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Abst rac t  

An important goal of software engineering is to exploit commonalities in system 
design in order to reduce the complexity of building new systems, support large- 
scale reuse, and provide automated assistance for system development. A significant 
roadblock to accomplishing this goal is that common properties of systems are 
poorly understood. In this paper we argue that formal specification can help solve 
this problem. A formal definition of a design framework can identify the common 
properties of a family of systems and make clear the dimensions of specialization. 
New designs can then be built out of old ones in a principled way, at reduced cost 
to designers and implementors. 

To illustrate these points, we present a formalization of a system integration 
technique called implicit invocation. We show how many previously unrelated sys- 
tems can be viewed as instances of the same underlying framework. Then we briefly 
indicate how the formalization allows us to reason about certain properties of those 
systems as well as the relationships between different systems. 

1 I n t r o d u c t i o n  

Software systems are rarely conceived in isolation. Instead, most systems represent a 
new instance of a product in some family of related systems, be they accounting systems, 
database products, or compilers. Each system typically shares with other applications in 
its family a common "framework" of behavioral and structural properties. An important  
goal of software engineering is to improve software productivity by exploiting these 
frameworks to reduce the complexity of building systems, support  large-scale reuse, and 
provide automated assistance for system development. 

Broadly speaking, we have not been very successful in doing this. With the exception 
of certain specialized domains (eg., spreadsheets, report generation, compiler construc- 
tion), most systems are treated as an innovative development effort. Commonalities 
in design, if exploited at all, influence development primarily through past experience 
of builders who apply their knowledge in ad hoc and unstructured ways. As a result 
there is a proliferation of system designs and implementation mechanisms, even when 
the resulting products have many features in common. 

There are two fundamental reasons for our failure to exploit commonalities in design. 
First, differences in system design often reflect important differences in system require- 
ments. As an example, consider the diversity of tool integration mechanisms found in 
programming environments. Even though most modern environments share a common 
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goal of integrating a set of program development tools, an environment that is required 
to incorporate existing tools may well lead to a different design for tool integration than 
one in which all tools are hand-crafted for the environment. 

The second reason for the proliferation of designs, however, is that the common 
properties of those designs are poorly understood. Consequently it is hard to take 
advantage of previous experiences when designing a system, even though the new system 
may have much in common with existing systems. (Approaches such as object-oriented 
design, JSP/JSD, etc., do not directly address this problem, since they give guidance 
for how to construct specific designs rather than for understanding or relating families 
of designs.) 

In this paper we argue that formal specification can help solve this problem. First, a 
formal definition of a design framework can identify the common properties of a family 
of systems. This makes it possible to see how previously unrelated systems can be 
treated as instances of the same underlying design. Second, if carried out properly, the 
formalization can make clear the dimensions of specialization that can be used to turn 
an abstract design framework into a design for a particular application. In this way, new 
designs can be built out of old ones in a principled way, at reduced cost to designers 
and implementors. 

To illustrate these points, we present a formalization of a system integration tech- 
nique, called implicit invocation. We show how many previously unrelated systems can 
be viewed as instances of the same underlying framework. Then we briefly indicate how 
the formalization allows us to reason about certain properties of those systems as well 
as the relationships between different systems. 

2 Implicit Invocation Mechanisms 

Complex systems are typically composed out of many components, such as data types, 
objects, tools, knowledge sources, etc. A fundamental issue in the development of these 
systems is the choice of mechanism for integrating those components. Certainly the most 
common integration mechanism is explicit invocation: components interact directly by 
calling routines in other components. These "routines" may be interface routines of 
abstract data types, invocation commands of tools, methods of objects, explicit queries 
of databases, etc. 

However, there is another mechanism - -  implicit invocation q that is also becoming 
a widespread technique for organizing systems. The idea behind implicit invocation 
is that actions performed by one component in a system may cause the invocation of 
routines in other components in the system, without the original component having 
explicit static references to those other components. (We will make the definitions of 
the terms "action" and "component" precise later.) 

