Method pairs in EM are those for which some
registered pattern matches the event associated with the method.

Fores t . Forest adapts the Field implicit invocation mechanism to allow each compo-
nent to define a "policy" for deciding (dynamically) which methods to invoke when
a pattern is matched [Garlan & Ilias 90]. Thus instead of always invoking the same

40

method, a component's policy determines what method should be invoked. The policy
evaluation may depend on some state variables maintained by the event system.

For example, incremental, implicit recompilation of edited modules--as illustrated
for Field-- may be appropriate at certain times but not others. Using Forest, it is
possible to define a policy to control when the compiler should be invoked. For instance,
such a policy might be defined in terms of a state variable "EditingManyModules":
incremental recompilation will take place only if the value of this variable is false.

We model Forest by considering STATE to be a new primitive type, and by treating
a P O L I C Y as a function that returns a method when applied to a given STATE.

[STATE]
P O L I C Y = = S T A T E .~ METt lOD

Like Field, Forest has register and match relations, which together uniquely deter-
mine EM for the system.

_ Forest
EvcntSystcm
match : E V E N T ~ P A T T E R N
register : Component ~ (P A T T E R N x PO L ICY)
policy_state : S T A T E

dom register C components
((cl.name, e),(c~.namc, m)) e EM r

(3pat : PATTERN; policy : P O L I C Y *
(c2, (pat, policy)) e register A
(e,pat) E match A
policy(policy_state) = m)

As with Field, the invariant of Forest guarantees that the Event/Method pairs in EM
are those for which both a pattern and a policy combine to map the event to the method.

3 .4 U s i n g t h e M o d e l

The value of the implicit invocation model is its ability to provide insight into the space
of designs that adopt implicit invocation mechanisms. At the very least, the formal
abstractions greatly simplify comparisons between existing systems, and make clear
how each of them can be viewed as a variation on a common underlying design. Designs
that are typically realized as thousands of lines of code, can be examined and compared
with relative ease in several pages of formal specification.

For example, similarities between Gandalf and APPL/A become apparent, even
though the two systems were implemented completely independently, and with quite
different goals. In particular, both geneYate events in response to operations on certain
types of components--relations, in the case of APPL/A, and AST nodes, in the case of
Gandalf. Both restrict the components in the system that can handle events, and both
restrict the vocabulary of event announcements. Finally, both are similar to Smalltalk-
80, which further restricts announcers and receivers of events.

However, the usefulness of a formal model extends beyond qualitative, high-level
comparisons. Indeed, there are at least three important ways in which the model allows
us to reason about different implicit invocation systems.

41

First, it makes explicit the restrictions that each system imposes on the general
model. This in turn allows us to explain some of the limitations of existing systems,
and to predict properties of new designs. For example, consider APPL/A 's restriction
that allows only relations to announce events. A consequence is that the program-
mer either must use standard, explicit invocation mechanisms (eg., procedure call) to
connect components that are not relations, or else must model those components as
relations. In the former case, the benefits of implicit invocation mechanisms--such as
easier evolution--may not apply. In the latter case, system components are forced to
be treated as relations, even when they have other, more natural representations.

As another example, consider Gandalf's restriction of EM. It is not hard to show
that EM is a (partial) function. That is,

Gandalf F EM E Event -~ Method

Thus in the GandaIf System only a single component (viz., a daemon) can be associated
with an event. As a consequence each implicitly invoked method is itself responsible
for explicitly invoking methods of any other component that might be "interested" in
the announced event. This restriction is a serious shortcoming: since these additional
relationships must be encoded in the implicitly invoked daemons, these daemons can
become quite complex. Moreover, many of the benefits of loose coupling of system
components is lost, making it difficult, for example, to evolve the system. Our practical
experiences with Gandalf environments had given us an intuitive understanding of this
general issue, but it was the formalization that clarified the specific problem.

