
Non-Determinism in Deductive Databases

Fosca Giannotti
CNUCE-CNR

Via Santa Maria 36, 56100 PISA, Italy
fosca@gmsun.cnuce.cnr.it

Dino Pedreschi
Dipartimento di Informatica, Università di Pisa

Corso Italia 40, 56125 PISA, Italy
pedre@dipisa.di.unipi.it

Domenico Saccà
Dipartimento di Sistemi, Università della Calabria

Rende (CS), Italy
2101sac@icsuniv.bitnet

Carlo Zaniolo
MCC

3500 West Balcones Center Dr.
Austin, Texas 78759

carlo@mcc.com

Abstract

This paper examines the problem of adding non-deterministic constructs to a
declarative database language based on Horn Clause Logic. We revise a previously
proposed approach, the choice construct introduced by Krishnamurthy and Naqvi,
from the viewpoints of amenability to efficient implementation and expressive power.
Thus, we define a construct called dynamic choice, which is consistent with the
fixpoint-based semantics, cures the deficiencies of the former approach, and leads
to efficient implementations in the framework of deductive databases. Also the
new construct extends the expressive power of Datalog programs considerably, as
it allows to express negation under Closed World Assumption, as well as a class of
relevant deterministic problems.

1 Introduction

The importance of constructs for expressing non-determinism in logic programs is well-
known; for instance, Prolog contains a spurious construct, called the cut, which is widely

used to improve execution speed and to extend the expressive power of Horn Clauses –
e.g., the cut allows the expression of negation-by-failure.

A clear need for non-determinism is also emerging in deductive databases as more
experience is gained in programming with languages such as LDL [NT89]. While in most
Prolog implementations the system stops after returning an answer, deductive databases
tend to prefer the all-answer semantics, whereby the set of all answers is returned from
the execution of a query. The all-answer semantics exacerbates the need for special
constructs to deal with situations where the user is not interested in all possible answers:
any answer will do. An important example of this situation, is when the user wants to see
an arbitrary but unique sequence number assigned to each tuple in the answer, to serve
as the object ID for a tuple [Zan89]. A second situation is exemplified by the following
example: a new student must be given one (and only one) advisor. If the application
of various qualification criteria fails to narrow the search to a single qualified professor,
then an arbitrary choice from the eligible faculty will have to be made and recorded.

The desire to express applications as those above, where non-deterministic queries
and modeling of non-deterministic behavior are needed, provided the original motivation
for the introduction of the choice construct [KN88]. Only more recently, these authors
became fully aware of the important role that these non-deterministic constructs can
play in computing deterministic queries or transformations. This important facet of
the problem is discussed in [AV89], where it is shown that simple deterministic functions
which cannot be expressed in deterministic FO logic (with fixpoint) can be expressed once
a non-deterministic operator called witness is added. An example of this added power
follows from our previous observation that unique integers can be assigned to derived
tuples once non-deterministic constructs are available – thus attaching an ordering to
domains. It is known that deterministic languages on ordered domains are more powerful
than deterministic languages on unordered domains [Imm87].

The objective of this paper is to revisit the issue of non-deterministic extensions to
Horn-clause based languages from the viewpoints of expressive power and amenability to
efficient implementation. We show that the current proposal, namely the choice proposal
described in [KN88] and [NT89] suffers from undesirable properties that follow from its
static nature. Thus, we introduce a new definition called dynamic choice that cures the
problems of the construct proposed in [KN88]—which will hereafter be referred to as
static choice. The declarative semantics of such a construct is based on the concept of
stable models: the multiplicity of stable models for a given program provides a model
theoretical characterization of non-determinism [SZ89].

We then turn to the problem of the operational semantics of choice, and address
this problem in the framework of backtracking fixpoint procedure proposed in [SZ89].
In the case of definite Horn Clause programs augmented with dynamic choice, the fix-
point procedure is particularly simple and directly supplies the basis for a very efficient
implementation.

Turning our attention to the issue of expressive power, we show that Datalog aug-
mented with dynamic choice is strictly more expressive than Datalog augmented with
the static choice constructs. In particular, dynamic choice can express negation under
the Closed World Assumption. Hence, we conclude that in both the bottom-up and top-
down procedural interpretations of Logic Programming appropriate non-deterministic
operators can emulate some notions of negation, and conversely.

2 Basic notions

In this section, we summarize the basic notions of Horn Clauses logic, and its extensions
to allow negative goals. Therefore we also briefly review the notion of stable models,
which will be used later in the discussion. A more detailed discussion of these topics can
be found in the referenced works [GL88].

A term is a variable, a constant, or a complex term of the form f(t1, . . . , tn), where
t1, . . . , tn are terms. An atom is a formula of the language that is of the form p(t1, . . . , tn)
where p is a predicate symbol of arity n. A literal is either an atom (positive literal) or
its negation (negative literal). A rule is a formula of the language of the form

Q ← Q1, . . . , Qm.

where Q is a atom (head of the rule) and Q1, . . . , Qm are literals (body of the rule). A
term, atom, literal or rule is ground if it is variable free. A ground rule with empty body
is a fact. A logic program is a set of rules. A rule without negative goals is called positive
(a Horn clause); a program is called positive when all its rules are positive.