For example, in the Field system [Relss 90], tools such as editors and variable mon- 
itors can register interest in a debugger's actions related to breakpoints. Then, when 
the debugger stops at a breakpoint, it announces an event that allows the system to 
automatically invoke methods in those registered tools. 1 These methods might scroll an 
editor to the appropriate source line or redisplay the value of monitored variables. In 
this scheme, the debugger simply announces an event, but does not know what other 
tools (if any) are concerned with that event, or what they will do when that event is 

1In the remainder of this paper we will refer to the interface routines of a component a s  i t s  ~methods ~. 
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announced. 
The widespread interest in implicit invocation mechanisms arises for at least two 

reasons. First, implicit invocation mechanisms make it easier to build systems that  
relieve users from having to explicitly invoke related components. For example, a user 
interface might use implicit invocation to automatically update multiple views of the 
same data when the user changes that data. Implicit invocation makes systems like these 
easier to build because complex interactions between components need not be directly 
encoded in the components themselves. In this way, components can be built largely 
independently, but stlU work together in supporting a user's goals. Second, implicit 
invocation mechanisms reduce the cost of system evolution [Sullivan ~ Notkln 90]. In 
particular, because components are loosely coupled, it is possible to integrate new com- 
ponents without affecting the components that implicitly invoke the new components. 
This makes it possible to evolve an environment more easily over time, as well as to 
configure an environment dynamically. 

Examples of systems with implicit invocation mechanisms abound. They are used in 
programming environments to integrate tools [Reiss 90, Gerety 89], in database manage- 
ment systems to ensure consistency constraints [Hewitt 69, Balzer 86], in user interfaces 
to separate presentation of data from applications that manage the data [Krasner ~ Pope 
88], and by syntax-directed editors to support incremental semantic checking [Haber- 
mann ~ Notkin 86, Habermann et al. 91]. They also appear in spreadsheets, blackboard 
systems, attribute grammar systems, constraint-based systems, as well as many other 
kinds of systems. 

Typically each such implicit invocation mechanism has been produced as a sepa- 
rate and innovative design, at significant intellectual and developmental cost. As we 
mentioned earlier, one of the reasons for this duplication of effort is that those mech- 
anisms have rather different goals. However, a perhaps more significant reason is that 
commonalities between the mechanisms have not been understood, or, until recently, 
even recognized [Garlan et al. 90]. In the remainder of this paper we show how formal 
specification can help make these relationships clear. We present an abstract model of 
implicit invocation, based on the notion of event announcement. Then we illustrate how 
specific designs are obtained by elaborating this abstract model. 

3 A Formal Model  for Implic i t  Invocation 

Abstractly, a~l implicit invocation mechanism can be modelled as a collection of compo- 
nents, each of which has an interface that specifies a set of methods and a set of events. 
As is traditionally the case, the methods define operations that other components can 
explicitly invoke. The events, however, define actions that the component promises to 
announce to other components in the system. The implicit invocation mechanism must 
also provide a way to associate events with methods that are to be invoked when those 
events are announced. 

We now formalize these ideas in three steps using the Z specification language. First, 
we define the state space of the basic model. Next we define an abstract run-time model 
that  explains how events are announced and handled by an implicit invocation system. 
Finally, we show how the model can be used to define existing systems, additionally 
illustrating how it allows us to reason about relationships between some of these systems. 
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3.1 T h e  B a s i c  M o d e l  

We begin by assuming there exist sets of events, methods, and component names, which, 
for the time being, we will simply treat as primitive types. 

[EVENT,  M E T t I O D ,  CNAME] 

A component is modelled as an entity that has a name and an interface consisting 
of a set of methods and a set of events. 

_ Component 

name : C N A M E  

methods : P M E T I I O D  
events : P E V E N T  

A particular event (or method) is identified by a pair consisting of the name of a 
component and the event (or method) itself. In this way we can talk about the same 
event or method appearing in different components. We use the type abbreviations 
Event  and Method to refer to these pairs (respectively). 

Event == C N A M E  x E V E N T  
Method == C N A M E  x M E T H O D  

For convenience we define the functions Events and Methods, which extract the set 
of components and methods fl'om a collection of components. 