Second, the approach allows us to formally compare systems. For example, it is
possible to precisely characterize the relationship between Field and Forest. The implicit
invocation mechanisms of a Field programming environment can be viewed as a special
case of a Forest programming environment in which each policy always returns the same
method, regardless of the policy_state of the system. More formally, we can state the
following lemma:

f : Forest; g : Field ~"
f .components = g.components A f .match = g.match A
(V (c, (pat, m)) e 9.register * q policy I

(c, (pat, policy)) E f .register A poliey(f .policystate) = m)

f . E M = g.EM

Third, the approach encourages the formal statement of properties that can be com-
pared against the various specializations of the model. For instance, one such property is
whether there are potential circularities in a system. In this case a circularity is a chain
of implicit invocations that starts at one component and returns to that component.
While the existence of circularities will, in general, depend on the specific components
and EM relation in a particular EventSystem, for a system such an a Gandalf envi-
ronment, it is possible to argue that no circularities can exist with respect to implicit
invocation. (Nothing in the specification prohibits an implicitly invoked method from
ezplicitly interacting with a node, which in turn may trigger the implicitly invoked
method again, and so on.) More formally, given the following definition of Circular:

42

_ Circular
EventSystem

B implicitly_invokes : components ~ components I
(cl, c2) E implicitly_invokes r (3 m : METHOD; e : E V E N T �9

((cl .name, e), (c2.name, m)) e EM) �9
3 c : components �9 (e, c) E implicitly-invokes +

we can show:

Gandalf l- -~ Circular

4 Di scuss ion and Conc lus ions

As we have illustrated, formal specification can provide considerable insight into a design
space. This application of formal methods, however, is not a traditional one. It is
therefore appropriate to reflect on this use of formalization.

Traditionally applications of formal methods have focused on the problem of devel-
oping specifications for individual systems. Moreover, typically, the primary issue is one
of correctness: is a given implementation correct with respect to the given specification.
In contrast, the use of formal methods described in this paper (and elsewhere [Gaxlaa &
Delisle 90, Delisle & Gaxlan 90a]) is to extract the abstract the properties of a family of
systems. Abstraction allows us to concentrate on the common design decisions, ignoring
specific details of particular systems, so that different systems can be compared along
certain dimensions. "Refinement" is then used to show how specific systems specialize
the shared abstractions. However, in this case refinement is being used to elaborate an
abstract design, rather than provide an implementation of a specification. The ques-
tion that one asks of a refinement is then no longer "Is it correct?", but "What axe its
properties?", and "How do these properties compare with those obtained through other
such refinements?" Furthermore, it becomes reasonable to talk about the dimensions of
refinement that can be used to specialize an abstract design framework. In the examples
above, we looked at refinements of E V E N T S , COMPONENTS , and the associated event
manager. This allowed us to compaxe dispaxate systems such as Gandalf, APPL/A, and
Smalltalk in terms of their refinement along these specific dimensions.

A consequence of this different emphasis on abstraction and refinement, is that the
quality of a formal specification is no longer simply a question of completeness and
consistency. Instead, formal specification of a design space must be judged on its ability
to reveal the important properties of a family of systems. To accomplish this a formal
specification must balance the simplicity of an abstract model against the need to expose
key properties. This can be a difficult balance to attain. In the case of implicit invocation
mechanisms we chose to abstract the way in which events axe announced. This simplifies
the description, but makes it difficult, for example, to describe different schemes for
passing parameters through an announced event. Similarly, we chose not to model the
mechanism for explicit method invocation. Again that decision leads to simplicity, but
also makes it difficult for us to talk about certain hybrid implicit invocation mechanisms
that, for example, announce events automatically whenever certain methods axe invoked.

A second consequence is that certain properties of a formal notation become crucial
in carrying out the formalization of a design space. In particular, we relied heavily on the

43

use of Z's schema calculus to first define a "kernel" design (EventSystem) and then later
elaborate that design. In this respect, our use of Z is similar to Flinn and Scrensen's
in their CAVIAR case study [Flinn & Ib. Scrensen]. Like our approach, they show
how a specific system specification can be obtained by specializing (or instantiating)
one or more reusable, abstract formal designs. The primary difference in approach,
however, is that here we use the technique to support comparison of different systems.
Additionally, the CAVIAR study makes heavy use of Z generic schemas to paxameterize
the basic building blocks. In our case study, however, we have found generics to be less
useful, since the dimensions of specialization are not easily defined simply by "plugging
in" the right type. This may very well point out the need for more powerful support for
characterizing the parameterization of such frameworks, perhaps in the style of algebraic
approaches [Goguen 86].