Let P be a program. Given two predicate symbols p and q in P , we say that p depends
on q, written p ≺ q, if either there exists a rule r in P such that p is the head predicate
symbol of r and q occurs in the body of r, or there exists a predicate symbol s and a rule
r in P such that p ≺ s, s is the head predicate symbol of r and q occurs in the body of r.
Moreover, two predicate symbols of P , say p and q, are mutually recursive if both p ≺ q
and q ≺ p. Finally, two atoms are said to be mutually recursive if their corresponding
predicate symbols are mutually recursive; a rule is recursive if its head predicate symbol
is mutually recursive with some predicate symbol occurring in the rule body.

Given a logic program P , the Herbrand universe for P , denoted HP , is the set of all
possible ground terms recursively constructed by taking constants and function symbols
occurring in P . The Herbrand Base of P , denoted BP , is the set of all possible ground
atoms whose predicate symbols occur in P and whose arguments are elements from the
Herbrand universe. A ground instance of a rule r in P is a rule obtained from r by
replacing every variable X in r by a ground term in HP . The set of ground instances
of r are denoted by ground(r); accordingly, ground(P) denotes

⋃
r∈P ground(r). A

(Herbrand) model M of P is a subset of BP that makes each ground instance of each
rule in P true (where a positive ground atom is true if and only if it belongs to M and
a negative ground atom is true if and only if it does not belong to M—total models).
A model of P is a minimal model if none of its proper subsets is a model. Each positive
logic program has a unique minimal model which defines its formal declarative semantics.

Given a program P with model M let groundM (P) denote the program obtained
from ground(P) by

1. removing every rule having as a goals some literal ¬q with q ∈ M

2. removing all negated goals from the remaining rules.

Since groundM (P) is a positive program, it has a unique minimal model. A model
M of P is said to be stable when M is also the minimum model of groundM (P) [GL88].
A given program can have one or more stable (total) model, or possibly none. Positive
and stratified programs are among those that have exactly one stable model [GL88].
The program p ← ¬p is the simplest example of a program with no stable model. Of

particular relevance to our discussion is the occurrence of multiple stable models, as in
the following example:

p ← ¬q
q ← ¬p

This has two stable models: one where p is true and q is false, and the other where p is
false and q is true. Every stable model for P is a minimal model for P .

3 Model-theoretical non-determinism

The problem of non-determinism in the framework of database logic languages was first
addressed in [KN88], where an elegant solution based on the notion of minimal model
and functional dependencies is proposed. According to [KN88, NT89], special goals, of
the form choice((X), (Y)), are allowed in the rules to denote the functional dependency
(FD) X → Y [Ull90]. Then the meaning of such programs is defined by its choice models,
as discussed next.

Example 1. Consider the following program with choice.

a st(St,Crs) ← takes(St,Crs), choice((Crs),(St)).
takes(andy,engl).
takes(ann, math).
takes(mark,engl).
takes(mark,math).

The choice goal in the first rule specifies that the a st predicate symbol must associate
exactly one student to each course. Thus the functional dependency Crs → St holds in
the (choice model defining the) answer. Thus the above program has the following four
choice models:

M1 = { a st(andy, engl),a st(ann, math)} ∪X,
M2 = { a st(mark, engl),a st(mark, math)} ∪X,
M3 = { a st(mark, engl),a st(ann, math)} ∪X,
M4 = { a st(andy, engl),a st(mark, math)} ∪X,

where X is the set of takes facts in Example 1.
A choice predicate is an atom of the form choice((X), (Y)), where X and Y are lists

of variables (note that X can be empty). A rule having one or more choice predicates
as goals will be called a choice rule, while a rule without choice predicates will be called
a positive rule. Finally, a choice program is a program consisting of positive rules and
choice rules.

The set of the choice models of a program with choice rules formally defines its
meaning. The main operation involved in the definition of a choice model is illustrated
by the previous example. Basically, any choice model M1, ..., M4 can be constructed by
first removing the choice goal from the rule and computing the resulting a st facts. Then
the basic operation of enforcing the FD constraints is performed, by selecting a maximal
subset of the previous a st facts that satisfies the FD Crs → St (there are four such
subsets). Unfortunately Example 1 hides the complexity involved in the general case.
In particular, in this example all the variables appearing in the choice predicate are also

contained in the head of the rule. To guarantee this property in the general case, a
preliminary step is needed to construct a positive program called the extended version of
P . Moreover, unlike Example 1 where the definition of a st is not used anywhere else in
the program, in general, several predicates might be dependent on those defined by the
choice rules. Thus, after the selection of the maximal subset obeying the given FDs, a
final step to compute the minimal model for the dependent predicates is needed. Let us
formalize the operations just outlined. For now let us assume that P contain only one
choice rule r, as follows:

r : A ← B, C.

where C denotes the conjunction of all choice goals and B is the conjunction of all
remaining goals. The positive version of P denoted PV (P) is the positive program
obtained from P by eliminating all choice goals.

The extended version of P , denoted by EV (P), is the positive program obtained from
P by replacing r the two following rules:

A ← B, extChoice(Z).
extChoice(Z) ← B.

where Z are all the variables in the choice goals, listed in the order they occur in such
goals. Thus, for the example at hand, we have:

a st(St,Crs) ← takes(St,Crs), extChoice(St,Crs).
extChoice(St,Crs)← takes(St,Crs).

