
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

556

Advisory Board: W. Brauer D. Gries J. Stoer

J.-M. Jacquet

Conclog'.
A Methodological
Approach to Concurrent
Logic Programming

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsrnhe
Postfach 69 80
Vincenz-Priessnitz-StrafSe 1
W-7500 Karlsruhe, FRG

Juris Hartmanis
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853, USA

Author

Jean-Marie Jacquet
Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
and
Department of Computer Science, University of Namur
Rue Grandgagnage 21, 5000 Namur, Belgium

CR Subject Classification (1991): D.I.3, D.2.10, D.3.1, 1.2.3, 1.2.5

ISBN 3-540-54938-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-54938-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1991
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Drnckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

To my parents
who began this whole work

Preface

C o n t e n t

As suggested by the intensive activity in logic programming both in the research and the
application areas, the use of logic as a programming language is now widely accepted.
Besides, the recent development of parallel architectures of computers has strengthened the
interest for concurrent computations. Concurrent logic programming has emerged from these
two fields of activities. It seems particularly promising because of its declarative and symbolic
appeals and because of its inherent non-deterministic feature, which makes it very well suited
for parallel executions. This book is a step in the study of concurrent logic programming. It
discusses the design of a concurrent logic programming language, named Conclog, and a
methodology for constructing programs in this language.

(i) The language

The main features of Conclog originate from the approach adopted in its design. Instead of
directly dealing with operational tricks to ensure efficiency, the ideal logic programming
paradigm has been taken as a reference. A sound and complete parallel execution model of
Horn clauses is described first. It uses or-parallelism and full and-parallelism. Subgoals of
conjunctions are reduced independently, regardless of shared variables. Subsequent
conflicting bindings are reconciled intermittently by equation manipulations. This basic
scheme is then extended to incorporate negation. To that effect, substitutions are generalized
and inequations are introduced in the reconciliation process. The extended scheme turns out to
be sound and as complete as possible when the negation-as failure-rule and the resolution
principle are used. Finally, extra-logical features are defined for optimization and
practicability purposes.

We claim that the resulting language allows an easy declarative programming. As a
consequence of our concern of computing general Horn clauses in a sound and as complete as
possible way, problems can be solved in a declarative manner. In particular, annotation
handling is not required to obtain soundness and completeness. Furthermore, multi-directional
and multi-solution procedures are supported quite naturally. Nevertheless, efficiency has also
been taken into account. Assuming suitable hypotheses on their use, procedures can be

V] PREFACE

transformed into very efficient ones through the introduction of appropriate control
information.

Since our main concern is the ease of programming, extra-logical features are kept
minimal and have a simple semantics. These properties are not obtained at the expense of
generality. Examples ranging from pure logical to classical concurrent applications are
developed to support our claim.

(ii) The methodology

The proposed methodology is aimed at guiding the construction of a program in Conclog in a
rigorous way. Although Conclog has been taken as target language, we believe that it can be
easily adapted to other concurrent logic languages.

The methodology covers the entire programming process, from informal specifications
to efficient Conclog programs. It is based on three phases. The first phase is dedicated to
writing specifications. A specification consists essentially of a structured description of the
computed relation in natural language. Necessary types, environment conditions and
operational properties may be specified as well. The second phase consists in constructing a
description in (pure) first order logic. Such a description is composed of two parts: a definition
of predicates and a set of properties relating them. The last phase consists in deriving Conclog
programs from the logic description. It proceeds in two steps. A first correct program is
derived from the logic description. It is then transformed into more efficient versions by
means of correctness-preserving transformations.

Structure

The book is structured in twelve chapters organised in four parts: an introductory part, a
concluding part and two main parts discussing the design of Conclog and programming in it.

(i) The introduction part

The introductory part is composed of two chapters. Chapter 1 presents the goals of the book
and places it in the concurrent logic programming context. Chapter 2 provides the background
material necessary to understand it.

(ii) The design part

The design of the language is described in six chapters. Chapter 3 presents the auxiliary
reconciliation calculus. Chapter 4 discusses the design of the parallel execution model of Horn
clauses. Chapter 5 extends it to tackle negation. Chapter 6 describes the Conclog extra-logical
features. Chapter 7 examines a possible extension of the resulting model. Chapter 8 compares
Conclog with other parallel schemes and concurrent logic languages.