Acknowledgements

We would like to thank Kevin Sullivan and Robert Allen for their invaluable contribu-
tions to both the content and form of this paper. Kevin provided much of the initial
insight into the underlying formal simplicity of implicit invocation mechanisms. Robert
spotted numerous inconsistencies and deficiencies in earlier versions of the Z model.

References

[Balzer 86] R.M. Balzer. Living in the Next Generation Operating System. Proceedings
of the Fourth World Computer Conference. (September, 1986).

[Delisle & Garlan 90a] N. Delisle and D. Garlan. Applying Formal Specification to In-
dustrial Problems: A Specification of an Oscilloscope. IEEE Software (September
1990).

[Flinn & Ib. Scrensen] Bill Flinn and Ib. Scrensen. CAVIAR: A Case Study in Spec-
ification. In Specification Case Studies, ed. Ian Hayes, Prentice Hall International
(1987).

[Oarlan ~ Delisle 90] David Oarlan and Norman Delisle. Formal Specifications as
Reusable Frameworks. Proceedings of the International Symposium: VDM'90 - VDM
and Z. Kid, Germany (April 1990), Springer-Verlag, LNCS 428.

[Gaxlaa $z nias 90] D. Garlan and E. Ilias. Low-cost, Adaptable Tool Integration Poli-
cies for Integrated Environments. Proceedings of A CM SIGSOFTgO: Fourth Sympo-
sium on Software Development Environments, pp. 1-10 (December 1990).

[Gaxlan et al. 90] David Garlan, Gall E. Kaiser, and David Notkin. On the Criteria to be
Used in Composing Tools into Systems. Technical Report CUCS-034-90, Department
of Computer Science, Columbia University (July 1990). To appear, IEEE Computer.

[Gerety 89] Colin Gerety. HP SoftBench: A New Generation of Software Development
Tools. Technical Report SESD-89-25, Hewlett-Packard Software Engineering Systems
Division, Fort Collins, Colorado (November 1989).

44

[Goguen 86] J.A. Goguen. Reusing and Interconnecting Software Components. IEEE
Computer (February 1986).

[Goldberg & Robson 83] A. Goldberg and D. Robson. Smalltalk-80: The Language and
its Implementation. Addison-Wesley (1983).

[Habermann et al. 91] A.N. Habermann, D. Garlan, and D. Notkin. Generation of Inte-
grated Task-Specific Programming Environments. In CMU Computer Science: $Sth
Anniversary Commemorative Symposium. Addison-Wesley (January 1991).

[Habermann & Notkin 86] A.N. Habermann and D. Notkin. Gandalf Software Develop-
ment Environments. IEEE Transactions on Software Engineering SE-15,12 (Decem-
ber 1986), pp. 1117-1127.

[Hewitt 69] Carl Hewitt. PLANNER: A Language for Proving Theorems in Robots. Pro-
cecdings of the First International Joint Conference in Artificial Intelligence., Wash-
ington DC (1969).

[Krasner & Pope 88] G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-
View-COntroller User Interface Paradigm in Smalltalk-80. Journal of Object Oriented
Programming 1,3 (August/September 1988), pp. 26-49.

[l~ss 90] S.P. Reiss. Connecting Tools using Message Passing in the Field Environment.
IEEE Software 7,4 (July 1990), pp. 57-66.

[Spivey 89] J.M. Spivey. The Z Notation: A Reference Manual Prentice Hall Interna-
tional (1989).

[Sullivan & Notkin 90] K. Sullivan and D. Notkin. Reconciling Environment Integration
and Component Independence. Proceedings of A CM SIGSOFTgO: Fourth Symposium
on Software Development Environments, pp. 22-33 (December 1990).

[Sutton, Heimbigner & Osterweil 90] S.M. Sutton, Jr., D. Heimbigner, & L.J. Oster-
weU. Language Constructs for Managing Change in Process-Centered Environments.
Proceedines of ACM SIGSOFTgO: Fourth Symposium on Software Development En-
vironments, pp. 206-217 (December 1990).