Let I1 and I2 be two interpretations from the Herbrand bases of two (possibly dif-
ferent) programs. Then we define I1/I2 as {A| A is in I1 and the predicate symbol of A
also occurs in I2 }. It turns out that, when I1/I2 = I2, then I1 is identical to I2 modulo
additional literals whose predicate symbols are not in I2.

Proposition 1 [SZ89] Let P be a choice program, M and N be the minimal models of
PV (P) and of EV (P), respectively. Then N/M = M .

Note that the only predicates of EV (P) which do not occur in PV (P) are those with
symbol extChoice. Consider any of such predicates, say extChoice(Z) with arity n. This
predicate defines a n-ary database relation [Ull90] having as attribute the names of the
variables in Z and as tuples the following set: { (z)|extChoice(z) is in the minimal model
of EV (P) }. We define the following set F of functional dependencies on the relation
corresponding to extChoice(Z):

F = {X → Y |choice((X), (Y)) is a goal of r—i.e., it is in C}
A reduced version of (the relation defined by) extChoice(Z), denoted by chosen(Z) is
defined as any maximal subset of extChoice for which all the functional dependencies
in F hold. Note that such reduced version is not necessarily unique and is empty if and
only if extChoice(Z) is empty.

We can now define a reduced version of P , denoted as RV (P), as the program obtained
from P by replacing each rule r by

r′ : A ← B, chosen(Z).

where chosen(Z) denotes an (arbitrarily chosen) reduced version of extChoice(Z).

Definition 1 Let P be a choice program. The minimal model of every reduced version
of P is a choice model for P .

From a pragmatic viewpoint, it is understood that a user will only want to see the
answer to a query corresponding to one (arbitrarily chosen) choice model. From a formal
viewpoint, however, the meaning of any given program is formally defined by the set of
its choice models. Thus, for instance, the set of choice models of the program in Example
1 corresponds to the minimal models of the following transformed program:

a st(St,Crs) ← takes(St,Crs), chosen((Crs),(St)).

where the extension of chosen is one the following four sets.

{ chosen(andy, engl),chosen(ann, math) }
{ chosen(mark, engl),chosen(mark, math) }
{ chosen(mark, engl),chosen(ann, math) }
{ chosen(andy, engl),chosen(mark, math) }

These four sets were derived by first computing the relation extChoice from the following
extended version of the program:

a st(St,Crs) ← takes(St,Crs), extChoice(Crs,St).
extChoice(Crs,St) ← takes(St,Crs).

and then deriving the maximal subsets of extChoice satisfying the dependency Crs → St.
An extrapolation of these definitions to the case involving several choice rules is pre-

sented in [KN88, NT89]. We will not discuss this problem now, since various definitional
and computational problems of the current definition must be addressed first.

4 Choice in recursion

The definition of choice models presented in [KN88] is not conducive to effective imple-
mentation. Take for instance, the following recursive definition describing nodes reach-
able from a given node a and their distance from a on a graph g.

Example 2.

p(a,0).
p(Y, J) ← p(X,I), g(X,Y), J= I+1,choice((Y), (J)).

Observe that, in this example, any choice model is finite, even when graph g has
cycles. Computing extChoice using the [KN88] rules described in the previous section
we obtain:

p(a,0).
p(Y, J) ← p(X,I), g(X,Y), J= I+1, extChoice(Y, J).
extChoice(Y, J)← p(X,I), g(X,Y), J= I+1.

Observe that the extensions of predicates p and extChoice are identical; furthermore,
they are both infinite when the graph g is cyclic. Thus, we cannot use the static choice
definition [KN88] to effectively compute choice models. Instead, we need the ability to
compute a choice model, without having to first compute the infinite extChoice relation.

A second and more fundamental problem with choice models is that they fail to
deliver models that maximally satisfy the given functional dependencies. Again, this
anomaly pertains to recursive definitions. With reference to the above example, assume
that graph g contains the edges g(a, b) and g(b, b). Hence the minimal model of the
extended program contains the following p- and extChoice pairs: (a, 0), (b, 1), (b, 2),
Considering now the reduced version of the program, and selecting the set {(a, 0), (b, 1)}
as the extension of predicate chosen, we find that the resulting choice model contains
the p-pairs {(a, 0), (b, 1)}. But if we use {(a, 0), (b, 2)} as the extension of chosen, the
resulting choice model contains only (a, 0), since (b, 2) cannot belong to the extension of
p if (b, 1) does not belong to the same. Thus one choice model properly contains another:
a situation which contradicts the expected property of maximality of choice models. Also
observe that these problems remain when finite domains are considered. For instance, it
is simple to construct a finite version of the example above, by encoding the successor
relation for the first k integers by k− 1 facts. The resulting Datalog program still suffers
from the same problems.

Therefore we need a new notion of choice models to guarantee (i) the maximality of
the resulting sets with respect to the given FDs, and (ii) the availability of an effective
computation procedure. The next sections propose a solution that satisfies both these
requirements. Basically, static choice assumes that a single global selection is performed
“at the end” of recursion, i.e., at the end of the deduction process. Instead, we will adopt
an approach where many local choices are performed dynamically “during” recursion, i.e.
interleaved with the deduction steps as to restrict the scope of later choices.