Events : P Component ~ P Event 
Methods : P Component ---+ P Method 

Events cs = {c : cs; e : E V E N T  I e E c.events �9 (e .name,  e)} 
Methods cs = {c : cs; m : M E T I I O D  I m E c.methods �9 (c .name,  m)} 

An event system, EventSystem, consists of a set of components and an event man- 
ager. The event manager, EM,  is a binary relation associating events and methods that  
should be invoked when that  event is announced. Thus, as we will see later, when an 
event e is announced, all methods related to it by E M  are invoked in the corresponding 
components. 

_ EventSystem 

components : P Component 
E M  : Event ~ Method 

V ci, c2 : components �9 (e l .name = c2.name) ~ (el = c~) 
dom E M  C_ Events components 
ran E M  C_ Methods components 

The state invariant of EventSystem asserts that  the components in the system have 
unique names, and that  the event manager contains only events and methods that  
actually exist in the system. 

This characterization of E M  is an extremely general one. In particular, this model 
allows the same event to be associated with many different methods, and even with 
many methods in the same component. It also permits some events to be associated 
with no methods. Further, it leaves open the issue of what components can announce 
events, and whether there are any restrictions on the methods that  can be associated 
with those events 
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3.2  R u n - T i m e  M o d e l .  

To give meaning to EventSgstem it is necessary to say how it behaves. There are two 
basic operations to consider. The first operation allows a component to "announce" an 
event, and the second abstractly allows the system to choose an event and then invoke 
the methods associated with it. 

Both operations are accommodated by a run-time model for an event system that  
associates a set of announced events with that system. This set contains events that 
have been raised but not yet been handled. We will insist, however, that announced 
events are in fact ones that the event manager can handle. 

_ Run TimeSystem 
EventSystem 
announced : P Event 

announced C_. Events components 

Announcing an event is straightforward: an component can only announce one of its 
own events, and the effect is simply to add the event to announced. 

_ Announce 
A Run TimeSystem 
announcer? : Component 
event? : E V E N T  

announcer? E components 
event? E announcer?.events 
EEventSystem 
announced I = announced U { ( announeer ?.name, event?)} 

The run-time behavior of an event system is determined largely by the run-time 
behavior of the components-- that  is, by the way they handle method invocations. There 
are many possible models for this behavior. However, for the purpose of abstractly 
modelling an event system, we simply assume the existence of a run-time operation 
InvokeMethods that ,  given a set of methods, invokes them in some system-specific way 
to change the state of the components in the system. 

_ InvokeMethods 
A Run T imeSystem 
methods : P Method 

methods C_ Methods components 

We assume as a precondition of InvokeMethods that  the methods to be invoked are bone 
fide methods of the EventSgstem, but say nothing about  the result of having invoked 
those methods. 

This definition naturally leaves open many aspects of InvokeMethods. Any imple- 
mentation of such a system would have to make numerous decisions, such as the order in 
which the methods are invoked, whether methods can be invoked concurrently, whether 
methods can change the set of components in the system, how new events are announced 
as a side effect of method invocation, etc. 
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Events are handled in two phases. First, an event is selected and removed from the 
set of announced events. No other aspect of the run-time system changes during this 
phase. Second, the selected event is "propagated" by invoking the methods associated 
with that event. 

_ S e l e c t  
A Run  T imeSys t em  

e' : Event  

e t E announced 
announced t = announced \ {e'} 
O Even tSys t em = O Even tSys tem'  

We intentionally do not say how the event is chosen, but leave that decision to vary 
from system to system. 

_ Propagate 
A Run T imeSys t em  
e : Event  

3 methods : P Method I methods = EM~{e}~ �9 InvokeMethods 

Finally, we put the two parts together to obtain the operation I IandleEvent .  

HandleEvent  ~ Select ; Propagate 

In these definitions we do not place any restrictions on the computations performed by 
the components through explicit (method) invocation as a consequence of HandleEvent .  