PREFACE VII

(iii) The programming part

Three chapters are devoted to programming in Conclog. Chapter 9 presents the methodology.
Chapter 10 and Chapter 11 apply it to concrete examples ranging from applications free from
behavioral requirements (Chapter 10) to the simulation of dynamic systems (Chapter 11).

(iv) The conclusion part

Finally, the conclusion part, composed only of Chapter 12, sums up our work and suggests
subjects for future research.

Guide to t he r e a d e r

Conclog has been designed in full details. Theoretical properties have been proved too. It
follows that some parts are necessarily specific and/or theoretical. They may discourage the
reader interested in using Conclog or interested in having just an overview of it. To this end,
the chapters of the book have been conceived in order to allow some parts to be skipped
without any trouble. In a first reading, we suggest that the reader consult the introductory
Sections 3.1.1, 3.2.1, 4.1, 5.1, 6.1 and Section 6.2. He should get enough information to
understand the language and to use it.

Similarly, Chapters 10 and 11 have been written in such a way that a minimal
knowledge of the methodology is necessary to understand them. The reader just interested in
the direct coding of programs can thus just read the introductory Section 9.1.

Our methodology does not intend to be a universal panacea. Nevertheless, it aims at
easing the construction of the programs. We thus warmly recommend Chapter 9 explaining it.

Finally, this book has been conceived to be as self-contained as possible. The reader
unfamiliar with logic programming can read it without first consulting other books.
Nevertheless, we have been quite concise in recalling the basic foundations of logic
programming. References are given where the reader can find complementary information, if
necessary.

Acknowledgments

This hook is a revised version of my Ph.D. thesis ([Jacquet, 1989]), accepted by the University
of Namur (Facult6s Universitaires Notre-Dame de la Paix de Namur), Belgium, in November
1989. Most of the work presented here was carried out when I was there as a Research
Assistant supported by the Belgian National Fund for Scientific Research. The final version
was written when I was participating in the ESPRIT Project Integration at the Centre for
Mathematics and Computer Science (CWI) in Amsterdam, The Netherlands. I would like to
thank all these institutions for having supported my work and for having provided me with

VIII PREFACE

optimal facilities to achieve it. It also gives me great pleasure to thank the people who so ably
helped me in writing this book.

I am indebted to Axel van Lamsweerde, my supervisor. He introduced me to logic
programming several years ago and initiated my research in concurrent logic programming.
His careful reading of earlier versions has substantially improved the quality of this work.

I wish to acknowledge Yves Deville, my office mate at the University of Namur, as
well. Much of the material presented subsequently has been influenced by our numerous
discussions. I am also pleased to acknowledge Baudouin Le Charlier for his pertinent remarks.

I am grateful to Ugo Montanari for his interest in my work. His comments and advice on
my Ph.D. thesis have been very useful for its publication. I am also grateful to Maurice
Bruynooghe and Jean Fichefet for having served on my Ph.D. thesis committee. Their
comments on the draft version of the thesis have also been of great aid.

I wish to thank the members of the ESPRIT Project Integration and especially Krzysztof
Apt, Jaco de Bakker, Keith Clark, Frank Mac Cabe, Luis Monteiro, Catuscia Palamidessi,
Antonio Porto, Jan Rutten, for their interest in my work and helpful discussions.

Several members of the Institut d'Informatique of the University of Namur, of the Ecole
de Langues Vivantes of the University of Namur and of the Centre for Mathematics and
Computer Science in Amsterdam were so kind to read parts or previous versions of this book:
Jorge Barreto, Mete Celiktin, Pierre De Boek, Guy Deville, Pierre Flener, Naji Habra, Rosane
Pagano, Daniele Turi, Fer-Jan de Vries, Jeroen Warmerdam. I take this opportunity to thank
them. I am also particularly indebted to Dominique Adams and Anne Collard who carefully
checked each word of this book. All remaining faults are, of course, mine.

I am also grateful to Springer-Verlag, in particular to Alfred Hofmann and Hans
W6ssner, for their help in getting the manuscript published.

Last but not least, special thanks are due to my family. Their permanent support
throughout these years substantially contributed to the completion of this book. The interest of
friends and colleagues has also been much appreciated. May they all find my gratitude here.