5 Choice by negation

An alternative approach to define non-determinism in a declarative fashion was proposed
in [SZ89]. According to said proposal, programs with choice are transformed into pro-
grams with negation which exhibit a multiplicity of stable models. Each stable model
corresponds to an alternative set of answers for the original program. Following [SZ89],
therefore, let P be a choice program (which, for simplicity of exposition, we will initially
assume contains only one choice rule). Then, the stable version of P , denoted by SV (P),
is the program with negation obtained from P by the following two transformation steps:

1. In each choice rule of P , say
r : A ← B, C.

where C denotes the conjunction of all choice goals and B denotes the conjunction
of all remaining goals, replace C with the atom chosen(Z), where Z are all the
variables in the choice goals, listed in the order they occur:

r′ : A ← B, chosen(Z).

then add the following rule:

chosen(Z) ← B,¬diffChoice(Z).

2. for each goal choice((X), (Y)) in C, add a new rule:

diffChoice(Z) ← chosen(U), Y 6= Y ′.

where U is a list of variables obtained from Z by replacing every variable y which
is in Z but not in X by a new variable y′, and Y 6= Y ′ is the inequality predicate
between lists. Thus, Y 6= Y ′ is true when, for some i, the i-th component of Y is
different from the i-th component of Y ′. (Obviously, given the decomposition rule
of FDs [Ull90], choice((X), (Y)) can be replaced by several choice((X), (y))—one
for each component y of Y . Then several diff rules would be generated. The list
notation provides a more succinct equivalent.)

When the given program P is such that none of its choice rules is recursive, then
P and its stable version are semantically equivalent in the sense that the set of choice
models of P is equivalent to the set of stable models of SV (P) [SZ89]:

Proposition 2 Let P be a choice program such that every choice rule is non-recursive.
Then SV (P) has at least one stable model.

Proposition 3 Let P be a choice program, containing no recursive choice rules. Then

1. for each choice model M for P , there exists a stable model N of SV (P) such that
N/M = M , and

2. for each stable model N for SV (P) there exists a choice model M for P such that
N/M = M .

The following is the stable version of Example 1.

a st(St,Crs) ← takes(St,Crs), chosen(Crs,St).
chosen(Crs,St) ← takes(St,Crs),¬ diffChoice(Crs,St).
diffChoice(Crs,St) ← chosen(Crs, St),St 6= St.
takes(andy,engl).
takes(ann, math).
takes(mark,engl).
takes(mark,math).

Let us turn now to choice in recursive predicates, which was not discussed in [SZ89],
and consider the stable version of Example 2.

p(a,0).
p(Y, J) ← p(X,I), g(X,Y), J=I+1,chosen(Y, J).
chosen(Y,J) ← p(X,I), g(X,Y), J=I+1, ¬ diffChoice(Y,J).
diffChoice(Y,J) ← chosen(Y,J ′),J 6= J ′.

If the graph relation g is defined by g(a, b) and g(b, b), then there is only one stable
model in this example, which contains the p-facts p(a, 0) and p(b, 1). This is a maximal
sets of p-facts satisfying the given functional dependency.

As the last example suggests, this new characterization of non-determinism provides
a ready-made solution to problem (i) listed at the end of section 4. Indeed, choice goals in
rules can now be viewed as a shorthand for mutually recursive predicates with negation,
giving rise to a new semantics of choice. This is stated by the following:

Definition 2 Let SV (P) be the stable version of a program P with choice constructs.
The stable models of SV (P) are named stable choice models of P . The meaning of P is
defined by the set of its stable choice models.

This new characterization of choice overcomes the deficiencies of static choice in
treating choice within recursion. Also observe that the generalization to the case of
several choice rules in the program is trivial. All is needed is a to assign different names
to the distinguished chosen and diffChoice predicates generated from each rule (e.g.,
by the addition of a subscript).

The following result points out the declarative meaning of stable choice models as
maximal sets satisfying the functional dependencies. Thus the new semantics extends
the expected meaning to cope with any situation.

Proposition 4 Given a program P with choice constructs, consider its extended version
EV (P) (i.e., with extChoice predicates) and its stable version SV (P) (i.e., with chosen
and diffChoice predicates). For each stable model N of EV (P) there exists a stable
model M of SV (P) such that the following property holds. Let rj : H ← B, C be a choice
rule in P . Let Ej the set of extChoicej-facts in N , and Cj be the set of chosenj-facts
in M . Then Cj is a maximal subset of Ej which satisfies the functional dependencies
stated by the choice construct C, and such that if chosenj(x) is true in N then the body
of the associated chosenj-rule is true in N .

Proof. We develop here the proof for programs P with a single choice rule, i.e.:

P = P ′ ∪ {H ← B, choice((X), (Y)).}
where P ′ is a definite program. The argument directly extends to the general case.

We have:

EV (P) = P ′ ∪ { H ← B, extChoice(X, Y). ,
extChoice(X, Y) ← B.}

SV (P) = P ′ ∪ { H ← B, chosen(X,Y). ,
chosen(X, Y) ← B,¬diffChoice(X, Y). ,
diffChoice(X, Z) ← chosen(X,Y), Y 6= Z.}

We first show that any stable model of SV (P) satisfies the functional dependency X → Y .
Assume, by contradiction, that both chosen(a, b) and chosen(a, c) belong to Cj , with
b 6= c. chosen(a, b) ∈ Cj implies that diffChoice(a, c) ∈ N , using the ground rule:

diffchoice(a, c) ← chosen(a, b), b 6= c.

Analogously, chosen(a, c) ∈ Cj implies that diffChoice(a, b) ∈ N , using the ground
rule:

diffchoice(a, b) ← chosen(a, c), b 6= c.