This definition of a run-time model is so abstract as to be of little direct practical 
use, although it is needed to make clear the context in which an event system is used. 
In fact, the schemas defining the model caal be thought of as placeholders that would 
require specialization to define a given concrete system. However, rather than discuss 
these run-time specializations, in the remainder of the paper we focus instead on the 
specializations of Even tSys t em itself. 

3 .3  S p e c i a l i z a t i o n s  

To show how this general framework can be specialized we consider five specific systems. 
The first system is the basis for the user interface design of Smalltalk-80. The next two 
axe examples associated with databases in programming environments. The last two axe 
tool integration mechanisms for systems constructed out of existing Unix-based tools. 
For purposes of illustration and comparison we will focus primaxily on programming 
environment examples, although the model applies equally well to a much broader class 
of systems [Gaxlan et al. 90]. In each case we will refine the definition of Even tSys t em  
in one of two ways: by elaborating the elements of E V E N T  and M E T I I O D ;  and by 
constraining the way EM is defined. 

Smal l ta lk-80 M V C .  Our first specialization is the implicit invocation mechanism 
that supports the Smalltalk-80 Model-View-Controller (MVC) paradigm [Goldberg & 
Robson 83]. This mechanism is based on the notion that any object can register as a 
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"dependent" of any other object. When an object announces the "changed" event, the 
"update" method is implicitly invoked in each of its dependents. Thus the MVC pro- 
vides a fixed, predetermined set of events (namely the "changed" event) and associated 
methods (namely the "update" method). 2 

To model this mechanism formally we first state that the changed event and update 
method are elements of types E V E N T  and METHOD, respectively. 

changed : E V E N T  
update : METHOD 

Next, we model dependencies between objects as a relation between components. 
This dependency relation then precisely determines the EM relation as follows: first, 
the events associated with each component is restricted to the set {changed}; and second, 
EM simply pairs changed events with the appropriate update methods. 

_ST80 
EventSystem 
dependents : Component ~ Component 

dora dependents C components 
ran dependents C_ components 
V c : components �9 c.events = {changed} 
EM = { c1,c2 : components [ (el,e2) E dependents �9 

((el.name, changed), ( c2.name, update))} 

Note that a consequence of the invariant of EventSystem is that each dependent in the 
system must have update as one its methods. We could formulate this as a lemma--albelt  
a simple one-- to  be proved about such a system. In its implementation, Smalltalk-80 
supports this lemma by providing a default update method in the Object class, at the 
top of the class hierarchy. 

A P P L / A .  The next specialization is the implicit invocation mechanism of A P P L/A  
[Sutton, Heimbigner & Osterwell 90], an Aria-based language that supports process pro- 
gramrning. APPL/A's  implicit invocation mechanism was inspired by mechanisms to 
support consistency in entity-relation databases [Hewitt 69, Balzer 86]. Its event mecha- 
nism has two basic restrictions. First, relations--instances of a special type constructor 
in APPL/A- -a re  the only components that can announce events. Other components, 
such as variables, packages, aald tasks, communicate only through explicit invocation. 
Second, a relation can only announce one of the following predefined events: insert, 
delete, update, find. 3 These events correspond to the primitive operations that  can be 
performed on relations. 

To model this formally we declare the events specific to this mechanism. 

I insert_e, delete_e, update_e,find_e : E V E N T  

2Actually, there ~re three versions of the changed event: one with no parameters, one with one 
paxameter, and one with two parameters. There are also three corresponding versions of the update 
method. Also, it should be pointed out that although Smalltalk-80 is flexible enough to program 
alternative implementations of an implicit invocation mechanism, the MVC paradigm does not take 
advantage of this flexibility. 

aActually, each of these four event types has two flavors: accept and complete. 



38 

Next, we identify a distinguished set of components, called relations. These are the only 
components that  can announce events and hence all other components in the system 
have an empty set of events. These restrictions are summarized in the schema A P P L _ A .  