September 1991 J.-M. Jacquet

Table of contents

P A R T I : I N T R O D U C T I O N

C h a p t e r 1 : I n t r o d u c t i o n 3

1.1 Requirements from an idealized view of logic programming .. 4

1.2 Real logic programming ... 5

1.3 Conclog : a concurrent logic programming language .. 7
1.4 Towards a methodology of concurrent logic programming ... 11

1.5 Overview of the book .. 12

1.6 Contribution ... 16

C h a p t e r 2 : L o g i c p r o g r a m m i n g 21

2.1 Syntax ... 21

2.2 Declarative semantics ... 23

2.3 Operational semantics .. 27

2.4 Relating the declarative and operational semantics ... 43

P A R T I I : D E S I G N I N G C O N C L O G 47

I n t r o d u c t i o n 49

C h a p t e r 3 : A r e c o n c i l i a t i o n c a l c u l u s 51

3.1 Reconciling substitutions ... 51

3.2 Reconciling n-substitutions .. 86

3.3 Application : parallel unification through reconciliation ... 110

3.4 Comparison with related work ... 117

3.5 Conclusion .. 121

X TABLE OF CONTENTS

C h a p t e r 4 : A basic scheme for concurrent logic p r o g r a m m i n g 123

4.1 Introduction .. 123

4.2 Basic concepts .. 144

4.3 The Conclog model .. 150

4.4 Variants of the model ... 194

4.5 Theoretical properties .. 205

4.6 Comparison with related work ... 225

4.7 Conclusion ... 236

C h a p t e r 5 : Incorporating negation 239

5.1 Introduction .. 239

5.2 Basic concepts .. 261

5.3 The Conclog model .. 290

5.4 Variants of the model ... 324

5.5 Theoretical properties .. 334

5.6 Comparison with related work ... 345

5.7 Conclusion ... 370

C h a p t e r 6 : A d d i n g extra-logical features 373

6.1 Sources of inefficiencies .. 374

6.2 The extra-logical features .. 378

6.3 The Conclog model .. 422

6.4 Theoretical properties .. 428
6.5 Comparison with related work ... 428

6.6 Conclusion ... 436

C h a p t e r 7 : E v e n t - d r i v e n r e c o n c i l i a t i o n 437

7.1 Description ... 437

7.2 Analysis .. 439

7.3 Conclusion ... 447

C h a p t e r 8 : C o m p a r i s o n w i t h r e l a t e d w o r k 449

8.1 Parallel Prologs .. 449

8.2 Parallel execution models of Horn clause programs .. 456

TABLE OF CONTENTS X1

8.3 Guarded Horn clause languages ... 456
8.4 Distributed logic languages .. 467
8.5 Constraint concurrent logic programming languages .. 469
8.6 Parallel implementations of logic languages .. 471

C o n c l u s i o n 473

P A R T H I : P R O G R A M M I N G I N C O N C L O G 477

I n t r o d u c t i o n 479

C h a p t e r 9 : T o w a r d s a methodology of c o n c u r r e n t log ic
p r o g r a m m i n g 481

9.1 Introduction .. 481

9.2 Writing a specification ... 484
9.3 Constructing a logic description ... 497

9.4 Deriving a concurrent logic program ... 512

9.5 Comparison with related work ... 550

9.6 Conclusion .. 552

C h a p t e r 10 : P r o g r a m m i n g n o n - b e h a v i o r a l a p p l i c a t i o n s 555

10.1 Introduction .. 555

10.2 Relational database programming .. 555

10.3 Simple multi-directional list processing ... 558
10.4 Single-solution directed list processing .. 568

10.5 Handling trees .. 606

10.6 Generate and test programming ... 616
10.7 Conclusion .. 621

C h a p t e r 11 : P r o g r a m m i n g b e h a v i o r a l a p p l i c a t i o n s 623

11.1 Introduction .. 623

11.2 Programming infinite processes ... 623

Xll TABLE OF CONTENTS

11.3 Programming abstract data types ... 627

11.4 Programming systems o f processes ... 634

11.5 Classical concurrent p rogramming .. 699

11.6 The producer -consumer parad igm ... 707

11.7 Cor, clusion ... 716

Conclusion 719

P A R T IV : C O N C L U S I O N 721

C h a p t e r 1 2 : C o n c l u s i o n 723

12.1 The Conclog language ... 723

12.2 The methodology 726

12.3 Future work .. 728

A P P E N D I C E S 731

Append ix 1 : The oerm and element procedures .. 733

Append ix 2 : An air l ine reservat ion system .. 735

Append ix 3 : An operat ing sys tem .. 737

Append ix 4 �9 A lift sys tem .. 747

R E F E R E N C E S 753

INDEX 775