Hence, the rule
chosen(a, b) ← B,¬diffChoice(a, b)

cannot belong to the positive version groundN (SV (P)) of SV (P) with respect to N ,
as ¬diffChoice(a, b) is false in N , and thus the fact chosen(a, b) cannot be true in the
minimal model of groundN (SV (P)), as that rule is the only one for inferring chosen(a, b).
Analogously, we can conclude that chosen(a, c) does not belong to the minimal model
of groundN (SV (P)). Hence N is not a stable model of SV (P), as it is not equal to the
minimal model of groundN (SV (P)).

To complete the proof, we need to show that Cj is maximal. Again, assume by
contradiction that there exists a fact chosen(a, b) such that: (i) for a ground rule
extChoice(a, b) ← B′ of EV (P), B′ is true in M , and hence extChoice(a, b) is true in
M ; (ii) Cj∪{chosen(a, b)} respects the FD X → Y , and (iii) B′ is true in N . By the fact
that N is a stable model of SV (P) we conclude that no fact of the kind diffChoice(a, Y)
is in N for some Y , as no fact of the kind chosen(a, Z) is in Cj for some Z, and this is
one of the premises of the diffChoice-rule. This also implies that the rule:

chosen(a, b) ← B′.

belongs to the positive version groundN (SV (P)) of SV (P) w.r.t. N , as ¬diffChoice(a, c)
is true in N . The above rule allows us to conclude that chosen(a, b) is true in the minimal
model of groundN (SV (P)), as, by assumption, B′ is true in N . This contradicts the fact
that N is a stable model of SV (P). 2

It is interesting to notice how Proposition 4 applies to Example 2 describing nodes
reachable from a given node a and their distance, on a graph g defined by the edges
g(a, b) and g(b, b). In this case, the extension of extChoice in the unique stable model
of EV (P) is the infinite set {(a, 0), (b, 1), (b, 2), . . .}, whereas the extension of chosen in
the unique stable model of SV (P) which satisfies the hypothesis of Proposition 4 is the
set {(b, 1)}, which yields {(a, 0), (b, 1)} as the (expected) extension of predicate p.

Therefore, a suitable construct for a non-deterministic pruning operator for deductive
databases should retain the syntax proposed in [KN88, NT89] but adopt a semantics
based on the equivalence with negative programs just described.

6 Implementation of choice

In this section we address the issue of actually computing stable choice models. We use
the non-deterministic procedure, called Backtracking Fixpoint, that was introduced in
[SZ89] for determining the total stable models of a negative program. In the simpler case
of choice programs, it reduces to a much simpler fixpoint procedure, which is conducive
to efficient implementation (the generic results regarding the computational complexity
of stable models notwithstanding).

Let us first adapt the Backtracking Fixpoint Procedure of [SZ89] to the case of general
choice programs. The program to which this procedure is applied is the the stable version
of the general choice program under consideration and for sake of notation simplicity is
demoted by P rather than SV (P) as usual. Since the choice program is positive, the
negative rules of the stable version P are only those of this form chosen rules:

rj : chosenj(Z) ← B,¬diffChoicej(Z).

thus they contain exactly one negative literal in the body.
In the procedure we use the transformation SP defined as follows. Let TP be the

immediate consequence transformation and T∞P (∅) be its least fixpoint. Moreover, let P ′

denote the positive program obtained from P by viewing each negative literal ¬p(A) as a
new positive literal with predicate symbol ¬p. Given a set of negative ground literals X
(regarded as facts), we define SP (X) = T∞P ′∪X(∅)−X — i.e., the positive literals in the

least fixpoint (and minimum model) of P ′ given a fixed set of negative ground literals
X. The Backtracking Fixpoint Procedure is presented next:

begin

M0 := SP (∅); M̃0 := ∅; stable := true;
if Ci= ∅ then

stable := true
else

Li := order(Ci);
endif ;
while not stable and i > 0 do

if Li 6= ∅ then
take from Li the head rule, say chosenj(z) ← B,¬diffChoicej(z)) ;
M̃i := M̃i−1 ∪ {¬diffChoicej(z)};
Mi := SP (M̃i);
if conflict(Mi, M̃i) then

i := i + 1;
if Ci = ∅ then

stable := true
else

Li := order(Ci)
endif

endif
else

i := i− 1
endif
od

if stable then
output Mi−1 “is a stable model”

else
output “No stable models”

endif
end.

At the generic level i, Ci denotes the set of all rule instances in ground(P), having
the form:

chosenj(z) ← B,¬diffChoicej(z).

and such that:

• each literal in B is in Mi−1,

• neither diffChoicej(z) is in Mi−1 nor ¬diffChoicej(z) is in M̃i−1,

• neither chosenj(z) is in Mi−1 nor ¬chosenj(z) is in M̃i−1.