_ A P P L _ . A  
EventSys tem 
relations : P Component  

relations C_ components 
V r : relations �9 r .events  = {insert_e,  delete_e, update_e, f ind_e}  
V e : components \ relations �9 c.events = | 

G a n d a l f .  The third mechanism is the "daemon" invocation mechanism of the Gandalf 
System [Habermann & Notkin 86]. Gandalf uses implicit invocation to provide (among 
other things) incremental, static semantic checking for programs. The user creates a 
program by incrementally building an abstract syntax tree. As nodes are added to the 
tree, daemons associated with those nodes are activated to do type checking, provide 
incremental code generation, etc. 

Gandalf is similar to A P P L / A  insofar as it defines a fixed set of events. (Likewise, 
these events correspond to the primitive operations that  can be performed on nodes in 
the abstract  syntax tree.) For the purposes of this exposition, we adopt the same set. 
Gandalf also imposes some additional structure. First, as we have said, Gandalf has 
two kinds of components: abstract  syntax trees (ASTs) and daemons. Second, only the 
nodes in an AST can announce events. Third, each node in all AST is paired with at 
most one daemon, which is responsible for handling all events announced by its node. 
Thus each daemon has a set of methods corresponding precisely to the events that a 
node can announce. 

To model the Gandalf implicit invocation mechanism we define the names of methods 
supported by daemons (insert ,  de le te , . . . )  , and then restrict the event mechanism as 
indicated .4 

Node, Daemon : P Component  
inser t_m,  delete_m, update_m, f ind_m : M E T H O D  

4In these definitions we assume there exists s generic type constructor TREE and a function nodes 
that yields the set of nodes in a tree. These are easily added to the mathematical toolkit, in the style 
of the Z Reference Manual ISpivey 89]. 
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_ Gandalf 
EventSystem 
A S T  : TREE[Node/ 
daemons : P Daemon 
ND : Node -~ Daemon 

dom ND C nodes A S T  A ran ND = daemons 
daemons n A S T  = Q 
V n : A S T  �9 n.events = {insert_e, delete_e, update_c,find_e} 
V d : daemons �9 d.methods = (insert_m, delete_m, update_re,find_m} 
EM = {n :  dom NO �9 ( ( n.name, insert_e ), ( ( ND n ).name, insert_m))} U 

{n : dom NO �9 ((n.name, delete_e), ((ND n).name, delete_m))} t9 
. . .  

Field.  The next system is the tool integration mechanism developed by the Field 
System [Reiss 90]. Field was designed to make it relatively easy to incorporate existing 
Unix tools into a programming enviromnent. In a Field environment tools communicate 
by "broadcasting" interesting events. Other tools can register patterns that indicate 
which events should be routed to them and which methods should be called when an 
event matches that pattern. When an event is announced, a pattern matcher checks 
all registered patterns, invoking the associated method whenever a pattern is matched. 
For example, if a program editor announces when it has finished editing a module, a 
compiler might register for such announcements and automatically recompile the edited 
module. 

To describe this behavior in terms of our basic model, we first define a new type of 
basic entity, P A T T E R N .  

[PATTERN] 

Next we associate a pattern matcher (match) with EventSystem, and a register relation 
that,  for each component, associates patterns with methods of that component. The 
register relation then uniquely determines EM. 

_ Field 
EventSystem 
match : E V E N T  ,--* P A T T E R N  
register : Component ~ ( P A T T E R N  x METt lOD)  

dom register C components 
((el.name, e), (c2.name, m)) e EM 

(3pat : P A T T E R N  * (c2,(pat, m)) e register h (e,pat) e match) 

The invariant guarantees that the Event/Method pairs in EM are those for which some 
registered pattern matches the event associated with the method. 

Fores t .  Forest adapts the Field implicit invocation mechanism to allow each compo- 
nent to define a "policy" for deciding (dynamically) which methods to invoke when 
a pattern is matched [Garlan & Ilias 90]. Thus instead of always invoking the same 
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method, a component's policy determines what method should be invoked. The policy 
evaluation may depend on some state variables maintained by the event system. 

For example, incremental, implicit recompilation of edited modules--as illustrated 
for Field-- may be appropriate at certain times but not others. Using Forest, it is 
possible to define a policy to control when the compiler should be invoked. For instance, 
such a policy might be defined in terms of a state variable "EditingManyModules": 
incremental recompilation will take place only if the value of this variable is false. 