The procedure starts at level 0 by determining all ground predicates that can be
inferred using only positive ground literals. In terms of the SP notation, M0 = SP (∅)
is computed. No negative ground literal is assumed: so we set M̃0 = ∅. Then we move

up to level 1. Here, we consider the set C1 and, more in general, the set Ci. If Ci is
empty, then we are done, and Mi−1 is a stable model. Otherwise, all the rules in Ci

are inserted into the list Li in an arbitrary order (see function order). Then the first
entry (a rule with head chosen) is removed from Li and taken into consideration. Then
we add ¬diffChoicej(Z) to the set M̃i−1 of all negative ground literals that have been
assumed up to level i − 1. In this way, we obtain M̃i, the set of all negative ground
literals assumed up to level i; we use such negative literals to infer all possible positive
ground literals through the program P , i.e., we compute Mi as SP (M̃i). At this point,
we invoke the function conflict(Mi, M̃i) which returns true only when there exists some
Q in Mi such that ¬Q is in M̃i. If there is no conflict, then we move up to the next
level and we set up the next list Li+1; otherwise, we remain at level i and we retry with
another rule in Li in the next step of the while iteration. If all rules of Li happens to be
already used (thus Li is empty) then we backtrack to the level i − 1 and select another
rule for this level. If we eventually get back to level 0, no more alternatives are possible
and the procedure stops by declaring that the program has no stable models.

Although the procedure is guaranteed to terminate for finite domains, its time com-
plexity is in general exponential. However, in the case of choice programs, the above
fixpoint procedure simplifies dramatically. To see this point, suppose that we choose a
rule

chosen(z) ← B,¬diffChoice(z)

from Ci. This implies that in M̃i we add ¬diffChoice(z), while the further fixpoint
saturation adds chosen(z) which will forbid to derive the fact diffChoice(z). But the
only way to create a contradiction is to derive a fact diffchoice(z). As a consequence the
fixpoint procedure never backtracks since the non-deterministic choices never produce a
contradiction. Moreover the sequence of sets Mi and M̃i is monotonically increasing
and we do not need to keep indexed versions of the sets; two monotonically increasing
variables M and M̃ will suffice.

These observations are summarized by the following proposition:

Proposition 5 Let P be a choice program. Then the Backtracking Fixpoint procedure
applied to SV (P) has the following properties:

1. it never backtracks and never outputs “no stable models”;

2. for each level i, Mi ⊆ Mi+1 and Mi ⊆ M , where M is a stable model of SV (P).

The procedure for computing stable choice models can be simplified, by exploit-
ing Proposition 5. Given M ⊆ BP , let CM be the set of chosen rules chosen(x) ←
B,¬diffChoicei(x) from ground(P) such that: (i) all the atoms in the conjunction B
belong to M , and (ii) the atom diffChoicei(x) does not belong to M . In other words,
CM is the set of chosen rules which can be fired consistently with M .

The simplified procedure for computing stable choice models is as follows:

begin

M := SP (∅); M̃ := ∅;
while not CM = ∅ do

select any r : chosenj(z) ← B,¬diffChoicej(z)) from CM ;
M̃ := M̃ ∪ {¬diffChoicej(z)};

M := SP (M̃);
od;

output M “is a choice model”
end.

The procedure operates by choosing, at each iteration, an arbitrarily instantiated
chosen rule rj in Ci, and adding the associated ¬diffChoice(z) literal to M̃ . Then the
consequences of the operated choice are derived by saturating the positive rules. It is
worth noting that among such rules there are also the diffChoice rules enabled by the
choice, which will prevent future choices which would violate the functional dependency.

It is easy to see that the above procedure can be easily implemented, thus providing
a viable extension to existing logic database languages, such as LDL [NT89]. As a final
remark, a realistic implementation of the above algorithm does not actually compute the
diffChoice relation, but simply records the chosen tuples as they are generated in order
to discard or not the future candidates. Therefore, choice can be implemented, as it is
done in LDL [Chi90] by simply memoing old values of chosen [Die87].

The behavior of the procedure is illustrated by the following two examples. Consider
first the student-course example of Section 3.

a st(St,Crs) ← takes(St,Crs), chosen(Crs,St).
chosen(Crs,St) ← takes(St,Crs),¬ diffChoice(Crs,St).
diffChoice(Crs,St) ← chosen(Crs, St),St 6= St.
takes(andy,engl).
takes(ann, math).
takes(mark,engl).
takes(mark,math).

Let Mi and M̃i denote the content of variables M and M̃ at the i-th iteration of the
procedure. The following are the partial results of the above procedure.

M̃0 = ∅
M0 = {takes(andy,engl), takes(ann, math), takes(mark,engl), takes(mark,math)}

M̃1 = {¬diffChoice(andy, engl)}
M1 = M0∪ {a st(andy,engl), chosen(andy,engl),diffChoice(mark,engl)}

M̃2 = M̃1 ∪ {¬diffChoice(mark, math)}
M2 = M1∪ {a st(mark,math), chosen(mark,math),diffChoice(ann,math)}

The procedure halts with M2 as a result, as CM2 is empty.
Consider next the “reachable points” example of section 4.

g(a,b).
g(b,b).
p(a,0).
p(Y, J) ← p(X,I), g(X,Y), J=I+1,chosen(Y, J).
chosen(Y,J) ← p(X,I), g(X,Y), J=I+1, ¬ diffChoice(Y,J).
diffChoice(Y,J) ← chosen(Y,J ′),J 6= J ′.

The partial results of the procedure are described next.

M̃0 = ∅
M0 = {g(a,b), g(b,b), p(a,0)}

M̃1 = {¬diffChoice(b, 1)}
M1 = M0∪ {p(b,1), chosen(b,1), diffChoice(b, J)J 6=1 }

Again, the procedure halts as no rule instance is in CM1 . It is worth noting that the
procedure delivers the unique stable choice model of the program. Observe here that we
have used a suitable compact notation for recognizing all true diffChoice literals so that
the problem of infinite domains is overcome. In the actual implementation, this is also
easy to do by not storing diffChoice and ¬diffchoice explicitly, and simply deriving
their values from those of chosen as needed [Chi90].

7 Negation by choice

We will now investigate expressiveness issues for the dynamic choice construct. With
this aim in mind, we will modify the fixpoint procedure for choice programs presented in
the previous section and show that this implementation of the dynamic choice construct
is powerful enough to model negation under the Closed World Assumption for Datalog
programs.

Informally, the modified procedure, that we name DCF for dynamic choice fixpoint
behaves as follows. Given a choice program P and its stable version SV (P), call C the
set of chosen rules in SV (P), D the set of diffChoice rules in SV (P), and O the set of
the remaining rules in SV (P).

Then, the DCF procedure is as follows:

1. find the fixpoint of the O part;

2. while there exists an enabled chosen rule in C, repeat:

(a) choose a rule r in C and execute it;

(b) execute all rules in D enabled by r;

3. repeat steps 1 and 2 until no rule is enabled.

Notice that we used the term “execute” to mean the ordinary bottom-up computation
mechanism of asserting the head of a rule whenever its body is true. The idea underlying
the DCF procedure can be explained as follows. There are two modes of operation: a
saturation mode and a choice mode. In the saturation mode, the consequences of the
original rules are computed by an ordinary fixpoint mechanism. When nothing more can
be deduced, the procedure switches to the choice mode. In the choice mode, a chosen
rule together with the associate diffChoice rules are executed, until no more choices can
be made. Then the procedure switches to the saturation mode again, and the process
continues until a fixpoint is reached.

In other words, when DCF is in the choice mode, it makes all the choices that are com-
patible with the functional dependency constraints, before it switches to the saturation
mode again. The following code formalizes the DCF procedure.

DCF Procedure

begin

M := ∅; M̃ := ∅;
repeat

OldM := M ;
M := SO(M);
while not CM = ∅ do

M̃ := M̃ ∪ {¬diffChoicei(z)|r : chosen(z) ← B,¬diffChoicei(z) ∈ CM};
M := M ∪ {chosen(z)|r : chosen(z) ← B,¬diffChoicei(z) ∈ CM};
M := SD(M);
od;

until M 6= OldM ;
output M “is a choice model”
end.

We claim that the DCF procedure is correct with respect to the stable choice model
semantics of the program, in the sense that every model it produces is a stable choice
model for our program. This claim can be easily established by observing that an early
choice is clearly correct with respect to the functional dependencies, although it may
inhibit possible later choices. This implies that DCF cannot compute every stable choice
model of a program, but only some preferred ones.

The importance of the DCF procedure lies in the fact that it allows to compute
efficiently some relevant deterministic problems. A remarkable example is the implemen-
tation of negation under Closed World Assumption for (finite domain) Datalog programs.
The following program defines not p to be the complement of a relation p with respect
to a universal relation u which contains all the domain elements.

Example 3.

p(a).
p(b).
u(a).
u(b).
u(c).

not p(X) ← comp p(X,2).

comp p(X,0) ← p(X).
comp p(X,I) ← aux(X,I), choice((X),(I)).

aux(X,1) ← comp p(X,0).
aux(X,2) ← u(X),comp p(,1).

By applying the DCF procedure to the above program, we obtain a set of answers
where comp p(x, 2) holds if and only if x is not in the extension of p, i.e., x = c in
the example. This behavior is due to the fact that the extension of aux must obey the
functional dependency X → I, and that DCF operates early choices which binds to 1

all the elements in the extension of p. This implies that all the elements which do not
belong to p will be chosen in the next saturation step, and hence bound to 2.

More precisely, in the first saturation phase the facts comp p(x, 0) and aux(x, 1) are
inferred, for x in the extension of relation p. In the following choice phase the facts
chosen(x, 1) are chosen, again for x in the extension of p, as all possible choices are
operated. In the second saturation phase the facts comp p(x, 1) are inferred for x in the
extension of p, and the facts aux(x, 2) for every x in the universe. In the following choice
phase, the facts chosen(x, 2) are chosen in a maximal way to satisfy the FD, i.e., for
x not in the extension of p, as all x’s in p have been chosen with tag 1. In the third
saturation step, the extension of not p becomes the complement of p with respect to u.

It is important to observe that the above construction only works properly under the
assumption that relation p is completely materialized in the first saturation phase of the
procedure. This observation leads us to conclude that the proposed procedure can be
adopted to compute stratified negation as well. In fact, if the relation p to be comple-
mented belongs to a lower stratum than that of the code for not p, an iterated application
of DCF will correctly behave as in the example above, where p is an extensional relation.

This result offers the opportunity for a comparison between top-down logic languages
like Prolog, and bottom-up logic database language like LDL. In both cases, by adding
a non-deterministic mechanism, it is possible to enhance the expressiveness of the pure
language to capture useful forms of negation. In Prolog, the cut operator enables the
implementation of negation-by-failure, whereas, in Datalog, the dynamic choice operator
enables the implementation of negation under CWA.