We model Forest by considering STATE to be a new primitive type, and by treating 
a P O L I C Y  as a function that returns a method when applied to a given STATE.  

[STATE] 
P O L I C Y  = =  S T A T E  .~ METt lOD 

Like Field, Forest has register and match relations, which together uniquely deter- 
mine EM for the system. 

_ Forest 
EvcntSystcm 
match : E V E N T  ~ P A T T E R N  
register : Component ~ ( P A T T E R N  x PO L ICY )  
policy_state : S T A T E  

dom register C components 
((cl.name, e),(c~.namc, m)) e EM r 

(3pat : PATTERN;  policy : P O L I C Y  * 
(c2, (pat, policy)) e register A 
(e,pat) E match A 
policy(policy_state) = m) 

As with Field, the invariant of Forest guarantees that the Event/Method pairs in EM 
are those for which both a pattern and a policy combine to map the event to the method. 

3 .4  U s i n g  t h e  M o d e l  

The value of the implicit invocation model is its ability to provide insight into the space 
of designs that adopt implicit invocation mechanisms. At the very least, the formal 
abstractions greatly simplify comparisons between existing systems, and make clear 
how each of them can be viewed as a variation on a common underlying design. Designs 
that  are typically realized as thousands of lines of code, can be examined and compared 
with relative ease in several pages of formal specification. 

For example, similarities between Gandalf and APPL/A become apparent, even 
though the two systems were implemented completely independently, and with quite 
different goals. In particular, both geneYate events in response to operations on certain 
types of components--relations, in the case of APPL/A,  and AST nodes, in the case of 
Gandalf. Both restrict the components in the system that can handle events, and both 
restrict the vocabulary of event announcements. Finally, both are similar to Smalltalk- 
80, which further restricts announcers and receivers of events. 

However, the usefulness of a formal model extends beyond qualitative, high-level 
comparisons. Indeed, there are at least three important ways in which the model allows 
us to reason about different implicit invocation systems. 
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First, it makes explicit the restrictions that each system imposes on the general 
model. This in turn allows us to explain some of the limitations of existing systems, 
and to predict properties of new designs. For example, consider APPL/A 's  restriction 
that allows only relations to announce events. A consequence is that the program- 
mer either must use standard, explicit invocation mechanisms (eg., procedure call) to 
connect components that are not relations, or else must model those components as 
relations. In the former case, the benefits of implicit invocation mechanisms--such as 
easier evolution--may not apply. In the latter case, system components are forced to 
be treated as relations, even when they have other, more natural representations. 

As another example, consider Gandalf's restriction of EM. It is not hard to show 
that  EM is a (partial) function. That  is, 

Gandalf F EM E Event -~ Method 

Thus in the GandaIf System only a single component (viz., a daemon) can be associated 
with an event. As a consequence each implicitly invoked method is itself responsible 
for explicitly invoking methods of any other component that might be "interested" in 
the announced event. This restriction is a serious shortcoming: since these additional 
relationships must be encoded in the implicitly invoked daemons, these daemons can 
become quite complex. Moreover, many of the benefits of loose coupling of system 
components is lost, making it difficult, for example, to evolve the system. Our practical 
experiences with Gandalf environments had given us an intuitive understanding of this 
general issue, but it was the formalization that clarified the specific problem. 

Second, the approach allows us to formally compare systems. For example, it is 
possible to precisely characterize the relationship between Field and Forest. The implicit 
invocation mechanisms of a Field programming environment can be viewed as a special 
case of a Forest programming environment in which each policy always returns the same 
method, regardless of the policy_state of the system. More formally, we can state the 
following lemma: 

f : Forest; g : Field ~" 
f .components = g.components A f .match = g.match A 
(V ( c, (pat, m ) ) e 9.register * q policy I 

(c, (pat, policy)) E f .register A poliey(f .policystate) = m) 

f . E M  = g.EM 

Third, the approach encourages the formal statement of properties that can be com- 
pared against the various specializations of the model. For instance, one such property is 
whether there are potential circularities in a system. In this case a circularity is a chain 
of implicit invocations that starts at one component and returns to that component. 
While the existence of circularities will, in general, depend on the specific components 
and EM relation in a particular EventSystem, for a system such an a Gandalf envi- 
ronment, it is possible to argue that no circularities can exist with respect to implicit 
invocation. (Nothing in the specification prohibits an implicitly invoked method from 
ezplicitly interacting with a node, which in turn may trigger the implicitly invoked 
method again, and so on.) More formally, given the following definition of Circular: 
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_ Circular 
EventSystem 

B implicitly_invokes : components ~ components I 
(cl,  c2) E implicitly_invokes r (3 m : METHOD; e : E V E N T  �9 

((cl .name,  e), (c2.name, m))  e EM)  �9 
3 c : components �9 (e, c) E implicitly-invokes + 

we can show: 

Gandalf l- -~ Circular 

4 Di scuss ion  and Conc lus ions  

As we have illustrated, formal specification can provide considerable insight into a design 
space. This application of formal methods, however, is not a traditional one. It is 
therefore appropriate to reflect on this use of formalization. 

Traditionally applications of formal methods have focused on the problem of devel- 
oping specifications for individual systems. Moreover, typically, the primary issue is one 
of correctness: is a given implementation correct with respect to the given specification. 
In contrast, the use of formal methods described in this paper (and elsewhere [Gaxlaa & 
Delisle 90, Delisle & Gaxlan 90a]) is to extract the abstract the properties of a family of 
systems. Abstraction allows us to concentrate on the common design decisions, ignoring 
specific details of particular systems, so that different systems can be compared along 
certain dimensions. "Refinement" is then used to show how specific systems specialize 
the shared abstractions. However, in this case refinement is being used to elaborate an 
abstract design, rather than provide an implementation of a specification. The ques- 
tion that one asks of a refinement is then no longer "Is it correct?", but "What axe its 
properties?", and "How do these properties compare with those obtained through other 
such refinements?" Furthermore, it becomes reasonable to talk about the dimensions of 
refinement that can be used to specialize an abstract design framework. In the examples 
above, we looked at refinements of E V E N T S ,  COMPONENTS ,  and the associated event 
manager. This allowed us to compaxe dispaxate systems such as Gandalf, APPL/A,  and 
Smalltalk in terms of their refinement along these specific dimensions. 

A consequence of this different emphasis on abstraction and refinement, is that the 
quality of a formal specification is no longer simply a question of completeness and 
consistency. Instead, formal specification of a design space must be judged on its ability 
to reveal the important properties of a family of systems. To accomplish this a formal 
specification must balance the simplicity of an abstract model against the need to expose 
key properties. This can be a difficult balance to attain. In the case of implicit invocation 
mechanisms we chose to abstract the way in which events axe announced. This simplifies 
the description, but makes it difficult, for example, to describe different schemes for 
passing parameters through an announced event. Similarly, we chose not to model the 
mechanism for explicit method invocation. Again that decision leads to simplicity, but 
also makes it difficult for us to talk about certain hybrid implicit invocation mechanisms 
that,  for example, announce events automatically whenever certain methods axe invoked. 

A second consequence is that certain properties of a formal notation become crucial 
in carrying out the formalization of a design space. In particular, we relied heavily on the 
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use of Z's schema calculus to first define a "kernel" design (EventSystem) and then later 
elaborate that design. In this respect, our use of Z is similar to Flinn and Scrensen's 
in their CAVIAR case study [Flinn & Ib. Scrensen]. Like our approach, they show 
how a specific system specification can be obtained by specializing (or instantiating) 
one or more reusable, abstract formal designs. The primary difference in approach, 
however, is that here we use the technique to support comparison of different systems. 
Additionally, the CAVIAR study makes heavy use of Z generic schemas to paxameterize 
the basic building blocks. In our case study, however, we have found generics to be less 
useful, since the dimensions of specialization are not easily defined simply by "plugging 
in" the right type. This may very well point out the need for more powerful support for 
characterizing the parameterization of such frameworks, perhaps in the style of algebraic 
approaches [Goguen 86]. 
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