The set of answers computed by the DCF procedure for the above program is actually
a stable choice model for this program. Nevertheless, there exist stable choice models
of the program where that property does not hold. For instance the set containing
aux(a, 1), aux(b, 2), aux(c, 2) is also a stable model of the stable version of Example 3. In
these undesired models not computed using the choice policy of DCF, not p is no longer
the complement of p.

In other words, the DCF procedure is a less non-deterministic variation of the pro-
cedure presented in the previous section. With respect to the general procedure, DCF
computes a subset of preferred stable choice models, those corresponding to the early
choice policy. This characteristic makes DCF effective in dealing with relevant determin-
istic problems. From the point of view of efficiency, DCF is even more efficient than the
procedure of Section 6, since early choices restrict the generation of new inferred facts,
and the scope for future choices. Furthermore, it should be clear that the DCF approach
is particularly suitable to the bottom-up framework of deductive databases inasmuch as
DCF can simply be implemented via simple memoing/check operations [Die87].

As a further example, consider again Example 2 for computing nodes reachable from
a given node a and their distance. By interpreting such a program with DCF we obtain
a set of pairs (x, n), where n is the length of the minimum path from a to x, for each
node x reachable from a in the graph.

The increased computational efficiency and expressive power that follows from the
DCF approach make it very attractive as a basis for a practical operational semantics of
for non-deterministic pruning operators in deductive databases.

8 Conclusions

In this paper, we have studied the problem of defining declarative constructs to express
non-determinism in deductive databases. These constructs are important for improving
both efficiency and the expressive power of logic based languages—e.g., by enabling the
enforcement of functional dependency constraints in derived relations. We have shown
that a simple declarative definition of non-deterministic constructs can be based on the
stable model semantics for negative programs, and, using this approach, we have proposed
the notion of dynamic choice that improves on the (static) notion of choice proposed in
[KN88], with respect to expressive power and efficiency of implementation.

There is an interesting similarity between non-determinism in deductive databases
and that in the traditional top-down computational framework of Prolog. In [GPZ89] it
has been shown that the declarative aspects of the cut operator can be modeled in a way
similar to that in which we modeled choice using negation. In Prolog, the nature of the
inverse relationship is also clear: it is simple to express negation using the operational
semantics of the cut. In this paper, we have examined the nature of that relationship
for deductive databases, and we have shown that negation in Datalog can be expressed
using dynamic choice under the modified fixpoint computation DCF.

In the course of this investigation new issues have emerged that we left open for
further research. For instance, the stable choice model semantics justifies DCF, but it
does not characterizes DCF completely. Thus, the problem remains to identify a fully
declarative semantics for DCF. Alternatively, it is not clear whether one can emulate
the behavior of DCF under the stable choice model semantics. Finally, it would be
useful to compare dynamic choice with DCF with the witness operator of [AV89]. The
witness mechanism appears a more non-deterministic operator, as it operates choices at
each fixpoint iteration, while DCF operates choices at each saturation. We are currently
working on these problems.

References

[AV89] Abiteboul, S., and Vianu, V., “Fixpoint extensions of first-order logic and
Datalog-like languages”, Proc. 4th Symp. on Logic in Computer Science
(LICS), IEEE Computer Press, pp. 71-89, 1989.

[Chi90] Chimenti, D. et al., “The LDL System Prototype,” IEEE Journal on Data
and Knowledge Engineering, Vol. 2, No. 1, pp. 76-90, 1990.

[DW90] Debray, S.K., and Warren, D.S., “Towards banishing the cut from Prolog”,
IEEE Trans. on Software Engineering, Vol. 16, No. 3, pp. 335-349, 1990.

[Die87] Dietrich, S.W., “Extension Tables: Memo Relations in Logic Programming”,
Fourth IEEE Symposium on Logic Programming, MIT Press, pp. 264-272,
1987.

[GL88] Gelfond, M., and Lifschitz, V., “The stable model semantics for logic pro-
gramming”, Proc. 5th Int. Conf. and Symp. on Logic Programming, MIT
Press, pp. 1070-1080, 1988.

[GPZ89] Giannotti, F., D. Pedreschi and C. Zaniolo, “Declarative Semantics for Prun-
ing Operators in Logic Programming”, Proc. NACLP90 Workshop on Logic
Programming and Non-Monotonic Reasoning, Austin, Tx, Nov 1,2, 1989.

[KN88] Krishnamurthy, R., and Naqvi, S.A., “Non Deterministic Choice in Data-
log”, Proc. 3rd Int. Conf. on Data and Knowledge Bases, Morgan Kaufmann
Pub., Los Altos, pp. 416-424, 1988.

[NT89] Naqvi, S.A., and Tsur, S., A Logical Data Language for Data and Knowledge
Bases, Computer Science Press, New York, 1989.

[Imm87] Immerman, N., Languages which Capture Complexity Classes, SIAM J.
Computing, 16,4, pp. 760-778, 1987.

[SZ89] Saccà, D., and Zaniolo, C., “Stable models and non determinism in logic
programs with negation”, In Proc. Symp. on Principles of Database Systems
PODS’89, 1989.

[Ull90] Ullman, J.D., Principles of Database and Knowledge-Base Systems, Vol. 1
and 2, Computer Science Press, Rockville, Md., 1989.

[Zan89] Zaniolo, C. “Object Identity and Inheritance in Deductive Databases:
an Evolutionary Approach,” Proc. 1st Int. Conf. on Deductive and O-O
Databases, Dec. 4-6, 1989, Kyoto, Japan.

